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Abstract: The Marching Cubes algorithm is widely used to generate surfaces from implicit functions. It builds a mesh 
of triangles but many degenerated ones happen to appear among them, which can make the mesh thus built 
unfit for many applications, like the Finite Element Method. To overcome this undesired behavior our work 
proposes changes on the triangle generation that are automatically generated by Marching Cubes inside each 
voxel. We first generate the polygon border inside each voxel that intersects the surface. Each polygon is 
tested so as to guarantee the need to insert a new vertex inside itself, the triangles being then generated 
according to each polygon properties in order to guarantee the best ratio between their sides and angles. The 
resulting triangles inside each voxel exhibit the best possible ratio between their dimensions, thus leading to 
a better mesh. 

1 INTRODUCTION 

Implicit functions are widely used to modeling 
surfaces. They arise in the form of an algebraic 
function or as a sampling in a grid, like functional 
magnetic resonance imaging (FMRI), in medical 
images. 

In this work data remain in the space R3 and the 
implicit surface is defined as an isovalue set for the 
implicit function. To define the isovalue as zero 
means that all points for which f(x,y,z)=0 belong to 
the surface. We will make a sampling of these points 
in order to build a mesh that approximates the 
surface thus defined. 

There are many methods to generate an implicit 
surface from an implicit function, like Marching 
Cubes (Lorensen and Cline, 1987), Surface Nets 
(Gibson, 1998), Extended Marching Cubes (Kobbelt 
2001), Dual Marching Cubes (Nielson, 2004) and 
Dual Contouring (Ju et al., 2002). 

These methods start with a sampling of the the 
implicit function values on a grid, which can be 
either a uniform or an adaptive grid. Given that 

sampling, every voxel from this grid is traversed to 
find the voxels that intersect the surface, and one or 
more vertex of the mesh are positioned in these 
voxels, in order to be connected and generate the 
mesh. 

There are many different approaches to analyze a 
mesh, but the most relevant are: topology, geometry 
or quality of the mesh. Some works deal with the 
topological characteristics of a surface in its 
generation and/or simplification (Peixoto and 
Moura, 2014), (Zomorodian, 2005), (Schaefer, 
2007) and (Nielson and Hamann, 1991). If we look 
towards geometrical characteristics, like curvature or 
geodesics, some interesting works are (Martinez, 
2005), (Velho et al., 2002) and (Wenger, 2005).  

In this work we deal with the quality of 
polygons, namely triangles, that generate an 
unstructured mesh. The quality of the triangles in 
this mesh is essential to many applications in 
Engineering, like Finite Element Methods. Some 
works deal with this characteristic (Dietrich 2009) 
and (Gibson, 1998).  

We propose a change in the Marching Cubes 
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algorithm in order to generate a mesh of triangles 
with better ratio between their sides and angles. 

2 MARCHING CUBES AND 
THEIR MODIFICATIONS 

Marching Cubes (Lorensen and Cline, 1987) is an 
algorithm that generates a tridimensional 
representation of the border of a volume. The 
surface is polygonized, with the values of an implicit 
function being used to positioning the vertex points 
of the mesh that generates the triangles of the 
approximating surface. 

Its first application was carried on for medical 
images, where a series of bi-dimensional images 
slices makes it possible to computationally 
reconstruct a model for the patient anatomy. This 
turns much easier the generation and visualization of 
medical images for traumas and broken bones. 

Nowadays Marching Cubes is widely employed 
in many other areas that need to generate a surface 
from an implicit function, from animation to 
different engineering applications. 

2.1 Marching Cubes 

Marching Cubes starts with a cube that contains the 
surface. Each axis of this cube is subdivided, thus 
generating a grid with new small cubes, the voxels. 

Each voxel is transverse and if it intersects the 
surface, the vertex of the mesh is generated, being 
positioned in the border of each voxel. These 
vertices are automatically connected to generate the 
triangles inside this voxel. The algorithm moves to 
the next voxel so as to generate the next triangles. 

 

Figure 1: Marching Cubes: The original 15 configurations. 

The original MC uses a table with 15 possible 
configurations, except rotation, to decide how to 
automatically generate the triangles, as shown in 
figure 1. 

 

2.2 Topological Ambiguities 

After the original configurations presented in 
Marching Cubes, some cases with topological 
ambiguity arise. In these cases, we can have two 
options to connect the vertex of the mesh inside a 
voxel. These options can generate two completely 
distinct topological configurations, e.g. one with a 
connected surface and another one with two or more 
disconnected surfaces. 

Some techniques were created to deal with these 
flaws (Lorensen and Cline, 1987), (Chernyaev, 
1995). These works take the original 15 
configurations and expand them to 33 final 
configurations, without ambiguity of the resulting 
surface topology. 

Even with these new configurations, the structure 
inside each voxel remains the same, with the 
algorithm automatically generating the mesh 
triangles. After the voxel traverse the whole grid, the 
mesh is generated with all triangles, as shown in 
figure 2, right. 

2.3 Degenerated Triangles 

The Marching Cubes algorithm can lead to some 
difficulties, due to the limitation in the use of an 
automated triangle generation. It is common to get 
hold of degenerated triangles, by which it is meant 
the existence of a very small edge or angle, as 
compared to the two others. For numerical 
applications, such triangles can lead to unstability, 
so that the solution fails to be reached by the 
numerical method. 

Figure 2 shows a detail of a sphere polygonised 
with the Marching Cubes algorithm. We can see 
some degenerated triangles, mainly in the sphere 
center. 

    

Figure 2: Polygonization of a sphere, with the details of 
triangles on the mesh center. 
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3 LOCAL CHANGE 

The changes in Marching Cubes algorithm herein 
proposed are performed only inside each voxel 
during the polygonization. In short, in this work we 
do not look at the neighbors of this voxel. That is the 
reason why we call this change a “Local Change”. 

In the cases where isolated triangles appear 
inside a voxel, nothing is done with these triangles. 
For example, figure 3 shows some cases where the 
voxel generates isolated triangles. Only the 
configurations 7 and 11 can have changes in the 
triangles connections, because they have polygons 
with  four and five edges, respectively. 

 

Figure 3: Some Marching Cubes configurations that 
contain isolated triangles. 

The algorithm proposed in this work is composed by 
four steps: 
 Generate the border of each polygon 
 Separate the vertex with a bad angle 
 Insert a new vertex, if necessary 
 Connect the vertex. 

3.1 Generate the Border of Each 
Polygon 

The first step is to change the Marching Cubes table. 
The original table automatically generates the 
triangles. For every possible configuration and 
positioning, Marching Cubes choses a vector with 
the voxel edges that intersect the surface. For each 
of these edges the positioning of the vertex that 
generates the triangles of the mesh is calculated. 
Each sequence of the vector three elements  
corresponds to a triangle.  

In our algorithm, we change this vector with the 
first entries being the isolated triangles, if they exist. 
After this step, if there is a polygon with four or 
more sides, a flag-2 is used to indicate that the next 
entries are the border of this polygon, and not a 
triangle. 

Figure 4 shows, in the left, the triangles 
automatically generated by Marching Cubes. This 
case gives the vector {2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 
8, -1, -1, -1, -1}, where we have four triangles 
generated by the edges of the voxel (2, 10, 5), (3, 2, 
5), (3, 5, 4) and (3, 4, 8). In the right, we have the 
vector {-2, 2, 10, 5, 4, 8, 3, -1, -1, -1, -1, -1, -1, -1, -
1, -1}. Since we do not have isolated triangles, only 

a polygon with five edges, then the vector starts with 
the flag “-2”, to indicate that we have only the 
border of a polygon, and we have the five edges of 
the voxel that defines this polygon (2, 10, 5, 4, 8, 3). 

 
 
 
 
 
 
 
 
 
   

Figure 4: Marching Cubes triangles and configurations. a) 
The original Marching Cubes triangles {2, 10, 5, 3, 2, 5, 3, 
5, 4, 3, 4, 8, -1, -1, -1, -1}, b) Modified Marching Cubes 
table {-2, 2, 10, 5, 4, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1}. 

3.2 Separate the Vertex with a Bad 
Angle 

This work deals with the local changes that are done 
inside a single voxel. For this reason we fail to have 
information about the neighbours of a voxel. If a 
vertex of the polygon inside a voxel has a too small 
angle, no information about their neighbours is 
available to produce any change for this angle. 

This case of too small angles will be treated in 
another work, where we have access to the entire 
mesh. To prevent that this small angle makes the 
mesh still worst, we will not split it. 

We create an edge connecting the two vertexes 
that are connected to this vertex, thus getting a new 
triangle. If in this case we cannot make a better 
angle, at least we do not create triangles with worst 
angles, and let this small angle be isolated so as to 
be treated in a global change.  

Figure 5 shows a polygon with a vertex, on the 
top, with a small angle. At the left it shows the 
triangles automatically generated by Marching 
Cubes: three new triangles with worse angles. Our 
algorithm is shown at the right, where we take the 
small angle and connect their neighbours, creating 
one triangle with a bad angle. With the local 
changes, we cannot make this angle better, but we 
do not create triangles with angles worse than the 
ones of the polygon original border.  
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Figure 5: Polygon with a bad angle on his top. a) 
Automatic triangulation due to Marching Cubes. b) Our 
algorithm, that prevents to split the bad angle. 

3.3 Insert a New Vertex 

After each vertex with a bad angle is marked, to 
prevent its splitting, we analyse the remaining 
polygon to check up whether it is necessary to 
position a new vertex inside it. This new vertex is 
used to generate triangles with better angles, but 
note: it is positioned only in four or more edge 
polygons.   

In the case of a four edge polygon, the ratio of 
the bigger and the smaller edges are analysed, and if 
they remain bellow a threshold, indicating that there 
is a significant difference between these edges, then 
a new vertex is positioned inside this polygon. For 
all polygons with five or more edges, a new vertex is 
inserted. This new vertex is placed closer to the 
smaller one. It may be thought that an attraction 
force pulls this new vertex closer to the smaller 
edges. 

Every vertex of the polygon is connected to two 
edges. To every vertex we calculate the length of the 
smallest edge (LSE), and we associate this 
information to the edge. We make a sum of all the 
lengths associated to these vertices (SLME).  

With these information we create an attraction 
factor √(1 + SLME/LSE) to every vertex. The final 
position of the new vertex is the sum of every 
position of the vertices of the polygon multiplied by 
this attraction factor.    

In this work, we only use the vertex that 
generates the border to positioning the new vertex, 
because it is a local change, where we do not have 
access to the voxel neighbours. We do not position 
the new vertex close to the surface, using the 
implicit function, because we can generate structures 
like pyramids inside a voxel, even in smooth 
surfaces, what to applications in numerical methods 
can generate unstable results.  

With this positioning, this new edge is closer to 
the smaller edges, generating new triangles with 
better ration between their sides. Figure 6 shows two 

possible positions for a new vertex inside a polygon. 
At the left, the new vertex is positioned on the 
polygon center, and at the right, the positioning of 
the new vertex is closer to the smaller edge. In this 
figure, we can see that the triangles generated at the 
left show better quality between their sides and 
angles.  

  

Figure 6: Positioning a new vertex inside a polygon. a) 
Positioning in the center. b) Positioning closer to the 
smallest edge. 

3.4 Connect the Vertex 

There are two cases to connect the vertex of a 
polygon: if there is a new inserted vertex inside the 
polygon, or if there is only the original border 
vertex.   

If there is a new vertex inserted inside the 
remaining polygon, then all polygon vertices are 
connected to them, as shown in Figure 6.  

When there is no vertex inside the polygon, we 
choose the vertex with biggest  angle. It will be 
connected to the border vertex that is at a distance of 
two edges, and that has a bigger angle. With this 
procedure, the bigger angles are split, thus 
generating triangles with better angles.  

Figure 7 right shows an automatic triangulation 
made by Marching Cubes, where a big angle on the 
top left remains as a big angle in the triangle. In the 
left, we split this angle, generating two triangles 
with better angle in this vertex.   

               

Figure 7: Generating triangles from the border of a 
polygon. a) Automatic triangulation, due to Marching 
Cubes. b) Our algorithm, that splits the bigger angle. 

4 RESULTS 

To analyse the results, we use a histogram to see the 
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angles distribution. The axis x corresponds to the 
angles, where each interval has a size of five angles, 
and the axis y shows the number of vertices that 
have angles in this interval. 

The algorithm presented in this work can 
introduce one vertex inside some voxels. With this, 
the total numbers of triangles, and vertices, can be 
different for a surface polygonised with Marching 
Cubes and with our algorithm.  

In order to see the difference between the 
meshes generated with Marching Cubes and our 
algorithm, we draw the borders of the triangles in 
the mesh. To have a better analysis of the 
distribution of the angles, we show the histogram of 
every surface. We analyse three surfaces: a sphere, a 
hyperboloid and a grid with many holes. 

4.1 Sphere 

We start with a sphere that is polygonized using a 
grid with ten subdivisions in each axis, generating 
103 voxels. With this very coarse grid, we can see 
the mesh with more details, with the triangles that 
generate the mesh. 

The figure 8 shows a polygonization done with 
Marching Cubes. In this case we can see many 
degenerated triangles around the sphere center.  

 

 

Figure 8: Sphere polygonized with Marching Cubes, and 
the histogram with the distribution of the angles. There are 
524 triangles in this mesh.  

On the histogram of this distribution we can see 
a peak in the interval 45-50, and another smaller 
peak in the interval 90-95. The remaining angles 
show a distribution much more dispersed, like a 

statistical uniform distribution. In this surface, there 
is a significant number of vertices with angles 
between 5 to 20 degrees, and the angles of the 
triangles are in the interval 5 to 145 degrees. 

Figure 9 shows the polygonization of the same 
sphere, with the same grid, using the algorithm 
presented in this work. We can see that the triangles 
around the sphere center have better angles, and the 
ratio between their sides are better too. 

The histogram shows that the angles are more 
concentrated around the interval 45-50, with less 
dispersion, and the smallest angle starts with 20 
degrees. In this case, the angles of the triangles are 
in the interval 20 to 130 degrees. 

 

 

Figure 9: Sphere polygonized with the algorithm presented 
in this work, and the histogram with the distribution of the 
angles. There are 852 triangles in this mesh. 

4.2 Hyperboloid 

The surfaces presented in this section, and in the 
next, are polygonised with a less coarse grid, each 
axis has forty subdivisions, generating 403 voxels. 
This makes it easier to analyse the distribution of the 
angles of the triangles, but a little more difficult to 
see the triangles that generate the mesh. 

The hyperboloid generated by Marching Cubes is 
shown in figure 10. Even with a grid with many 
subdivisions, that generates many triangles, we can 
see that there are many triangles with small angles. 

The histogram has a peak on the interval 50-55, 
and there is a significant amount of angles in the 
interval 0-5. The angles of the triangles are in the 
interval 0 to 170 degrees, with a big dispersion. 
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Figure 10: Hyperboloid polygonized with Marching 
Cubes, and the histogram with the distribution of the 
angles. There are 15308 triangles in this mesh. 

 

 

Figure 11: Hyperboloid polygonized with the algorithm 
presented in this work, and the histogram with the 
distribution of the angles. There are 25179 triangles in this 
mesh. 

Figure 11 shows the polygonization of the 
samehyperboloid, with the same grid, using the 
algorithm presented in this work. 

The mesh on the surface shows that the triangles 

have better angles, and some new vertex was 
introduced to generate this mesh. 

The histogram shows that the angles are more 
concentrated around the interval 50-55, with less 
dispersion. The amount of angles in the interval 0-5 
decrease, even with more triangles in this mesh. 

4.3 The Grid 

The Grid is a surface generated with cosines that is a 
tube involving a grid, generating many holes. 
Figures 12 and 13 show a front view of this surface.  

In figure 12 we can see the surface polygonized 
with Marching Cubes. We can see that there are 
many triangles with small angles. 

The histogram shows a peak in the interval 50-
55, a significant amount of angles in the interval 0-5, 
and the angles are more dispersed. 

 

 

Figure 12: The Grid polygonized with Marching Cubes, 
and the histogram with the distribution of the angles. 
There are 10457 triangles in this mesh. 

Figure 13 shows the same Grid, but polygonized 
with our algorithm. In this figure, there are less 
triangles with small angles. The histogram shows a 
peak in the interval 50-55, but in this case, the 
angles are less dispersed, being concentrated around 
this peak. 

5 CONCLUSIONS AND FUTURE 
WORKS 

This  work deals with the local changes  in Marching 
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Figure 13: The Grid polygonized with the algorithm 
presented in this work, and the histogram with the 
distribution of the angles. There are 25077 triangles in this 
mesh. 

Cubes algorithm. These changes are performed only 
inside a voxel, with no information about the 
neighbours, this is the reason why these changes are 
called local changes.  

We can see, analyzing the triangles of the mesh 
that are drawn on the surface, that the mesh resulting 
from these changes has better triangles, with better 
angles and better ratio between their sides. 

The histograms of the surfaces polygonized with 
Marching Cubes have some peaks, but the angles are 
more dispersed, closer to a uniform distribution. All 
histograms of the surfaces polygonized with the 
algorithm presented in this work show an angles 
concentration around the interval 40-60, and less 
angles dispersion. 

In future works we can use information from the 
entire mesh, repositioning the vertex with small 
angles, which are in the border of the polygon, thus 
generating a mesh with better angles triangles. 
Another approach is to deal not just with a surface, 
but with an entire volume. 
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