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Abstract: Despite the fact that numerous studies have indicated that vehicular networks are vulnerable to external and 
internal attacks, very little effort has been expended in safeguarding communications both between elements 
within the vehicle and between the vehicle and the outside world. In this paper we present a mechanism that 
allows communications policy (essentially who can talk with whom and the security parameters of the 
channel) to be defined during the design of the software component and then adapted as the component 
undergoes integration first within subsystems and so on all the way to the final integration in the operational 
vehicle. We provide a mechanism that can maintain the integrity of the policy throughout the development 
effort and, finally, enforce the policy during the operation of the component in the production vehicle. 

1 INTRODUCTION1 

Within a complex environment, such as that of a 
vehicle, there are multiple concurrent 
communication streams that enable the various 
subsystems to synchronize with each other, 
exchange state, etc. Some of this communications is 
via internal buses while others rely on wireless links 
(both short range and wide area). An example of the 
former are status messages from sensors mounted on 
the car tires sent over wireless links to the 
appropriate ECU; while an example of the later are 
transmitted status messages and received commands 
from the manufacturer or vehicle owner command 
center (Sprenger H., 2010). In addition, passenger 
furnished devices (laptops, cellphones, tablets, etc.) 
may also need to communicate with on-board 
systems for status updates, access to the 
entertainment system etc. Moreover, when the 
vehicle is sent to the service depot, all kinds of 
diagnostic equipment will need to exchange 
information with the on-board systems. 

Currently most if not all of this communication is 
exchanged either in cleartext or over links with weak 
security, which means that a malicious third party 
can listen-in or even inject false data and/or 
commands into the communications channel 
(Checkoway S. et al., 2011), while (Sharafkandi S. 
et al., 2012) reports the need to ensure timely 

 
1 This research has been sponsored by the Deutsche Forschungs-
Gemeinschaft, under project “Controlling Concurrent Change.”  

delivery of specific messages. A very detailed threat 
analysis against the wireless communications link 
between the on-board system and the pressure 
sensors on the tires published in (Rouf I. et al., 2010) 
demonstrates the dangers inherent in cleartext 
telemetry. In this case, the “adversary” managed to 
inject false tire pressure readings into the telemetry 
thus triggering a warning on the dashboard. 
Ultimately, the fake data caused the ECU to crash 
requiring replacement. A more determined adversary 
could reverse engineer the ECU code to discover 
vulnerabilities that could lead to a successful code 
injection attack (Checkoway S. et al., 2011). This 
would result in the commandeering of the ECU itself 
with many adverse safety and security implications.  

A similar situation exists in civil aviation where 
the Aircraft Communications and Reporting System 
(www.acarsd.org) messages are sent in the clear so 
anybody can listen in and, given the necessary 
equipment, inject forged data. The wireless nature of 
these communications make attacks much easier, but 
in many vehicles, the wired communications buses 
may be also accessible to malicious parties. The 
trend of extending the instrumentation buses to 
every corner of the vehicle, makes it even more 
likely that a bus will become accessible to a 
determined attacker. In other words, wired or 
wireless, communications are vulnerable to attack. 

The interaction between systems may also create 
vulnerabilities: In (Laarouchi Y. et al., 2009) the 
authors note that it is extremely important to control 
who may talk to whom, so that less critical tasks may 
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not interfere with more critical ones. Matters are 
further complicated by the sharing of 
communication buses by applications of mixed 
criticality and or security, ranging from the mundane 
(such as courtesy lights) to safety critical (such as 
stability control and braking). These concerns extend 
to civil aviation as well. For example the US Federal 
Aviation Administration expressed concerns about 
the fact that there exists connectivity between 
“passenger domain computer systems [and] airplane 
critical systems and data networks.” (Federal 
Register, 2008) 

While there are still few actual attacks, the ease 
with which researchers have managed to exploit 
vulnerabilities in vehicular platforms has made 
evident the need for increased vigilance. Borrowing 
from legacy networks researchers have suggested 
the well tried methods of protection, such as 
firewalling (Keromytis A. et al., 2007), Intrusion 
Detection monitors (Muter M., 2009), and so on. 
However, none of these techniques addresses the 
root problem of these vulnerabilities, namely that the 
basic design of the internal network allows anybody 
to talk to anybody else. Even in cases where there 
are multiple networks, bridged by specific ECUs, 
actual attacks have demonstrated that such bridges 
offer only nominal resistance to attackers (Eckert C 
et al., 2013). 

On the other hand, trying to impose a 
comprehensive system to control communications 
within the vehicular platform using traditional 
techniques, such as packet filters on all ECUs is 
guarantied to cause configuration problems both 
during initial integration, but also during the 
upgrades throughout the lifetime of the platform. 
The reason is that static access control matrices are 
not effective in a changing environment and must be 
augmented either by update procedures (e.g. during 
reconfiguration) or by a more flexible mechanism. 
Moreover, as the number of ECUs increases, so does 
the number of the filters that must be configured on 
each ECU. Clearly this does not scale well, and is 
likely to lead to configuration errors that may stop 
the vehicle from functioning as intended, or, worse, 
create vulnerabilities that a potential attacker can 
exploit. 

In addition to access control, we must also 
consider what type of security protection we must 
grant the various communications links (Laarouchi 
Y. et al., 2008). The resource-constrained nature of 
embedded environments, and the time-critical nature 
of some of these communications implies that we 
need to be more selective in the type of protection 
we apply to these links (Mahmoud B. et al., 2010). 

Moreover, traditional algorithms may be too 
resource hungry and could be replaced by low 
latency, low power ones such as elliptic curve 
cryptography or compressed certificates (Olive M., 
2001). 

A technique called the “distributed firewall” 
(Ioannidis S. et al., 2000) whereby security policy is 
defined centrally and distributed to all computing 
platforms in the network offers great promise in 
achieving the goal of total control over all 
communication links. The key differentiation 
between the distributed firewall and the installation 
of packet filters on every ECU is that in the latter 
case there is no easy way to specify the security 
parameters of the communications links and that the 
packet filters must be installed in each ECU 
separately,. In the case of the distributed firewall, the 
security policy is centrally managed and can 
accommodate link security parameters. 

Nevertheless, creating this security policy is a 
very difficult task requiring detailed knowledge of 
possible communication paths between all possible 
components of the system, making system evolution 
(whereby such interactions may change), labor 
intensive and error prone. 

Our approach is to integrate the evolution of the 
security policy into the software development 
workflow, allowing the policy to adapt to changing 
circumstances during development, integration and 
maintenance, so that on one hand the intentions of 
the initial designer are preserved, while, on the other 
hand, the policy is customized to the requirements of 
the actual operational platform. 

For example, the designer of a subsystem may 
require a communications link to, say, a temperature 
sensor, and include appropriate policy to this effect. 
Latter, when this subsystem is integrated into a 
vehicular platform, the basic policy may be 
augmented by the system designer. For example, 
depending on the way the particular subsystem is 
integrated into the overall architecture, certain 
aspects of the communication policy (such as link 
integrity, privacy, priority) may need to be specified. 
Later on during final integration the policy will be 
further refined to include the actual parameters that 
define the communications link (e.g. source and 
destination addresses, integrity and/or encryption 
algorithms, authentication methods and so on). 

However, this is not sufficient as adaptations to 
the policy may subvert it, or may misinterpret 
assumptions made earlier on in the development 
process. We, therefore, require that policy is 
protected from design all the way to the actual 
platform. In order to achieve this, we created a 
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Figure 1: Domains, subsystems, and communication links. 

 
framework that protects via a trust management 
mechanism the initial policy and its refinements at 
every stage in the development process. In this way, 
at each level, policy may be adapted only in the 
manner that the original designer envisioned thus 
ensuring that the original design assumptions are 
maintained. Moreover, mechanisms running on the 
actual platform can verify that the supplied policy 
conforms with the initial design policy and may use 
it automatically to decide whether communication 
requests should be allowed to go through, or be 
denied as inconsistent with the security policy. 

We achieve this by encoding the various policy 
statements and their refinements into trust 
management credentials that are signed by the 
competent authority: at the design level, the original 
policy credential is signed by the designer (or 
actually by the key of the company that designs the 
component), then the credentials that refine the 
policy at the implementation level are signed by the 
company (or team) that implements the component, 
and so on all the way to the actual integration of the 
component to the target platform, where the final 
platform-specific policy statements are signed by the 
team that performs the final integration. We thus 
have a chain of credentials that transfer trust from 
the original designer to the policy enforcement 
engine on the platform which decides whether to 
allow communication requests to go through. 

In the following section we analyze how we 
implemented this framework though the use of an 
actual subsystem used in a test vehicle. 

2 PRINCIPLES OF OPERATION 

In this section we use a vehicle headlight control 
scenario to describe the interaction of various 
components and the formulation and refinement of 
communications policy from initial design to final 
integration. 

2.1 Scenario 

Our sample configuration uses a subsystem, found in 
practically every road vehicle, that controls the 
operations of the vehicle’s headlights. We have 
chosen this example because it is based on a 
function most readers will be familiar with and 
which requires multiple communications paths to be 
established, both within the subsystem and between 
the subsystem and other subsystems of the vehicle. It 
consists of (a) the headlights circuit breaker that 
controls power to the headlight lamps, (b) an 
ambient light sensor, used for the automatic 
activation of the headlights and to detect lamp 
failure, (c) the headlight mode switch usually placed 
on the steering wheel that allows the driver to select 
the mode of operation of the headlights (on, off, 
auto), (d) the headlights indicator, which is a visual 
indicator to the driver that the headlights are 
powered on, and (e) the headlights failure indicator, 
which is another visual indicator that tells the driver 
that there is a problem with the headlights. Although 
these functions can be aggregated in one or two 
ECUs, we will assume a more distributed 
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configuration to allow us to show the 
communication paths. 

The headlights subsystem includes the headlights 
controller, the ambient light sensor and the headlight 
circuit breaker, while there are two more 
subsystems, the Instrument Panel subsystem which 
includes the controller of the instrument panel and 
associated indicators, switches etc., and the Caution 
and Warning subsystem which displays various 
messages regarding the status of various components 
in the vehicle. While both of these two subsystems 
typically contain numerous components, in order to 
keep the example simple, we show only the elements 
that are relevant to our scenario and assume that the 
Caution and Warning subsystem has a built-in 
display for its messages, so it does not need to 
communicate with any other devices within its 
domain. 
 

vendor_id == “ACME_INSTRUMENTS” 
src_device_name == “headlight_control” 
dst_device_name == “ambient light sensor” 
src_device_type == CONTROL_PLATFORM 
dst_device_type == LIGHT_SENSOR  
connection_type == HP2HP   # host:port to 
host:port 
security_level >= SL_INTEGRITY # link must 
offer at least integrity 
 

 
Figure 1 shows the interactions between the 

headlights subsystem and the other two subsystems 
in our sample configuration. Let us assume that the 
driver wants to turn on the headlights. She moves 
the headlight mode switch to the “on” position. This 
is detected by the Instrument Panel controller which 
in turn signals the headlight controller to turn on the 
headlights. The headlight controller commands the 
headlight circuit breaker to provide power to the 
headlights. It then signals the Instrument Panel 
controller that its instruction has been executed, 
which then instructs the headlight indicator to show 
that the headlights have been enabled. While the 
headlights are turned on, the headlight controller 
periodically checks the ambient light detector to 
confirm that the headlights actually provide light. If 
the ambient lights sensor reports a low light 
condition, then the headlight controller will assume 
that the headlights are malfunctioning and signal the 
Caution and Warning controller to report the failure. 

2.2 Security Policy Design 

In Figure 1 we see the three domains of authority in 
our example (Headlight control, Instrument Panel 
control, and Caution and Warning). Communication 
links inside each domain of authority are under the 

control of the designer of each subsystem and are 
fairly easy to define. However, communication links 
that span domains, are quite complex since they join 
components or subsystems that are potentially 
designed by different teams, or even provided by 
different vendors. 

Each subsystem has its own separate security 
policy to handle internal communications and a 
template policy for the external communications. 
For example a typical policy for the communications 
link between the headlight controller and the 
ambient light sensor would be:  

The purpose of this policy fragment is to allow a 
device of type CONTROL_PLATFORM to talk to 
another device of type LIGHT_SENSOR. The policy 
as it stands would imply that both devices are 
standalone (i.e. that each is a separate host in the 
network). However, at design time we generally do 
not know whether a particular sensor, or actuator 
will be standalone, or whether it will be integrated 
within a larger controller. This will be determined 
later on during integration. So we need to be able to 
allow our policy to work even when the sensor is 
grouped with other sensors in a data acquisition 
module, or in a more powerful ECU. We, therefore, 
define a hierarchy of device classes and allow 
subsequent policy statements to map specific device 
types to more general types, as long as they belong 
to the same path within the device class hierarchy.  

In Figure 2 we see an example of such a class 
hierarchy whereby the most general element is the 
MASTER_ECU. From there we can see a path that 
includes the local control platform (SEC_ECU), the 
Data Acquisition Platform (DAQ), and finally the 
LIGHT_SENSOR device. This classification enables 
us to refine policy, so that a group of sensors in a 
DAQ platform can use policies such as the one 
above to communicate with their respective 
controllers. 

In the above policy we also see that we specify 
some of the link parameters, which in this case is the 
security level. We use the “>=” expression to 
indicate that we require at least link integrity 
protection, but we can accept higher security levels, 
such as one that offers privacy as well as integrity. 

Finally the HP2HP designation for the connection 
type specifies that we want the communication link 
to be between the two services (the controller and 
the sensor) and we will not accept to share a 
communication link with other services (Figure 3, 
top). In cases where the designer wants a lower level 
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Figure 2: Class Hierarchy. 

Table 1: Policy attributes change between different levels in the design. 

 Software Component Designer
Abstract src_device_name == “Headlight Control” 

 dst_device_name == “Ambient Light Sensor” 

 src_device_type == COMP_PLATFORM 

 dst_device_type == LIGHT_SENSOR 

 Integrator
 i_src_device_name == “ECU12” 

 i_dst_device_name == “Sensor 52” 

 i_src_device_type == uPD-2343 

 i_dst_device_type == LS-X5 

 Platform
 p_src_addr == 192.168.177.15 

 p_src_port == ANY 

Specific p_dst_addr == 192.168.175.134 

 p_dst_port == sensor 

 
of security, she can specify that the particular pair of 
devices can utilize an existing communication link 
between, say, a data acquisition platform that the 
sensor has been integrated with a local control 
platform that the headlight controller has been 
integrated (Figure 3, bottom).  

2.3 Policy Refinement 

So far we have seen how policy can be defined at the 
designer level. We will now examine how the policy 
can be refined as we move to the integration and 
finally to the platform. In Table 1 we see how the 
terms of reference change between abstraction 
levels. In the design level we are dealing with a light 
sensor, while at the integration level we talk about a 
particular part, and at the platform level, about 
specific network addresses and ports. The objective 
of the policy framework is to maintain the security 

relationships even as the attributes themselves 
change 

It is clear that we need to have some translation 
between the different levels, but we cannot simply 
rewrite the original policy credential as this would 
invalidate its digital signature. We therefore need 
separate credentials that map values, such as 
i_src_device_type to p_src_addr from one 
level to the next. Being trust management 
credentials each one of them transfers trust to the 
“licensee” and is signed by the private key of the 
“authorizer”.   

Let us follow a connection request from the 
headlight controller to the ambient light sensor. This 
request contains all the names that appear in Table 1 
and is signed with the private key of the initiator, 
which is  in  our  case th e headlight  controller.  The  

DAQ
Data Acquisition Platform

Local Control Platform
SEC_ECU

Master Control Platform
MASTER_ECU

Com. Bridge

Circuit BreakerDimmer

Actuator Control
ACTUATOR

Control Platform
CONTROLLER Caution & Warning

Voltage
sensor

Light 
sensor

Pressure
sensor

Temperature 
sensor

Acceleration
sensor

A�Policy-based�Communications�Architecture�for�Vehicles

159



 
Figure 3: Communication links between components are implemented separately (top), and a single secure link combines 
all communications between components (bottom). 

ambient light sensor trusts the public key of the 
designer, so for the request to be granted, a chain of 
trust, must be established from the key of the 
initiator to the key that the ambient light sensor 
trusts. To save space, in the following example we 
will only use one name from each level 
(src_device_type, i_src_device_name, 
p_src_addr) although the actual credentials would 
need to include the full list to avoid errors. 

The process starts when the headlight controller 
sends a request with the connection parameters for 
the secure IP connection (we use IPsec in our 
system): 

 

src_device_name  
  = “Headlight Control” 
i_src_device_name = “ECU12” 
p_src_addr = 192.168.177.15 
initiator_key  

  = headlight controller public key 
nonce = transaction identifier 
signed_by  

  = headlight controller private key 
 

Note that the transaction identifier is used to 
prevent replay attacks and is generated by an initial 
challenge - response exchange between the two 
parties that wish to communicate. For this request to 
go through, we need to send the appropriate 
credentials. 

 

a) the credential signed by platform designer: 
  

if (src_device_name  
      == “Headlight Control” 
  && i_src_device_name == “ECU12”
  && p_src_addr == 192.168.177.15 
) -> MAXTRUST 
LICENSEE  

  = headlight controller public key 
AUTHORIZER  

  = platform designer  public key 
signed_by  

  = platform designer private key 
  

b) the credential signed by the integrator: 
  

if (src_device_name  
     == “Headlight Control” 
  && i_src_device_name  
     == “ECU12”) -> MAXTRUST 

LICENSEE = platform designer public key 
AUTHORIZER = integrator  public key 
signed_by = integrator private key 
  

c) the credential signed by the designer: 
  

if (src_device_name  
      == “Headlight Control” 
  ) -> MAXTRUST 

LICENSEE = integrator  public key 
AUTHORIZER = designer  public key 
signed_by = designer private key 
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By passing the request and the three credentials 
into the trust management evaluation engine, we get 
a MAXTRUST answer which indicates that the request 
should be approved. If however, any of the supplied 
arguments is different from the ones specified in any 
of the credentials, e.g. if the IP address is wrong, or 
the device name is ECU22 (rather than ECU12), then 
the evaluation will fail and the request will be 
denied. Adding additional names (e.g. link 
parameters, source IP address, etc.) tightens the 
conditions that will need to be satisfied (i.e. supplied 
in the initial request) for the request to be granted. 

Note that at the abstract level the credentials are 
sparser, because the designer does not need to be 
concerned with platform details such as IP addresses 
and ports. These details are supplied later on, when, 
during the platform customization process, are 
assigned by the team responsible for configuring the 
components to the target hardware. 

In the above example we have seen the case 
where the communication request is between 
components of the same designer. In cases where the 
communication needs to take place between 
components of different manufacturers we must 
establish a chain of trust between the key that the 
target trusts (that of its designer) and the key of the 
designer that created the component that initiates the 
connection request. This is done by providing a 
“bridging” credential such as: 

  

if (vendor_id  
     == “ACME_INSTRUMENTS” 
  && src_device_name  
     == “Headlight Control” 
  && dst_device_name  
     == “Instrument Panel Control” 
  && src_device_type  
     == CONTROL_PLATFORM 
  && dst_device_type  
     == CONTROL_PLATFORM 
  && connection_type  
     == HP2HP    
  && security_level  
     >= SL_INTEGRITY) -> MAXTRUST 
LICENSEE  

  = Headlight Control Designer public key 
AUTHORIZER  

  = Instrument Panel Designer public key 
signed_by  

  = Instrument Panel Designer private key 
  

This essentially confirms that the designer of the 
Instrument Panel Controller considers the Headlight 
Controller compatible with their system. 

3 ANALYSIS, FUTURE PLANS 

We implemented the above system on two single-
board computers running OpenBSD 4.8 , and a 
raspberry pi computer running FreeBSD 10.0-
CURRENT (and later on the FIASCO microkernel) 
linked to the same Ethernet switch (see Figure 4). 

Figure 4: The Prototype system. 

We used the Keynote trust management 
framework (Blaze M. et al., 2001) for the policies. 
For our prototype we used IPsec for the 
implementation of the secure connections because it 
is already integrated with the Keynote system under 
OpenBSD. In environments where privacy is not 
required, the policies could be combined directly 
with the packet filtering and scheduling 
mechanisms. We have extended both the Keynote 
system to allow extensions to the credentials and the 
IPsec implementation to implement certain aspects 
of the API which allow a process to establish the 
necessary security associations so that it can initiate 
connection requests dynamically. A lot of this work 
benefit from earlier work on distributed Trust 
Management systems (Prevelakis V. et al., 2003) 
and (Miltchev S. et al., 2008). 

A key concern is the overhead of performing 
multiple digital signature verifications, especially at 
system startup. Although a modern processor can 
cope with the load, we are looking into caching 
verified policy credentials so that once a credential 
has been verified, it is retained and can be loaded 
directly without signature verification. 

We also would like to experiment with 
revocation of credentials. Typically, trust 
management credentials include expiration dates in 
the policy definition, so that they automatically 
expire after some appropriate time interval (short for 
high security, long for low security applications). 
While this convention may be used for some 
communications (e.g. links to or from hosts external 
to the vehicle), it cannot be used for the internal 
communications as it clearly inappropriate for use in 
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an embedded environment (you would not want your 
car to stop working because some policy credential 
expired). We are therefore investigating pre-loaded 
policy that invalidates credentials (or keys that have 
been used to sign credentials) and on-line key 
refreshing. 

Our long term goal is to leverage this technology 
to enable dynamic change management in vehicular 
platforms. We, therefore, plan to port all this 
machinery to the CCC (Controlling Concurrent 
Change) project platform (ccc-project.org) running 
under the FIASCO.OC microkernel 
(http://os.inf.tu-dresden.de/fiasco) so 
that it can be integrated into the CCC architecture. 

4 CONCLUSIONS 

The contribution of this paper is a framework that 
allows communications policy to be specified early 
in the design process of a software component and to 
maintain the integrity of this policy throughout the 
evolution of the component and its integration with 
the platform. While such policy could be maintained 
as project metadata and implemented as static files 
(containing channel priorities, security parameters, 
keys, etc.) this is both extremely tedious and error 
prone. Static configurations also interfere with future 
upgrades and configuration changes. By expressing 
the requirements in a policy language and providing 
the tools to adapt this policy during development 
and integration we believe that the policy will 
actually be installed in the target platform, thereby, 
providing improved security for the entire system. 
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