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Abstract: In this paper, we present MAPTrack - a robust tracking framework that uses a probabilistic scheme to 
combine a motion model of an object with that of its appearance and an estimation of its position. The 
motion of the object is modelled using the Gaussian Mixture Background Subtraction algorithm, the 
appearance of the tracked object is enumerated using a color histogram and the projected location of the 
tracked object in the image space/frame sequence is computed by applying a Gaussian to the Region of 
Interest. Our tracking framework is robust to abrupt changes in lighting conditions, can follow an object 
through occlusions, and can simultaneously track multiple moving foreground objects of different types 
(e.g., vehicles, human, etc.) even when they are closely spaced. It is able to start tracks automatically based 
on a spatio-temporal filtering algorithm. A “dynamic” integration of the framework with optical flow allows 
us to track videos resulting from significant camera motion. A C++ implementation of the framework has 
outperformed existing visual tracking algorithms on most videos in the Video Image Retrieval and Analysis 
Tool (VIRAT), TUD, and the Tracking-Learning-Detection (TLD) datasets. 

1 INTRODUCTION 

Tracking moving objects in a streaming video in real 
time is important for many applications such as 
video surveillance, activity recognition, robotics, etc. 
A statistical method for parametric modeling of 
object geometry as well as illumination changes 
owing to variance in lighting conditions was 
proposed in (Hager and Belhumeur, 1998). 
However, their approach was only used particularly 
in tracking human faces; no results are available for 
videos involving objects having different types of 
motion such as vehicles, humans, etc. that interact 
with each other (closely) as is often the case in 
surveillance videos. Moreno-Noguer et al (2008), 
provide a Bayesian framework for combining 
information obtained about appearance and object 
geometry for robust visual tracking. However, their 

framework cannot track multiple moving objects 
simultaneously; in addition, it cannot handle 
occlusions.  

In this paper, we present a probabilistic real time 
tracking framework that combines the motion model 
of an object with its appearance and position. The 
motion of the object is modeled using the Gaussian 
Mixture Background Subtraction algorithm, the 
appearance, by a color histogram and the projected 
location of the tracked object in the image 
space/frame sequence is computed by applying a 
Gaussian to the Region of Interest. Our tracking 
framework is robust to abrupt changes in lighting 
conditions, can follow an object through occlusions, 
and can simultaneously track multiple moving 
foreground objects of different types (e.g., vehicles, 
human, etc.) even when closely spaced. A spatio-
temporal filtering algorithm helps in automatic track 
initialization and a “dynamic” integration of the 
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framework with optical flow allows us to track 
videos with significant camera motion. A C++ 
implementation of the framework has outperformed 
existing visual tracking algorithms on most videos in 
the Video Image Retrieval and Analysis Tool 
(VIRAT), TUD (Andriluka et al, 2008), and the 
Tracking-Learning-Detection (Kalal et al, 2010) 
datasets. 

2 RELATED WORK 

A new particle filter - Kernel Particle Filter (KPF), 
was proposed in the (Chang and Ansari, 2005) for 
visual tracking for multiple objects in image 
sequences. The idea proposed in (Williams et al, 
2003) shows tracking using a single classifier SVM. 
A boosting based approach was proposed in (Viola 
and Jones, 2001) that used a cascade of classifiers 
for object detection. However, it didn’t address the 
problem of tracking objects through consecutive 
frames of a video sequence. A spatio-temporal 
tracking algorithm was proposed in (Lan and 
Huttenlocher, 2004) that involved tracking 
articulated objects in image sequences through self-
occlusions and changes in viewpoint. However, they 
did not provide capabilities for automatic track 
initialization or tracking multiple objects.   

The TLD algorithm proposed in (Kalal et al, 
2010) is the basis of one of the well-known 
frameworks for tracking moving objects.  The TLD 
framework does not start tracks automatically; it 
lacks a multi-object tracking feature. Also, TLD is 
based on template matching and hence fails for 
videos with multiple numbers of similar looking 
objects (e.g., in the Indian driving scene video, 
Figure 5). The approach proposed in (Maggio and 
Cavallaro, 2005) uses color histograms as the only 
feature. They use a cascade composition of a particle 
filter and mean shift. The method proposed in 
(Babenko et al, 2009) is similar to the approach 
proposed in TLD. The difference between the work 
reported in it and TLD is that they use multiple 
instances as the positive examples in each frame. 
However, like TLD, their framework does not start 
tracks automatically as marking the location of the 
object initially is a prerequisite. A Bayesian 
estimation-based object tracking algorithm that takes 
into account the motion models, shape and 
appearance constraints has been proposed in (Tao et 
al, 2002) but it fails when the motion layers are 
infiltrated with clutter, occlusion etc. Another 
method for detecting event sequences in surveillance 
videos that is applicable only to low frame rate 

videos is proposed in (Lombardi and Versino, 2011). 
Our approach is based on using the motion 

model, color histogram, and position information of 
objects to track them with a recursive probabilistic 
estimation of the composite model. Unlike the 
previous approaches, it can simultaneously track 
multiple moving objects, does not fail significantly 
when there is no motion, or when the object is 
occluded, is resistant to clutter, and is also able to 
initialize tracks without human supervision. 

Recently, there have been a lot of works that 
combine multi object tracking, multi-person 
tracking, and association between different tracked 
objects for activity recognition (Oltramari and 
Lebiere, 2012). Our framework tracks multiple 
objects in a video in each frame or multiple frames 
efficiently; this capability could be used as a part of 
a co-related and collective activity recognition 
framework.  

 

Figure 1: Schematic representation of our approach. 

3 THE PROPOSED APPROACH 

Figure 1 shows the schematic of our approach.  First, 
a moving object must be automatically identified as 
part of the foreground. This involves track 
initialization at particular pixels on the subsequent 
frames that have a higher probability of being part of 
the moving foreground object. This is achieved by - 
1) stabilizing the image and 2) feeding the stabilized 
image to the spatial and temporal filtering 
algorithms described below. Issues such as camera 
instability (shaking, panning, rotating) come into 
play and require image stabilization for the tracking. 
These issues and the components of the tracking 
framework are described in detail below. 
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3.1 Image Stabilization 

In order to stabilize an incoming streaming video, 
we use an iterative algorithm which attempts to hold 
each background pixel in the same position 
regardless of lateral and rotational camera motion: 

1. Apply Shi and Tomasi's edge-finding 
algorithm to the first frame to identify significant 
feature points in the image.  

2. For each subsequent frame, apply Lucas-
Kanade optical flow to track the motion of the 
features identified by Shi and Tomasi's algorithm, 
refreshing the feature points when necessary.  

3. With increasing precision for each iteration:   
     (a) For each angle of rotation in a certain range, 

determine the translation of each point.  
    (b) Find the most common translation/rotation 

(mode) pair (Ө, x) and (Ө, y) of all the features.  
4.  Warp the image to adjust for the total mode of 

the motion.  
Before adjusting for background motion, we 

must identify features of the frame; to do so, we use 
the Shi-Tomasi method (Shi and Tomasi, 1994). The 
Shi-Tomasi method detects features such as corners 
and edges by approximating the weighted sum of 
squares of image patches shifted by certain values.  

Next, we apply a pyramidal Lucas-Kanade 
method (Lucas and Kanade, 1981) for determining 
optical flow at each point of interest. We then find 
the mode of the resulting flow value pairs, including 
rotation, by placing the pairs in bins. At every 
iteration, the bin widths are decreased, yielding an 
increasingly accurate estimate of the motion. The 
image is then adjusted to account for the determined 
background movement. When the image is stabilized 
in this manner, fewer false foreground objects 
detected and correct coordinates of objects are also 
maintained. 

3.2 Automated Track Initialization 

The automated track initialization algorithm based 
on a confidence-based spatio-temporal filtering 
algorithm first detects blobs using the GM 
Background Subtraction method (KaewTraKulPong 
and Bowden, 2002). This yields difference images, 
which are fed into the spatial filtering module. 

3.2.1 Noise Removal through Morphological 
Operations 

The image obtained through the background 
subtraction algorithm is initially opened and then 
closed by a structuring element with diameter λ 

pixels to filter out unnecessary noise. λ depends 
upon the scale of the video. 

3.2.2 Spatial Filtering 

Once blobs are detected in the difference images, 
they are filtered according to their spatial features. 
Scale information available from the metadata 
accompanying the videos is used to filter blobs 
specifically based on their area and orientation. The 
filtered blobs are then passed as input to the 
temporal filtering algorithm below. 

3.2.3 Temporal Filtering 

To filter blobs in the temporal domain we use a 
confidence measure.  Each blob has a confidence 
measure δ associated with it. δ is initially 0 and 
increases as a blob is detected across successive 
frames. 

The probabilistic framework that we present 
takes into account three parameters namely, the 
motion of the object modeled using the Gaussian 
Mixture Background Subtraction algorithm, the 
appearance of the tracked object, using a color 
histogram, and the projected location of the tracked 
object in the image space/frame sequence computed 
by applying a Gaussian to the Region of Interest. 

3.2.4 Defining an Adaptive Threshold 

If the confidence value for a blob exceeds a 
specified upper threshold σ, a track is started on it. 
The moment the confidence value for a blob falls 
beneath a lower threshold τ, the corresponding 
object is discarded. If the confidence value is 
between σ and τ, the corresponding blob is 
maintained in the list of prospective tracks. For 
videos that have higher noise, clutter and random 
changes in lighting conditions, as is often the case 
for outdoor videos taken from moving cameras, the 
upper threshold value σ is set higher. On the other 
hand, for videos with more stable conditions σ is set 
lower because of the lesser probability of 
encountering random classification noise. 

The composite confidence update equation is as 
follows: 

δ = (0.5-n) ∨ (-0.5-n)  (1)

3.3 The MAPTrack Framework 

Motion – The Gaussian Mixture Background 
subtraction method helps in determining the 
positional estimates for all moving objects in the 
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scene. It is reasonable to consider all moving objects 
to be a part of the foreground. Our framework builds 
a background model of Gaussians, with a mean and 
standard deviation for each pixel. If a new pixel does 
not fit well with the Gaussians, it is considered to be 
part of the moving foreground.  

Appearance – The appearance of any object in a 
scene is another important parameter in visual 
tracking. Object appearance can be modeled using 
the color histogram associated with it. Operationally, 
the motion image is used as a mask to create 
histograms of object pixels for each ROI. 
Histograms are implemented as 3D RGB histograms 
with 32 bins in each R, G, and B direction. For 
example, bin(0,0,0) contains R=0 to 7, G=0 to 7, 
B=0 to 7, etc. 

Histograms are created for foreground (hfg) and 
background (hbg) components of the current motion 
image at the current frame. Each bin in a current 
histogram contains the count of the pixels, which fall 
in that bin. The background histograms are 
normalized to make the count of pixels in each equal 
to the number of foreground pixels in the motion 
image: 

݄௕௚ ൌ
݄௕௚ ൈ |݄௙௚|		

|݄௕௚|	
 (2)

So, both foreground and background image have 
magnitude equal to the number of foreground pixels 
in the motion image (e.g. when the object is stopped, 
both current-frame histograms have 0 magnitude). 
The cumulative histograms (Hfg and Hbg) are updated 
using a running average: 

ܪ ൌ	
ሖܪ ൈ ሺ݊ െ 1ሻ ൅ ݄

݊
 (3)

where, n is minimum of the current frame number 
and the point at which the average will change to 
exponential decay and ܪሖ  is the cumulative histogram 
value from the last frame. 

A probability image is created for the pixels in 
the ROI from the Bayes equation: 

 

ܲ	ሺܩܨ|ẑሻ ൌ
	ܲሺẑ|ܩܨሻ ൈ 	ܲሺܩܨሻ

	ܲሺẑሻ
 

ൌ ሺẑሻܪ ൈ
ܩܨ݃ݒܽ

ሺܪሺẑሻ ൈ ܩܨ݃ݒܽ ൅ ሺܪሺẑሻ ൈ ሺ1 െ ሻܩܨ݃ݒܽ
 

P(x,y) = 1 if P(FG|ẑ)>0.5, else 0 (4)

where, avgFG is the sum of the motion history 
image described below. In other words, if a pixel 
color is more likely to lie in the object foreground, it 
will be ‘1’. Otherwise it will be ‘0’. 

Projected Position – The estimate of the 
projected position of an object over an image 

sequence is another determining factor in visual 
tracking. The position is estimated using the 
previous position and estimated velocity: 

௘௦௧݌ ൌ ௔௖௧́݌ ൅ (5)    ݒ	

where, ݒ  is calculated as: 

ݒ ൌ
௣ି ௣బ

௙ି௙బ
             (6)

Here, f0 is the nearest previous frame where the 
object is at a distance of at least 1 ROI width from 
current position if it exists and max(0, f-150), 
otherwise. ݌଴	is the position at that frame. 

A positional probability image for the ROI is 
created using a conical shape. 

,ݔሺܾ݋ݎܲ ሻݕ ൌ െݔܽ݉ ሺ݉ܽݔ െ݉݅݊ሻ

ൈ ඨ൬
ݔ െ ܿ௫
ܿ௫

൰
ଶ

൅	ቆ
ݕ െ ܿ௬
ܿ௬

ቇ

ଶ

 
(7)

where, (ܿ௫, ܿ௬) is the center of the ROI, max is the 
probability value at the center that is equal to 1, and 
min is the probability at the edges. 

 

Figure 2: a) R b) Motion Image c) Color Hist. Image d) 
Position Image.  

This image represents the estimated position or 
velocity of the object, and reduces movement from 
this estimated location. Thus, the probability is 
highest where the object is most likely to be present 
(in the center). 

In addition, a motion history image is created to 
estimate the probable object shape, size, and location 
within the ROI. Similar to the color histograms, it is 
updated as: 

݄݉ሺ݂ሻ

ൌ
ሺ݄݉ሺ݂ െ 1ሻ ൈ ሺ݂݁ݖ݅ݏݕݎ݋ݐݏ݄݅ െ 1ሻ ൅ ܥܯ	 ൈ ሻݓ

ሺ݄݅݁ݖ݅ݏݕݎ݋ݐݏሺ݂ െ 1ሻ ൅ ሻݓ
 

(8)

where, ݄݅݁ݖ݅ݏݕݎ݋ݐݏሺ݂ሻ 	ൌ 	݉݅݊ሺ݄݅݁ݖ݅ݏݕݎ݋ݐݏሺ݂ െ

1ሻ 		൅ 	ݓ ሻ, andܰ,ݓ ൌ 	∑ ሺ
ெ஼

ோைூೌೝ೐ೌ
ሻ்

௜ୀଵ  as a scale factor 

based on the amount of movement present. N is 
again the point at which the average will change to 
exponential decay. MC is the image of all moving 
pixels in the ROI matching the foreground color, as 
determined by the color histogram, of the object. T 
represents all the pixels in ROI. Each of the Motion, 
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Color, and Positional probability images is centered 
over the estimated position calculated above. Once 
the images are obtained, they are combined into a 
composite probability image (CPI) by using the 
following equation: 

	ܫܲܥ ൌ ܯሺ	ݔܽ݉	 ൈ ܥ ൈ ܲ ൈ ,ଵߪ ܥ ൈ ܲ
ൈ	ߪଶ, ܲ ൈ	ߪଷሻ 

(9)

Here, σ1, σ2 and σ3 are parameters that determine the 
relative weights given to the Motion, Color 
histogram, and Positional Probability images 
respectively towards the Composite Probability 
Image I. Intuitively, equation 9 is a recursive OR 
over the values MൈCൈP, CൈP	and P where the CൈP 
or P parts are used only when the M value is 0 and P 
is used only when both M	and C are 0. It should be 
noted that MൈCൈP uses the conical probability 
image for P, to utilize any motion of matching color 
within the ROI, whereas CൈP uses the motion 
history image for P, such that still background of a 
matching color will not cause a track loss. 

Since the motion probability image is the most 
important parameter for object tracking, MCP is 
assigned the highest weight. The color histogram 
probability image is less important, followed by the 
positional probability image. In fact, we found that 
the P image alone does not work well to deal with 
occlusions due to the effective velocity of the object 
decreasing immediately before an occlusion. 

The occlusion detection algorithm described 
below is instead used to handle occlusions and 
changing lighting conditions. Finally, the mean shift 
algorithm is used to compute the actual position of 
the object by shifting the estimate to the new Center 
of Mass (COM) of the current observation. The 
mean shift equation is given in equation 10. 

௔௖௧ሺ݂ሻݏ݋ܲ 	ൌ ௘௦௧ሺ݂ሻݏ݋ܲ	 	൅ ሺ݂) (10)ܯܱܥ	

where, Posact(f) is the actual position computed at 
frame ݂, Posest(f)  is the estimated position at frame f 
and COM(f) is the Center of Mass used by the mean 
shift algorithm for estimating the actual position of 
the object at frame f.   

So, the mean shift gives the posterior probability 
distribution given the prior and the likelihood 
function. The positional estimate for the actual 
object location generated by the mean shift 
algorithm for a given frame f is used to compute the 
positional estimate for the next frame f+1 according 
to equation 5 and the system continues. 

 

Occlusion Detection – The problem with using 
the position probability image (P) to handle an 
occlusion was primarily due to the decreasing 
effective velocity (since the occluded edge is not 

effectively moving, the velocity of the center of 
mass effectively reduces) of the object prior to the 
occlusion since the partially occluded center of mass 
moves at approximately half of the actual velocity of 
the object. Since P would only be used where 
MൈCൈP and CൈP are very small, a metric is instead 
used to detect an occlusion:  

݈ܽݒܿܿ݋ ൌ
∑ ሺ஼௉೘೚೟೔೚೙೓೔ೞ೟೚ೝ೤ሻ
೅
೔సభ

మ

∑ ஼೅
೔సభ

          (11)

 

Figure 3: Foreground and Background Color Histograms 
of the two cars. 

CPmotionhistory is the estimate of the amount of color 
matching in the object foreground, and C is the 
amount of matching color in all of the ROI. Thus, 
 will be small when either the amount of color ݈ܽݒܿܿ݋
in the object is small, or the amount of matching 
color in the background is very large. An occlusion 
is detected if: 

ሺ݂ሻ݈ܽݒܿܿ݋ ൏ ௢௖௖ݐ ൈ ሺ݊ሻሻ        (12)݈ܽݒܿܿ݋ሺݔܽ݉

where, ݊ is a frame number between f0 and ݂ with ݂ 
being the current frame and f0 the nearest frame 
where the object is at least one ROI width distance 
from the current position, or max(1, ݂-150) if that 
doesn’t exist, and tocc is the threshold for occlusion. 
When an occlusion is detected, the velocity from 
frame f0 is used as an estimate of the current 
velocity, and the current position is adjusted to 
reflect that velocity: 

௘௦௧ሺ݂ሻ݌ ൌ ௘௦௧ሺ݌ ଴݂ሻ ൅ ሺݒ ଴݂ሻ 	ൈ 	ሺ݂ െ ଴݂ሻ     (13)

This estimated velocity remains the same while the 
object is occluded. The ROI is allowed to drift up to 
half its length from the estimated position towards 
the center of mass while occluded to allow it to jump 
to the object when it is again present. The occlusion 
is ended when significant motion of matching color 
is again present: 
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෍ܲܥܯ

ே

௜ୀଵ

ൈ ቆ
∑ ܥ ௠ܲ௢௧௜௢௡௛௜௦௧௢௥௬
்
௜ୀଵ

∑ ேܥ
௜ୀଵ

ቇ 	

൐ 	τ ∗ 	ሺ݊ሻ൯݈ܽݒܿܿ݋൫ݔܽ݉  
(14)

where, τ is the threshold to end the occlusion, 
currently set to 0.3.  If the occlusion does not resolve 
within 150 frames of 3 ROI widths, whichever is 
smaller, the track is ended. 

4 IMPLEMENTATION DETAILS 

The tracking algorithm was implemented in C++ 
using the OpenCV library for real-time computer 
vision. The experiments were conducted on an Intel 
I5 machine with 6 gigabytes of memory. 

 

 

Figure 4: Output from MAPTrack (Left) and TLD (right). 

5 RESULTS AND COMPARATIVE 
STUDIES 

We compare results from our tracker against existing 
trackers whose outputs are available at the publicly 
available TLD dataset (Kalal et al, 2010). Table 1 
shows the different states of the tracked object 
inferred at different values for the Motion, Color and 
Positional Probability images. Table 2 gives the 
number of frames up to the first track loss for the 
TUD dataset (Andriluka et al, 2008). It can be seen 
that MAPTrack outperforms the TUD Detector on 
both categories of the TUD Dataset. Table 3 shows 

the number of frames after which the trackers lost 
track for the first time. MAPTrack outperforms other 
trackers in all of the cases (except motocross). TLD 
is based on template matching and hence fails for 
videos with multiple similar looking objects. This is 
illustrated in Figure 4 where TLD switches tracks 
arbitrarily between similar looking foreground 
objects whereas MAPTrack keeps tracking a 
particular object for the entire time frame of its 
visibility. We also compare our tracker against the 
TUD Pedestrian Detector (Andriluka et al, 2008) for 
multi-object tracking. The performance metric used 
was taken from in (Smith et al, 2005). Figure 7 
shows the ROC curve for the tracker and Figure 8 
shows the results from MAPTrack. Table 4 lists the 
results for occlusion on videos from the VIRAT 
public dataset available online (VIRAT). 

Table 1: The different states of the tracked object. 

Motion Color 
Histogram 

Projected 
Position 

Inferred 
State 

0 0 0 Lost Track 
0 0 1 Occlusion 
0 1 0 Wrong Object 
0 1 1 Stopped 
1 0 0 Wrong Object 
1 0 1 Wrong Object 
1 1 0 Wrong Object 
1 1 1 Moving 

Object 
 

 

Figure 5: MAPTrack results for TUD videos. 

Table 3: Comparison of single-object trackers in (Kalal et al, 2010) with MAPTrack. 

 
Algorithms 

Jumping 
(frames=313) 

Car 
(frames=45) 

Motocross 
(frames=2665) 

Car chase 
(frames=9928) 

Panda 
(frames=3000) 

Beyond semi-supervised 14 28 6 66 130 
Co-trained Generative-

Discriminative 
11 34 1 1 1 

“CVPR” results 96 29 59 334 358 
Online Multiple 

Instance Learning 
313 220 63 321 992 

Online Boosting 26 545 - - - 
Semi-Supervised On-

line Boosting 
21 652 59 190 83 

TLD 313 802 173 244 277 
MAPTrack 313 821 162 402 2568 
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Table 4: Results from the tracker (Metric used as in (Smith et al, 2005)). 

Video Duration CD MO MT FP TP Occlusions TP FP
VIRAT_S_010000_01_000184_000324 1m 49s 1.3823 0.036145 0.039078 0.008117 0.86488 20 16 3 
VIRAT_S_040003_02_000197_000552 5m 54s 1.0281 0.020574 0.068743 0.007356 0.8692 25 21 4 
VIRAT_S_050000_05_000696_000732 0m 35s 4.0775 0.089407 0.047252 0.007937 0.73795 3 3 0 

 

6 CONCLUSIONS 

We presented a robust tracking framework that uses 
a probabilistic scheme to combine a motion model 
of an object with that of its appearance and an 
estimation of its position. Our tracking framework is 
robust to abrupt changes in lighting conditions, can 
follow an object through occlusions. The track starts 
automatically based on a spatio-temporal algorithm. 
It can also simultaneously track multiple moving 
foreground objects of different types (e.g., vehicles, 
human, etc.) even when they are closely spaced. A 
“dynamic” integration of the framework with optical 
flow allows us to track videos resulting from 
significant camera motion. 

We plan to use the results generated by the 
tracking algorithm to infer trajectory-based events 
like vehicle turns as well as other complex events 
like accidents and traffic violations. 

 

Figure 6:  Image of people and cars, the images are the 
ROI images, followed by MCP, CP, Velocity Image and 
the Weighted Composite Image from top to bottom. 

 

 

 

Table 2: Tracker results for TUD (Andriluka et.al, 2008). 

 Campus 
Correct (False) 

Crossing 
Correct (False) 

Expected  303 1008 

TUD Detector 227 (0) 692 (7) 

MAPTrack 255 (0) 723 (5) 

 

Figure 7: ROC curve for the tracker. 

 

Figure 8: Results from MAPTrack. 
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