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Abstract: Smart cards are low-end embedded systems used in the fields of telecommunications, banking and identifi-
cation. Java Card is a reduced set of the Java standard designed for these systems. In a context of scarce
resources such as smart cards, ROM size plays a very important role and dictionary compression techniques
help in reducing program sizes as much as possible. At the same time, to overcome the intrinsic slow execu-
tion performance of a system based on interpretation it is possible to enhance the interpreter speed by means
of specific hardware support. In this paper we apply the dictionary compression technique to a Java interpreter
built on an application specific processor. Moreover, we move part of the decompression functionalities in
hardware with the aim of speeding up the execution of a compressed application. We obtain a new interpreter
that executes compressed code faster than a classic interpreter that executes non-compressed code.

1 INTRODUCTION

Entering a building with restricted access without a
metal key, calling someone with a mobile phone, and
paying at the supermarket without physical money are
all activities based on the use of smart cards. With the
increase of informatization in many sectors of soci-
ety, these systems are destined to become even more
widespread.

Smart cards are low-end embedded systems con-
sisting of a 8/16 bit processor, some hundreds kilo-
bytes of persistent memory and some kilobytes of
RAM. The applications running on smart cards are
often developed in C and in assembly to maximize
execution time and minimize ROM size. Even fol-
lowing good programming practices, developing the
applications in C and assembly has the problem of
portability and demands a great amount of time for
porting the applications from one platform to another.
A programming language based on an interpreter like
Java would resolve the problem of portability and also
introduce security mechanisms included in the Java
run-time environment.

A complete Java run-time environment requires
hardware resources two orders of magnitude higher
than the typical smart card hardware configuration.
Java Card standard is a reduced set of the Java stan-
dard tailored for smart cards (Oracle, 2011a) (Ora-

cle, 2011b). Moreover, with the “sandbox model”,
the Java Card run-time environment offers a secure
and sound environment protecting against many types
of security attacks. In contrast to standard Java envi-
ronments, Java Card virtual machine is split in two
parts: one off-card and the other on-card. The off-
card Java Card Virtual Machine consists of the con-
verter, the verifier, and the off-card installer. The con-
verter transforms theclassfile into a CAP file, which
is the shipment format of Java Card applications. The
verifier checks the CAP file for legitimacy so that the
code can be safely installed. After verification, the
off-card installer establishes a communication chan-
nel with the on-card installer to transfer the content of
the CAP file to the smart card. The on-card installer
proceeds with the installation of the application, so
that afterwards the application execution is possible.

In smart cards, where the persistent memory size
is a first order issue, keeping the ROM size of the
application as small as possible is a prominent is-
sue. Compression techniques based on the dictionary
mechanism fit very well in a software architecture
based on a “token” interpreter like Java. The com-
pression phase is performed off-card between the ver-
ification and the installation processes. The on-card
Java Card virtual machine provides for the decom-
pression during run-time. The drawback of this ap-
proach is the slow-down of the application execution
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due to the decompression phase. As a consequence,
time performance issues could prevent the adoption of
the compression system especially in contexts where
time constraints are strict.

The most popular technique for speeding-up the
Java interpreter is the Just In Time (JIT) compilation.
Unfortunately, this approach is not compliant with the
typical smart card hardware configurations. A differ-
ent approach based on an interpreter with hardware
support is more suitable for smart cards.

In this paper we integrate the dictionary decom-
pression functionality on an interpreter with hardware
support. As final result, we obtain an interpreter able
to execute compressed applications faster than a stan-
dard software interpreter executing a non-compressed
application.

The structure of the rest of this paper is as follows.
Section 2 reviews the previous work that forms the
basis of this research. Section 3 analyzes the dictio-
nary compression and its application to the interpreter
with hardware support. In section 4 we evaluate the
proposed models with particular attention to the exe-
cution time. Finally, in section 5 we report our con-
clusions and present suggestions for future work.

2 RELATED WORKS

Java Card is a Java subset specifically created for
smart cards that allows developers to use an object-
oriented programming language and to write appli-
cations hardware independently (Chen, 2000). The
virtual machine in the run-time environment repre-
sents a common abstraction layer between the hard-
ware platform and the application, and makes it pos-
sible to compile the application once and run it in each
platform deploying a compliant Java Card environ-
ment. The issuing format of Java Card applications
is the CAP file, whose inside is organized in compo-
nents (Oracle, 2011b). All the methods of the classes
are stored in the method component; consequently the
latter is usually the component with the highest con-
tribution to the overall application ROM size. For this
reason, a reduction of the size of the method compo-
nent would mean a significant reduction of the ROM
space needed to install the application on the smart
card.

Alongside following good programming prac-
tices, the main solution for reducing the ROM size
of an application is the compressing of said applica-
tion. The drawback of common compression tech-
niques based on Huffmann and LZ77 algorithms is
their need of a considerable amount of memory to
decompress the application before its execution (Sa-

lomon, 2004).

Dictionary compression is a technique based on
a dictionary containing the definitions of new sym-
bols (macros) (Salomon, 2004). Each definition in
the dictionary consists of a sequence of symbols that
is often repeated in the data to compress. In the com-
pression phase the repeated sequences are substituted
with the respective macros (the macro definition and
the substituted sequence have to be the same), while
in the decompression phase the macros are substituted
with their definition. Claussen et al. applied dictio-
nary compression to Java for low-end embedded sys-
tems (Clausen et al., 2000). Applied to interpreted
languages like Java, the main advantage of this com-
pression technique, when compared to the traditional
techniques, resides in the possibility to decompress
the code on-the-fly during run-time. In fact, when the
interpreter encounters a macro in the code, it starts
the interpretation of the code in the macro definition,
not needing the decompression of the entire code.
Claussen et al. could save up to 15% of the appli-
cation space, but this had also the disadvantage of a
slower execution speed quantifiable between 5% and
30%. In (Zilli et al., 2013), we explored the exten-
sions of the base dictionary technique. In that work,
we evaluated the static and dynamic dictionary as well
as the use of generalized macros with arguments.

The main disadvantage of interpreted languages
compared with native applications is the low execu-
tion performance. The system commonly used to im-
prove the execution speed in standard Java environ-
ments is the “Just In Time” (JIT) compilation (Sug-
anuma et al., 2000) (Cramer et al., 1997) (Krall and
Grafl, 1997). JIT compilation consists of the run-time
compilation and optimization of sequences of byte-
codes into native machine instructions. The disadvan-
tage of this technique is the amount of RAM memory
required to temporary store the compiled code. For
low-end embedded systems such as smart cards, the
amount of RAM memory needed for JIT compilations
does not comply with the memory configurations.

Another solution for overcoming the low execu-
tion speed is the hardware implementation of the Java
virtual machine. Previous works can be categorized
into two main approaches: the direct bytecode execu-
tion in hardware, and the hardware translation from
Java bytecode to machine instructions. An example
of the first case is picoJava (McGhan and O’Connor,
1998), a Java processor that executes the bytecodes
directly in hardware. This approach reaches high ex-
ecution performance, but has the disadvantage of a
difficult integration with applications written in na-
tive code. An example of hardware bytecode transla-
tion is the ARM Jazelle technology (Steel, 2001). In
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this case the integration with native code is possible
through an extension of the machine instruction set,
but the performances are not as good as in the Java
processor.

In the context of Java Card, we proposed a Java
interpreter with hardware support (Zilli et al., 2014).
In this work, we re-designed the interpreter as a
“pseudo-threaded” interpreter where each bytecode
provides for the jump to the next one. Moreover we
moved the part of the Java interpreter responsible for
the fetch and decode of the bytecode into the hard-
ware. With this approach, we obtain a time reduction
on the single bytecode execution of 40%.

The base of this research is the work in (Zilli et al.,
2014). We extend the interpreter proposed for the
handling of the dictionary decompression and present
two solutions. One is in software, while, in the sec-
ond, we implement part of the dictionary functional-
ities in hardware. For the evaluation of our work, we
compare the two solutions with a software implemen-
tation on a standard hardware platform.

3 DESIGN AND
IMPLEMENTATION

3.1 Dictionary Compression

In the context of Java Card, dictionary compression is
an off-card process and consists of the substitution of
repeated sequences of bytecodes with a macro whose
definition is stored in a dictionary (Clausen et al.,
2000) (Zilli et al., 2013). Given that 68 of the pos-
sible bytecode values are not defined by the standard,
part of these can be used to extend the virtual machine
instruction set and to represent the macros.

While the compression phase is performed in the
off-card part of the Java Card virtual machine, the
decompression phase is done on-card during the run-
time. The decompression phase adapts well to the in-
terpreter architecture, because every dictionary macro
can be interpreted similarly to a “call” instruction. In
Figure 1 we convey the structure of the dictionary,
where two main components can be found. The first
one consists of the look-up table containing the ad-
dresses of the macro definitions. The second com-
ponent of the dictionary is the set of the macro def-
initions. The latter consists of sequences of Java
bytecodes with a final Java bytecode being specific
to the dictionary compression, whose mnemonic is
ret macro.

The realization of the decompression module in
the Java Card virtual machine requires the imple-
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Figure 1: Organization of a dictionary.

mentation of the Java bytecode functions for the
dictionary macro (macro jbc) and for ret macro
(ret macro jbc). These two Java bytecodes are sim-
ilar to the call and the return opcodes of a micro-
controller, but they act on the program counter of
the Java Card virtual machine (JPC). Figure 2 shows
pseudo-assembly code for the implementation of the
two bytecodes on a standard architecture. For the

macro_jbc:
MOV A, JPC
MOV JPC_RET, A
MOV A, #LOOKUP_TABLE
ADD A, JBC
MOV DPTR, A
MOV A, @DPTR
MOV JPC, A
RET

ret_macro_jbc:
MOV A, JPC_RET
MOV JPC, A
RET

Figure 2: Macro function andret macro function in
pseudo-assembly code for the standard architecture.

sake of easier readability, the pseudo-code does not
take the real address width into consideration. In
the first part of themacro jbc function, the actual
JPC is stored into a “return” variable. Afterwards,
the actual Java bytecode (e.g. the macro value) is
used to calculate the offset in the look-up table from
which the address of the corresponding macro def-
inition is fetched. At this point, the JPC is loaded
with the address of the macro definition. From this
point on, the Java virtual machine interprets the byte-
codes contained in the macro until it encounters the
ret macro Java bytecode. Figure 2 shows the im-
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plementation of theret macro bytecode in pseudo-
assembly code. As can be seen, the Java program
counter value contained in the “return” variable is re-
stored within the function. After the interpretation of
the ret macro bytecode, the Java Card virtual ma-
chine continues with the execution of the bytecodes
following the macro instruction.

3.2 Decompression with the Hardware
Supported Interpreter

In a context such as that of smart cards where the
resources are limited, a solution to speed up the vir-
tual machine is represented by an interpreter that uses
hardware extensions specific for the Java Card in-
terpretation (Zilli et al., 2014). Figure 3 explains,
by means of a state machine, how the fetch and the
decode phase of the interpretation are performed in
hardware.

State2

JBCFunct = 

*(JBCTableOffset + 

JBC * AddrWidth)

State3

jmp JBCFunct

Increment JPC

SW Domain

EXECUTE

HW Domain

DECODE

State1

JBC = *(JPC)

HW Domain

FETCH

Figure 3: State machine of the intepreter with the fetch and
the decode phase performed in hardware.

To do this, the authors added the JPC register to
the hardware architecture of the microcontroller, and
extended the instruction set of the latter to enable ac-
cess to the new functionalities. Moreover, they modi-
fied the interpreter from a classical “token” model to a
“pseudo-threaded” model where every Java bytecode
function has at its end the instructions to fetch and to
decode the next bytecode.

We implement the dictionary decompression
functionality for this enhanced architecture. In Fig-
ure 4 we show the pseudo-code for the implementa-
tion of the Java bytecode functionsmacro jbc and
ret macro jbc. In this implementation the dictio-
nary decompression is completely performed in soft-
ware and is analogous to the implementation for the
normal interpreter, except for the use of the extended
functionalities for manipulating the JPC that is now
an internal register of the hardware architecture. The
macro implementation is the same as the standard
case except for the fact that we use the new machine
instructions and that, at the end of the function, in-

macro_jbc:
GET_JPC_IN_A
MOV JPC_RET, A
MOV A, #LOOKUP_TABLE
ADD A, JBC
MOV DPTR, A
MOV A, @DPTR
SET_JPC_FROM_A
GOTONEXTJBCFUNCT

ret_macro_jbc:
MOV A, JPC_RET
SET_JPC_FROM_A
GOTONEXTJBCFUNCT

Figure 4: Macro function andret macro function in
pseudo-assembly code for the interpreter with the fetch and
the decode phase in hardware.

stead of a normal RET instruction, we have the acti-
vation of the hardware fetch and decode of the next
Java bytecode. The same considerations can be made
for theret macro bytecode.

3.3 Hardware Extension for Dictionary
Decompression

The architecture extension of the hardware aided in-
terpreter represents the core of this work. In a hard-
ware/software co-design context, we moved parts of
the software implementation of the dictionary decom-
pression to hardware. Referring to Figure 1, it is nec-
essary for the hardware architecture to have access to
the dictionary look-up table base address and to the
actual value of the macro. Moreover, we added a reg-
ister for storing the return address of the Java program
counter (JPC) and an internal register to temporary
store the value of the processor program counter (PC).

Figure 5 sketches the finite state machine tak-
ing charge of the macro decodification. In the first
step, the PC and the JPC are stored in the respec-

PC_RET <-- PC

JPC_RET <-- JPC

PC <-- MACRO_TABLE 

+ macro_value

JPC <-- fetch(PC)

PC <-- PC_RET

Figure 5: State machine of the PRECALLMACRO ma-
chine opcode.
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tive “return” register. In the second step, thePC is
loaded with the value resulting from the sum of the
macro look-up table base address (MACROTABLE)
and the offset relative to the actual macro being de-
coded (macrovalue). At this point, the value fetched
from the ROM at the address pointed by the PC cor-
responds to the address of the macro to be executed.
The fetched value is then stored into the JPC and the
PC is restored.

The hardware functionality just described is ac-
tivated by means of an additional machine instruc-
tion (whose mnemonic isPRECALLMACRO) part
of the extended instruction set. In Figure 6 we
report the implementation of themacro jbc and
ret macro jbc bytecode functions. After the modi-

macro_jbc:
MOV A, #LOOKUP_TABLE
SET_DICTLOOKUP_TABLE
MOV A, JBC
PRECALL_MACRO
GOTONEXTJBCFUNCT

ret_macro_jbc:
REST_DICT_JBC
GOTONEXTJBCFUNCT

Figure 6: macro jbc and ret macro jbc functions in
pseudo-assembly code for architecture with hardware sup-
port for dictionary decompression.

fication of the JPC, theGOTONEXTJBCFUNCT instruc-
tion starts the execution of the bytecodes of the
macro definition. When the interpreter executes the
ret macro bytecode, theREST DICT JBC machine in-
struction is executed to restore theJPC value previ-
ously stored into the internal return register within the
PRECALL MACRO machine instruction. Afterwards, the
instructionGOTONEXTJBCFUNCT continues the execu-
tion flow from the first bytecode after the macro byte-
code.

4 RESULTS AND DISCUSSION

The results of this work can be subdivided into two
parts: one related to the compression phase and the
other to the decompression phase. For the first part we
consider the space savings that we obtained by apply-
ing the dictionary compression to a set of industrial
applications. For the decompression we analyze the
run-time improvements due to the use of the new mi-
crocontroller architecture.

4.1 Compression

The main aspect regarding the compression phase is
the space savings that can be obtained. We did not
evaluate the compression speed performance because
it is performed off-card, hence in a platform with no
particular hardware constrains. For the assessment
of the space savings, we applied the dictionary com-
pression method to a set of three banking applications
(XPay, MChip and MChip Advanced).

Table 1: Space savings obtained with the dictionary com-
pression.

Application Size [B] Space Savings [%]

XPay 1784 12.2

MChip 23305 9.2

MChip Advanced 38255 10.5

Table 1 summarizes the space savings obtained for
the three applications. The second and third columns
show the sizes of the method component and the
space savings over the method component expressed
in percentage. The reported space savings also ac-
count for the ROM space needed for the storage of
the dictionary.

4.2 Decompression

To evaluate the decompression, we implemented the
proposed architectures before building the relative in-
terpreters onto them . The 8051 architecture is a low-
end microcontroller consistent with hardware config-
urations of typical smart cards. As a starting point we
took the 8051 implementation provided by Oregano
and we added to it the extensions described in Sec-
tion 3. We created two different architectures: one
has the fetch and decode phase of the interpreter re-
alized in hardware (FDI8051); the other, in addition
to the fetch and decode of the interpreter, also has the
hardware extension for the dictionary decompression
(FDI8051DEC).

4.2.1 Additional Hardware

We synthesized the proposed hardware architectures
on a Virtex-5 FPGA (FXT FPGA ML507 Evaluation
Platform). In this way we are able to quantify the
FPGA usage in terms of flip-flops (FFS) and look-up
tables (LUTs). Table 2 shows the necessary hardware
for the three available architectures. Both architec-
tures have an increment of the FPGA usage with an
higher increment for the FDI8951DEC. The higher
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Table 2: FPGA utilization for the different architectures.

Architecture
FPGA Util.

FFs Diff. % LUTs Diff. %

Std8051 582 - 2623 -

FDI8051 613 5.3 2921 11.4

FDI8051DEC 666 14.4 2946 12.3

FPGA usage in the FDI8051DEC is due to the in-
troduction of the decompression mechanism in hard-
ware.

4.2.2 Execution Speed-up

For the evaluation of the run-time performance we
proceeded with the evaluation of the execution of a
dictionary macro. For the sake of this assessment we
proceeded in two steps. The first step consists of the
execution time measurement of a sequence of byte-
codes running on a completely software-based inter-
preter (on the Std8051 architecture) and on the inter-
preter running on the architecture with the fetch and
the decode phase of the interpretation in hardware
(FDI8051 architecture). In the second step we eval-
uated the increment of the execution time due to the
encapsulation of the sequence under test into a macro
definition.

The analysis coming from the off-card compres-
sion shows that macros have an average length of
three bytecodes. In a second instance, we mea-
sured and averaged the interpretation time of a set
of frequently used bytecode instructions (sconst n,
bspush, sspush, sstore n, sload n, sadd, ifeq,
ifcmpeq) to calculate the “average bytecode interpre-
tation time”. For the assessment, we took the imple-
mentation of the bytecodes from the Java Card refer-
ence implementation provided by Oracle. The mea-
surement of the interpretation time was performed on
two architectures: one with the interpreter completely
in software (Std8051), and the other with the fetch
and the decode phase of the interpreter performed in
hardware (FDI8051).

Table 3: Execution time of a bytecode sequence.

Architecture Exec. Time [Clk Cycles] Diff [%]

Standard 8051 680 -

FDI8051 400 -41%

At this point it is possible to evaluate the time
needed for the execution of a sequence composed of
general bytecodes with a length equal to the average
length of a macro definition. Table 3 lists the execu-
tion time for the two architectures.

To assess the influence on the execution time due
to the sequence being encapsulated into a macro defi-
nition, we took into consideration the same “average”
sequence previously examined. In this case we com-
pleted the evaluation using the three hardware archi-
tectures available, because each of them displays dif-
ferent behavior during the execution of a macro. The
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Figure 7: Execuiton time of a macro on three architectures.

graphic of Figure 7 summarizes the results regard-
ing the interpretation of the macro. The execution
time (vertical coordinate) is expressed in clock cy-
cles. In each bar the light-gray part represents the time
needed for the interpretation of the sequence. The
dark gray part accounts for the overhead due to the
macro encapsulation, which means the interpretation
of the macro bytecode and theret macro bytecode.
The entire bar represents the time needed to execute a
macro. At the top-right corner of each bar there is a
percentage number representing the macro overhead
compared to the overall macro execution.

4.3 Discussion

Dictionary compression allows space savings of about
10% of the applications ROM footprint. With a stan-
dard architecture, the execution overhead due to the
macro encapsulation would take 20% of the overall
macro interpretation (Figure 7).

The architecture with the fetch and the decode
phase of the interpreter in hardware (FDI8051) pro-
vides a significant acceleration of the macro execution
because of the increase in speed of the single bytecode
execution. Compared to the macro execution on the
standard 8051 architecture, the FDI8051 architecture
permits a decrease in the execution time of 45%.

The new architecture with the support for the dic-
tionary compression (FDI8051DEC) further improves
the execution performance, reducing the time over-
head owed to the macro encapsulation of the se-
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quence. Compared to the FDI8051 architecture, the
overhead time is reduced by about 50%. Compared to
the standard 8051 architecture, the FDI8051DEC ar-
chitecture allows a speed-up of 2 in the execution of a
dictionary macro.

5 CONCLUSIONS

In this paper we combined the dictionary compres-
sion technique with a Java Card interpreter based
on an application specific processor. Moreover, we
moved part of the decompression functionalities to
the hardware architecture, further extending the ap-
plication specific processor. The result of this design
is a new Java Card interpreter able to execute com-
pressed code twice as fast as a standard interpreter.
Although the new hardware architecture needs a little
additional hardware, the compressed Java Card appli-
cations need about 10% less memory footprint than
the non-compressed ones.

Beyond plain dictionary compression, dictionary
compression techniques that make use of general
macros definitions with arguments are available. The
integration of these dictionary compression tech-
niques in the application specific processor provides
opportunities for future research.
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