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Abstract: In sensor network, data generated by various sensors deployed at different locations need to be analyzed in 
order to identify interesting events correspond to outliers. The presence of outliers may distort contained 
information. To ensure that the information is correctly extracted, it is necessary to identify the outliers and 
isolate them during knowledge extraction phase. In this paper, we propose a novel unsupervised algorithm 
for detecting outliers based on density by coupling two principles: first, kernel density estimation and 
second assigning an outlier score to each object. A new kernel function building a smoother version of 
density estimate is proposed. An outlier score is assigned to each object by comparing local density estimate 
of each object to its neighbors. The two steps provide a framework for outlier detection that can be easily 
applied to discover new or unusual types of outliers. Experiments performed on synthetic and real datasets 
suggest that the proposed approach can detect outliers precisely and achieve high recall rates which in turn 
demonstrate the potency of the proposed approach.  

1 INTRODUCTION 

Tremendous growths in wireless sensor network 
technology have enabled the decentralized processing 
of enormous data generated in network, scientific and 
environmental sensing applications at low 
communication and computational cost. Generated 
sensor data may pertain to physical phenomenon 
(like temperature, humidity, and ambient light), 
network traffic, spatiotemporal data about weather 
pattern, climate change or land cover pattern etc. 
Availability of vast amount of sensor data and 
imminent need for transforming such data into true 
knowledge or into useful information require 
continuous monitoring and analysis as they are 
highly sensitive to various error sources. True 
knowledge provides useful application-specific 
insight and gives access to interesting patterns in 
data; the discovered pattern can be used for 
applications such as fraud detection, intrusion 
detection, earth science etc. Sudden changes in the 
underlying pattern may represent rare events of 
interest or may be because of errors in the data. 
Outlier detection refers to detecting such abnormal 
patterns in the data.  
 Several definitions have been proposed, but none 
of them is universally accepted because, the 
measures and definition of outliers vary widely. 

Barnett et al. (Barnett and Lewis 1994) defined 
outliers as “an observation or subset of observations 
which appears to be inconsistent with the remainder 
of that set of data”.  
 Outliers may arise due to fraudulent behavior, 
human error, malfunctioning or injection in sensing 
devices, faults in computing system and uncontrolled 
environment. Outlier shows deviation from normal 
behavior. Declaration of outlier based on observed 
deviation in the values is a subjective judgement and 
may vary depending upon application.  
Several approaches for detecting outliers have been 
proposed (Chandola, Bannerjee and Kumar 2009; 
Hodge and Austin 2004; Gupta, Aggarwal and Han 
2013). Techniques for outlier detection can be 
classified as either statistical approach (Knorr and 
Raymond 1997), distance based approaches, density 
based approaches, profiling methods, or model based 
approaches. In statistical approach, data points are 
first modeled using stochastic distribution, and then 
are labeled as outliers based on their fitness with the 
distribution model. An outlier score is assigned to 
each object based on their nearest neighbor distances 
by distance based outlier detection technique. In 
density based approach, an outlier score is computed 
by comparing the local density estimate of each 
object to the local density estimate of its neighbors, 
and the objects are flagged as outliers based on their 
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outlier score. In profiling methods, different 
techniques of data mining are used to build profiles 
of normal behavior, and deviations from these 
underlying profiles are flagged as outliers. In model-
based approaches, first, by using some predictive 
models, the normal behavior is characterized, and 
then the deviations from the normal behavior are 
flagged as outliers.  
 In this paper, we propose an outlier detection 
algorithm combining statistical and the density based 
approaches. Our proposed approach uses kernel 
density estimators to approximate the data 
distribution and then computes the local density 
estimate of each data point, and thus detects potential 
outliers. Experiments performed on both synthetic 
and real data sets shows that the proposed approach 
can detect outliers precisely and achieve high recall 
rates, which in turn demonstrate the potency of the 
proposed approach. 

Rest of the paper is organized as follows: Section 
II describe the literature review of the work. Section 
III explains the kernel density estimators. Section IV 
presents the proposed work. Section V provides the 
discussion on results. Section VI concludes the work. 

2 RELATED WORK 

Breunig et al. (Breunig, Kriehel, Raymond and 
Sander 2000) introduced Local Outlier Factor (LOF) 
for detecting outliers in a multidimensional dataset. 
In the proposed scheme, local density estimate of 
each object were compared with average density 
estimate for MinPts-nearest neighbors. The resulted 
density ratio was referred as local outlier factor. 
Local outlier factor was computed in order to 
determine the physical location of each object in 
feature space. An object lied deep inside a cluster 
when its local outlier factor was approximately 1 
whereas an object that got higher value of local 
outlier factor corresponds to low neighborhood 
density. An object with higher local outlier factor 
was flagged as an outlier. The proposed method was 
free from local density problem but dependent on the 
choice of MinPts. 

Local Outlier Correlation Integral (LOCI) 
(Papadimitriou, Kitagawa, Gibbons and Faloutsos 
2003) was based on the concept of multi-granularity 
deviation factor (MDEF) and dealt with both local 
density and multi-granularity successfully. The 
scheme had lower sensitivity to chosen parameters. 
The proposed scheme strictly relied on counts and 
needed to test arbitrary radiiε − . An automatic, 
data-dedicated cut-off was provided to determine 

whether a point is an outlier. In the proposed scheme, 
MDEF was computed for each data point in feature 
space. A data point with MDEF of 0 signified that it 
got neighborhood density equal to average local 
neighborhood density whereas a data point with large 
MDEF was flagged as an outlier.  

A variant of LOF was proposed by Latecki et al. 
(Latecki, Lazarevic, Pokrajac 2007) combining the 
LOF and kernel density estimation in order to utilize 
the strength of both in density based outlier detection, 
which was referred as outlier detection with kernel 
density function. In this approach, first, a robust local 
density estimate was generated with kernel density 
estimator and then by comparing the local density 
estimate of each data point to the local density 
estimate of all of its neighbors, the outliers were 
detected. Local density factor (LDF) is computed for 
each data point in feature space and the data points 
with higher LDF values were flagged as outliers.   

Kriegel et al. (Kriegel, Kröger, Schubert Zimek 
2009) proposed a method for local density based 
outlier detection referred as Local Outlier Probability 
(LoOP) which was more robust to the choice of 
MinPts. The proposed method combined the local 
density based outlier scoring with probability and 
statistics based methods. An outlier probability in the 
range of (0, 1) was assigned to each data point as 
outlier score signifying severity of outlierness. More 
specifically, higher the outlier score meant more 
severe a point to be declared as outlier. 
 Most of the density based outlier detection 
methods were bounded to detect specific type of 
outliers. Schubert et al. (Schubert, Zimek, Kriegel 
2014) proposed a general framework for density 
based outlier detection referred as KDEOS and could 
be adjusted to detect any specified types of density-
based outliers. In KDEOS, the density estimation and 
the outlier detection steps were decoupled in order to 
maintain the strength of both.  

Several Non-parametric estimators were 
presented in (Zucchini, Berzel, Nenadic 2005). 
Histogram was the simplest non-parametric estimator 
used for density estimation but generated density 
estimates were highly dependent on the starting point 
of bins. Kernel Density Estimators (Aggarwal 2013; 
Silverman 1986) were used as an alternative to 
histograms. KDE were superior in terms of accuracy 
and hence, had attracted a great deal of attention. A 
smoother version of density profile was constructed 
by kernel density estimator.  

Sheng et al. (Sheng, Li, Mao and Jin 2007) 
introduced Outlier Detection in Wireless Sensor 
Network based on histogram method to detect 
distance based outliers. In the proposed method, to 
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filter out unnecessary observations correspond to 
potential outlier the collected hints about data 
distribution are modeled as histogram. 

The problem associated with unsupervised outlier 
detection in WSN was addressed by Branch et al. 
(Branch, Giannella, Szymanski, Wolf and Kargupta 
2013). The proposed algorithm for outlier detection 
was generic evidenced by its suitability to various 
outlier detection heuristics and it does not require, for 
a data source, any prior assumption about global 
model.  

Kernel density estimation was coupled with the 
various outlier detection methods in order to build a 
framework for detecting density based outliers and 
the resulted quality of density based outlier detection 
was improved. Outlier score is dependent on the 
choice of approach used to detect outliers. Several 
approaches are used for detecting outliers using 
kernel density estimation. In all these schemes, the 
density estimate is constructed with previously 
available kernel functions (Zucchini, Berzel, Nenadic 
2005). Most of these works considered performance 
measure for outlier detection while ignoring accuracy 
of density estimate. We propose a kernel function 
that can improve the accuracy of the density estimate 
quantified by Mean Integrated Squared Error 
(MISE), and then incorporate these density estimates 
in the computation of outlier score in order to 
improve the efficiency of outlier detection method. 

3 KERNEL DENSITY 
ESTIMATOR 

Kernel density estimators belong to non-parametric 
(Zucchini, Berzel, Nenadic 2005) class of density 
estimators. The non-parametric estimators 
incorporate all data points to reach an estimate. 
Contribution of each data point in an estimate is 
smoothed out by kernel estimator. Kernel density 
estimators place a kernel K on each data point xi  in 
the sample. Let,  x1, x2,…,xn be the sample of size n  
and dimensionality dim which are identically and 
independently distributed according to some 
unknown density ( )f x . Expected density 

estimate ( )f̂ x
 
is the convolution of true unknown 

density ( )f x with kernel K  is computed as follows:  

( )
( ) ( )

1 1ˆ
dim1

n x xif x K
in h xih xi

−
= ∑

=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠    

      (1) 

where, K  is a non-negative, real-valued kernel 
function of order- p  (degree of polynomial), and 

( )h xi  is the bandwidth applied at each data point ix . 
A univariate kernel function K  of order-2 must 
satisfy the requirements of (i) unit area under the 
curve, 9ii) symmetry, (iii) zero odd moments, and 
(iv) finite even moments.  

Quality of estimated density is determined by the 
choice of both the smoothing parameter and the 
kernel. A kernel may exhibit either finite or infinite 
support. A kernel with finite support is considered as 
optimal. The accuracy of the kernel is quantified by 
Mean Integrated Squared Error (MISE) (Marron and 
Wand 1992). The MISE between the estimated 
density ˆ ( )f x  and the actual density ( )f x  is 
computed using: 

1/55 2 4 4/5ˆ( , ) ( ) ( ) ( '')24
MISE f f K R K R f nμ −= ⎡ ⎤

⎣ ⎦     
(2) 

In other words, 
1/52 4( ) ( )2MISE K R Kα μ⎡ ⎤

⎣ ⎦  where, 

2(K) K (u)R du= ∫  is the roughness, 

K2(K) (u)2 u duμ = ∫  is second moment of 

K(u) and ''f  is second derivative of f.  

4 PROPOSED WORK 

1. Kernel Function 
We propose a kernel function of order-2 as follows: 

( )1 23 2 3 / 2, 1.56
forK u uproposed h π

= − <    (3) 

It satisfies all the requirements of being a kernel 
function which are described below: 

(i) Area under Curve 

( ) ( )3/2 1 2. 3 2
1.563/2

duK u du u
π

= −∫ ∫
−  

           

3/232 2
3 1

1.56 3 0

u
u

π
= − =

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

(ii) Symmetry 

             ( ) ( )K u K u= −
 

(iii) Odd Moment 

            
( ) ( )3/2 1 23 2

1.563/2
uK u du u u du

π
= −∫ ∫

−    
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(iv) Even Moment 

           
( )2u K u du∫ ( )3/21 2 23 2

1.56 3/2
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(v) Roughness 
   

( )2K u du∫ ( )2
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1.56 3/2
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                              0.4899=  

2. Outlier Detection 
Outlier detection using kernel density estimation 
involves two principled and clear steps, which are 
described as follows: 
Step 1: Density Estimation- In this step, the density 
estimate is constructed with a non-parametric 
estimator which is superior in terms of accuracy is 
the kernel. The kernel function is taken as an input 
parameter to the algorithm. We will use our 
proposed kernel function of bandwidth h  and 
dimensionality d  for density estimation: 

21
3 2, 21.56

u
K proposed h d hhπ

= −
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

      (4) 

The balloon estimator (Branch, Giannella, 
Szymanski, Wolf and Kargupta 2013) is: 

1
( ) ( )., ( )KDE o K o pballoon h h opn

= −∑        (5) 

In our approach, we will use balloon estimator 
for constructing the density estimates because it 
optimizes MISE  pointwise (Terell and Scott 1992). 
The smoothing parameter applied to the data 
controls the smoothness of the constructed density 
estimate. A nearest-neighbor distance (Loftsgaarden 
and Quesenberry 1965) is a classic approach to 
calculate local kernel bandwidth. Sheather and Jones 

(Sheather and Jones 1991) proposed a data-driven 
procedure for selecting the kernel bandwidths 
known as “plug-in bandwidth estimator”. To prevent 
from division by 0 we 
use ( ) min{ ( , ), }h o mean d p op kNN ε= ∈ . 

Selection of parameter k  is non-trivial. In our 
proposed scheme, instead of choosing a single value 
of k  a range of ...... maxmink k k= is employed that 

produces a series of density estimate, one for each k . 
The proposed scheme is elegant, computationally 
efficient, and produces stable and reliable results. 
Step 2: Density Comparison- In this step, the local 
density estimate of each object o  is compared to the 
local density estimate of all of its nearest 
neighbors ( )p kNN o∈ . Let, ρ  be the local density 
estimate and ( , )N o k  be the number of objects in 
the k -neighborhood of object o . The resulted 
density ratio which is referred as Local Outlier 
Factor (LOF) is computed using:  

( )
( )( )( )

( , )

p
op kNN oLOF o

N o k

ρ
ρ∑

∈=             (6) 

An LOF value corresponding to each value of k in 

min max...k k is computed and then mean of LOFs is 
taken over the range in order to produce more 
stabilized LOF value for each object o . Z score−  
Transformation is utilized to standardize the outlier 
scores and objects with 3Z score− ≥ are declared 
outliers. 

5 RESULTS 

1. Kernel Density Estimator 
Table 1 shows statistics and comparison of our 
proposed kernel against various previously available 
kernel functions. Our proposed kernel function has 
minimum MISE . The value of efficiency is relative 
efficiency computed using 

( ) ( ){ }ˆ ˆusing using MISE f K MISE f Kopt proposed opt .  
For example, the efficiency of Gaussian kernel is 

approximately 96%. That is the ( )ˆMISE fopt  

obtained using proposed kernel function with 
96n =  is approximately equal to the ( )ˆMISE fopt  

obtained using a Gaussian kernel function 
with 100n = .  
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Table 1: statistics and comparison of various kernel 
functions. 

Kernels ( )R K  ( )2 Kμ
 

MISE Efficiency 

Proposed 0.4899 0.2999  0.34904 1 
Epanechnikov 3 5  1 5  0.34908 0.9998
Biweight 5 7  1 7  0.35079 0.9950
Triangular 2 3  1 6  0.35307 0.9885
Gaussian 1 2 π 1 0.36341 0.9604
Box 1 2  1 3  0.37010 0.9430

 
Figure 1: Analysis of statistical properties. 

Figure 1 shows the variation of statistical properties 
of the proposed KDE with bandwidth. Bias and 
variance, the two subcomponents of prediction 
errors are unable to give appropriate understanding 
about prediction model behavior as there is always a 
tradeoff between bias and variance. So, instead of 
relying on specific decomposition (viz. bias and 
variance) we relied on overall error that takes into 
account both the sources of error i.e. error due to 
bias and variance (Zucchini, Berzel, Nenadic 2005). 
The optimal point drew in figure 1 refers to the 
optimal bandwidth hopt  at which the overall error is 

minimized. 
Figure 2 reflects the bias effects for a kernel 

density estimate. 

 
Figure 2: Visualization of bias effects. 

2. Kernel Density Estimation and Outlier Detection 
Datasets: To evaluate the proposed kernel and 
outlier detection method, experiments were carried 
out on real as well as synthetic datasets. In our 
experiments, we used two real datasets. 
 

 
Figure 3: Density estimate constructed from old faithful 
geyser data 0.25h = . 

 
Figure 4: Density estimate constructed from Intel Lab 
data 0.5h = . 

The first dataset contains the data about 
eruptions of old faithful geyser taken from 
Weisberg (1980) and the second datasets 
contains the data about temperature, humidity, 
light, and voltage collected between February 
28th and April 5th, 2004 from 54 Mica2Dot 
motes  deployed in the Intel Berkeley Research 
Lab (Intel Lab Data). 

(i) Evaluation of Outlier Detection Technique: We 
have applied the kernel density estimation step 
to approximate the density at various kernel 
points. Figures 3 and 4 shows the density 
estimate constructed from the observations of 
eruptions of old faithful geyser and Intel lab 
data.  

These density estimates are incorporated in 
outlier detection method to calculate Local Outlier 
Factor (LOF) of each data point present in the 
particular dataset. Computed LOF values will 
expose the indices of potential outliers. We have 
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also applied both of these steps to the synthetic 
datasets and have evaluated the impact of 
k values− on LOF. Figure 5 shows the impact of 
k value−  on Local Outlier Factor (LOF). It 
demonstrates a simple scenario where the data 
objects belong to a Gaussian cluster i.e. all the data 
objects within a cluster follows a Gaussian 
distribution. For each k value−  ranging from 3 to 
100, the mean, minimum and maximum LOF values 
are drawn. It can be observed that, with 
increasing k value− , the LOF neither increases nor 
decreases monotonically. For example, as shown in 
Figure 5, the maximum LOF value is fluctuating as 
k value−  increases continuously and eventually 
stabilizes to some value showing that a single value 
of k  is inefficient to produce a more accurate LOF 
value. So, mean of LOFs is taken over the range of 

...... maxmink k k=  in order to produce more 
stabilized LOF values. These are shown in Figure 5. 

 

 
Figure 5: Fluctuation of outlier factors within a Gaussian 
cluster. 

6 CONCLUSIONS 

In this paper, we have proposed a symmetric and 
computationally efficient kernel of order-2. Our 
proposed kernel obtained lower MISE than the 
previously available kernels and hence, produced a 
more accurate density estimate. We have also 
proposed an outlier detection method that uses our 
proposed kernel function in order to construct density 
estimates. We have decoupled the density estimation 
and the local density based outlier detection steps in 
order to preserve the strength of both. As a 
consequence, the resulted framework can be easily 
adjusted to any application-specific environment. 
Experiments performed on both real and synthetic 
datasets indicate that the proposed techniques can 
detect outliers efficiently. As future work, we will be 
focusing on classification of transient faults in 
wireless sensor networks using outlier scores. 
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