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Abstract: We generalize previous results to dimension 5 and further. The geometry of the 5-hyp@&dj}l%gives a
model for colour vision in the case of 5 photoreceptor types and a colour space corresponding to the combina-
tion of five primary lights. In particular, we focus on the (topologically spherical) boundary of the hypercube
and on an equatorial sphere within the boundary, roughly orthogonal to the achromatic segment. In the poly-
topal and double-cone type spaces, we consider a tridimensional hue component; in the round Runge space
we consider a 4-dimensional colourfulness component.

1 INTRODUCTION 2 GEOMETRY AND COLOUR

The three properties of colour, luminance, hue and we extend the geometric characterisation of trichro-
chromatic saturation can be seen as geometric prop-matic colour to a model for pentachromatic colour
erties of points in the RGB cube; properties that de- that is based on the geometry of the hyperciaba®.
pend on the position and orientattion of the points in Thjs interpretation provides a basis for the processing
the cube with respect to both titéack pointand the  and visualisation of pentachromatic images as well as
achromatic segmeifRestrepo, 2011). This approach g plausible model for the study of the colour vision
generalises to dimension 4 (Restrepo, 2012a), (Re-systems of pentachromatic animals.

strepo, 2012b), (Restrepo, 2013b), (Restrepo, 2013a) | et the interval0, 1] model the set of possible in-
and to dimensions 5 and further. A model for colour tensities of each of five primary lights in an additive
vision in the case of 5 photoreceptor types, or a colour ¢olour combination or, of the possible response levels
space corresponding to the additive combination of of egch of five photoreceptors. In this way thebic
five primary lights is presented here. The approach cojour spacd0,1]° c RS models the set of possible
allows to do pentachromatic colour image processing primary combinations or of photoreceptor responses;
and the study of pentachromatic metamerism. thus,coloursare modelled as points in the hypercube.
Pentachromacy is the case of the visual systemThe points ofR® are denoted either d8,W,X,Y,2) or
of many animals, e.g. pigeons (David M. Hunt asp — (po, pa, p2, p3, pa). The position of the colour
and Da.VieS, 2009) and dragonﬂies and flies (Kelber, pointsy relative to amquatorials_spherm in the 4-
2006). spherical boundary := 9|0, 1]° of the 5-cubeg is the
For the visualization of multispectral images with - pasis for the definition of tridimensiongentachro-

five bands, pentachromacy is likewise relevant as pen- matic huewhile = is the basis for the definition of
tachromatic colour processing followed by the RGB  4-dimensionapentachromatic kolor

visualisation of three out of the five channels makes The boundaryZ of the 5-cube is the set of

explicitimportant aspects of the image (Restrepo and the colour points having at least one 0-valued co-
Maldonado, 2015). Likewise, in the screen ilumi- qgrdinate or one 1-valued coordinate. The points
nation industry, it is also _useful to have models for (Po, P1, P2, P3, Pa) € = are classified into & 2 = 10
more than three primary lights (Shmuel Roth, 2010), 4-cupes depending on which coordinatés equal to
(Roger P. A. Delnoij, 2012) in the visible spectrum. 1 or equal to 0; e.g{Ovwxyz and {lvwxyz. As a
matter of fact,Z is a PL (piecewise linear) 4-sphere,
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a topologicalS*, that in addition to these 10 4-cubes, of the points in the hypercube sharing such order-
can becelledinto 40 3-cubes, 80 squares, 80 edges ing of their coordinates. For example, the ordering
and 32 points; these numbers result as follows: by po < p1 < p2 < ps < p4 corresponds to the tetrahe-
fixing 2 of the coordinateg; and p; of points in the dron{po=0< p1 < p2 < p3 < ps = 1} in the cube
5-cube with values 0,1}, you getthe 2x (5) =40  {Po=0,pa =1} C 0. Thus, in this triangulation of
3-cubes ofz; fixing 3 coordinates if{0,1}, you get into 20x 6 = 120 tetrahedra, the interior of each tetra-
the 2 x (3) = 80 squares oF; fixing 4 coordinates, ~Nedron precisely corresponds to each of the elements

- - . of the symmetric groufs, which in turn corresponds
2" x (4) = 80 edges and, fixing all 5 coordinates, as well to the interior of the 5-simplex of points in the

2° =32 points or vertices. 5-hypercube having that ordering of their coordinate
Each of the 32 vertices ok, that is points  values.

(Po, P1, P2, Pa, p4) With p; € {0,1} is a vertex of(3) We say that a colour poirt = [ho, hy, hy, hs, hy]

= 10 3-cubes in the cell complex; e.g. (00080) isahueif at least one of its coordinatésis 0-valued

{00xyz}. Each of the 80 edges is an edge(é)‘ = and at least one of its coordinatlg is 1-valued,

6 3-cubes; for exampldy0000} C {vOOyz}. Each of  that is, the points o& are the possibléuesof the
the 80 squares is a face of 3 3-cubes; for example, colour points not on the achromatic segmgntalled
{vw000} C {vwx00}, {vwOy0},{vw0O0yz}. chromatic colour points The set of colour points
Out of the 40 3-cubes &, 20 do not have neither ~ having a given hué is the hue trianglethat is the
of the pointss:= (000 00) orw:= (1111 1)as coneoftheachromatic segmeqtand the hue poirtt
vertices W ands stand for white and blacls¢hwarty,  9iven by {[y+ Bho,y+ Bhy,y + Bhz,y+ Bha,y+ Bhy]
respectively.) The union of these 20 cubes iggoa- - P+Y<1,0<pB,y<1}. There are 12Be families
torial S3 for Z, called thehue sphereand denoted as N0 which the hue pointé € 6 can be classified.
. The points ofo are precisely those points af ~ All colours of a given hue family have the same
having at least one coordinate at value 0 and at leastordering regarding the relative contributions from
one coordinate at value 1. The equatodas linked  €ach of the photoreceptors, or primaries. An analogy
in S = R5U {0} with the line (circle throughw) with the trichromaticRGB case is for example the
through the points andw. Theachromatic segment ~ family of the orangeswhereR> G > B. In the
is the line segment that joilsandw and is given  trichromatic case, a hue is either unary or binary, in
by @:= {As+ (1—A\)w: A € [0,1]}; it consists of the  the pentachromatic case, a hue may be unary, binary,
colour points having equal coordinates. In a sense thattfinary or quaternary, correspondingly depending

andgare orthogonal. a segment, a triangle or a tetrahedron of the PL,

equatorial, hue spher Hues at the boundary of a

. . . L5
The equatoriabr, of codimension 2 irR>, is used 3-cube ofo belong to exactly two families.

to definepentachromatic huby giving coordinates to
the points ofl0, 1]° on the basis o8, i.e. by locating

the colour point with respect to (and@). There are
other ways to define a pentachromatic hue as there
are other closed 3-manifolds in the cell compkEex
that are unions of 3-cubes hfbut, in a senseg is the
canonical choice.

In fact, since each of the 20 3-cubesamtan be
triangulated into 3! = 6 tetrahedra, according to the
6 possible orderings of thigee 3 coordinates (there
are twofixed coordinates;, pj, with p;, p; € {0,1},
in each such cube), each of the resulting 120 tetra-
hedra contains the points ofhaving one of the 120
possible orderings of their (five) coordinates, where
the minimal coordinate has value 0 and the maximal
one has value 1. To each point in one such tetra- pi—m
hedron ofa, there corresponds a triangle of points hi = N (1)
in the hypercube having such an ordering of their
coordinates, this time without the restriction of the wherem:= min{p; :i € 5} andp := max{p; :i €
minimal coordinate being 0 and the maximal being 5}—min{p;:i € 5}; for example, the hue qf = [0.1,
1, and the union of such triangles is the 5-simplex 0.3, 0.5, 0.7, 0.9]i&% = [0, 0.25, 0.5, 0.75, 1].

The hypercubg0, 1]° is triangulated into 120 5-
simplices by taking théopological joinof the achro-
matic segmenp and each of the 120 tetrahedra in the
triangulation ofo. (For our purposes, the join of two
subsetsA andB of RN is the union of the line seg-
ments connecting points éfwith points ofB. ) Thus,
in each of these 5-simplices, the hues of the colour
points belong to the same hue family.

To each chromatic colour pointp =
(Po, P1, P2, P3, Pa) there corresponds a unique
hue h € o, in fact, p belongs to the uniquéiue
triangle having as one sid@ and as opposing vertex
the pointh = (ho, hy,h2,hz, hs) € o with coordinates
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The connectivity of the cubes and tetrahedra of
o is topologically captured by a connectivity graph.

The equatoriab sits inR® in codimension 2. By
projectingo onto the 4-hyperplanB that is orthog-

Consider the graph having as nodes the tetrahedraonal to the achromatic segmepyou get again a PL

(equivalently the elements d&) of the chromatic

S®, denotedo*, this time embedded (ifll) in codi-

sphereo, where two nodes are joined by a branch mension 1. The equatorial sphesehas been made
precisely when the two corresponding permutations "flat”, and each ray i1 from the origin intersects a
differ by a transposition of two consecutive elements. circumscribing, rounds®, which is key to getting a
This corresponds to two tetrahedra being connectedround hue space.

by a triangular face. When a colour changes from a

In fact, for this projectiort: o — N, (o) is an

hue family to another, the two corresponding order- embeddingf o. To see that it is injective, notice that
ings differing by a transposition of two consecutive Ti(s) = 11([s,S1,%2,%3,%4]) = [So— K, S1 — K, S, — K, S3—

elements, we say that mild changeof hue family

k,s1 — K], wherek is the average of thg's. Therefore,

has occurred. We show below a table correspondingif 1i(,s) = 1(pS) thenas—ps=p k —ak, that is,asand

to aHamiltonian circuitin the graph of hue families

ps differ by a constant vector, but since the points of

connected by mild changes, that cycles through the g have exactly one 0-valued coordinate and one 1-
120 families. In this way, we give a cyclic order to valued coordinate, the remaining coordinates being
the hue families, analogous to the trichromatic case, strictly between 0 and 1, the only possibility is that
where you can give a cyclic order to the 6 hue fami- such constant vector be the origin.

lies and in fact (but this only in the trichromatic case) The  function f RS — R?2 with

a CyC“C order to the hues themselves. (po’ P1, P2, P3, p4) — (u’ p), Wherep is the range of

the coordinate values angd:= MXPEStmin{pics)

is the midrange, bijects each of the hue triangles
(whose union is[0,1]°) to a canonical, isosceles
"up-triangle”, also called thduminance-saturation

For colour processing, it is better to transform the hy- triangle T := f([0,1]°). T is an isosceles triangle
percube into aounderspace. Initially, we obtain a  With base{(i,p) € R?: pe [0,1],p = 0} and height
space of the "hexcone” type, that although not round {(l:P) € R®: = 0.5,p € [0,1]}. We say thatu
is a starting point to obtain the rounddouble-cone ~ Measures théuminanceof a colour on each hue
type space and a round ball type space. Such spacedriangle and thap measures itshromatic saturation
are more intuitive and less prone, under colour trans- ~ The 5-hypercube is the (union of the) collection
formations, to end up at "forbidden colours” due to Of the hue triangles, each of which has as common
a careless change of coordinates. A useful geometricside the achromatic segmeptand oposing vertex a
technique to obtain rounder spacespénning point in g; the fact that the hue triangles have diffrent
The spin Sp(N, M, R®) in R® of a subseN of the shapes differentiates this construction of the hyper-
upper half plane oR2 arounda setM c R2 of dimen-  cube[0,1]> from a spin.
sion 1 with parametrisatiokl = {[my(t),mp(t)] : t € The spin of theup triangle arounds™ is (analog
P c R} is given by to the the hexcone space) the 5D 120-cthe=
Sp(N,M,R3) := {[x,y.my(t),y.mp(t)] : (x,y) € N} Sp(T,0*,R%).
Usually, the coordinates; of M are taken to be in
the interval [-1, 1]; for example, the spin of the trian-
gle {[x,y] € R?:x€[-1,1],y=1— x|} around a cir-

3 ROUNDER COLOUR SPACES

The spin of the trianglel' around the standard
(Euclidean, round) sphe® c R* gives the double-
cle inR3, is the double coné[x, (1 — [x|) cogt), (1 — cone type space. This space makes explicit the fact
[X])sin(t)] : x € [-1,1],t €[0,2m)} and the spin of the  that, corresponding to maximal 1 and minimal O
same triangle around a hexagon is a hexcone. In avalues of luminance (at the vertices of the cone),
sense, you are spinning tflag of the upper half of  there is no hue nor chromatic saturation to be added.
R?, that contains the triangle, wifiplethe x axis.

Similarly, thespin Sp(N, M, R®) in R® of a subset
N of the upper half plane d®? arounda setM c R4,
usually of dimension 3, with parametrisatidvh =
{[m(t1,t2,13), Mp(ty, t2, t3), Ma(ty, to, t3), Ma(ty, to, t3)] :
(t1,t2,t3) € P C R¥} is given by
S[XN,M,RS) = {[v,w.my(ts,to,t3), w.mp(ta, to, t3),
W}nh(tl,tz,t3),W.m4(tl,t2,t3)] S(v,w) €N, (t,t,t3) €
P}.

By deforming the triangld into a semicircleD
and spinning it around the rour8 of R*, you get
a solid ballB®, called Runge space. The process of
spinning adds the hue to the luminance and saturation
of T. In Runge space, the hue and the luminance are
made explicit but not so is the chromatic saturation;
instead, we call the distance from the central middle
gray thekolorfulnessor vividness of a colour point
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and the corresponding point in t8& boundary of the ~ comes an octagon with verticésed, yellow, green,
ball thekolor or chromaticity ( defined for achromatic  blue} (the uniques) and segmenfsrange, cetrine,
colours such as andw as well) of the colour point.  cyan, viole} (the binaries). In the trichromatic case,
The kolor is the point of the 3-sphere at which the spin the uniquenessf a hue is the opposite of itsinari-
was made and the kolorfulness is the distance to theness the closer you get to a unique hue (red, green,
central pointmiddle grayof the 5-ball. yellos or blue) the farther you are from either of the

central binaryhues (orange, cetrine, violet or cyan).

Geometrically ino, defineuniquenesas the distance

to a closest unique artiinarinessas the distance to a
4 PENTACHROMATIC HUE closest central binary hue.

. . . . ) In the pentachromatic case, a vertexsa$ said to
In the trichromatic case, the hue isciclic variable be aunaryhue; at a point in the interior of an edge

(Restrepo and Estupinan, 2014); in the tetrachromaticyq, have contributions from two primaries and the
case, the hue is bidimensional and spherical; in the ;e is said to binary, on a triangle in the complex

pentachromatic case the hue is tridimensional, spheri- ; you have contributions from 3 primaries and the
cal. In both the tetrachromatic and the pentachromatic hiJe is said to berinary and inside (i.e. in the interior

cases, it is not the hues bfamilies of huethat can be of) a tetrahedron o6, the hue is said to bguater-

cyclically ordered. There are 24 families of hue in the nary. There are 5 unary hues, e.g. [L0000], which are
tetrachromatic case, and 120 families of hue in the yhe vertices of having 4 zero-valued coordinates, 10
pentachromatic case. . . binary hue families, e.g. {#000] which are the seg-
The ordering of the relative contributions of each ments ofo made of points having 3 O-valued ccor-
of the five primaries giving fise to a coloured light _giantes: 10 trinary hue families, e.g.vj£00], which
beam can be seen as a broad property of its colour;are the triangles af of points having 2 0-valued co-
colours are thus characterised as belonging to one of5rginates and 5 guaternary hue families, e.a{D],
120 possiblefamilies of hue Likewise for the rela-  \yhjch are the tetrahedra ofhaving 1 0-valued coor-
tive contributions of five photoreceptors with different  ginate. Since a colour point with no zero coordinate

photopigments at a small retinal spot. is not a hue (not an elementay, there are no pentary
In the case of human colour vision, the percep- hyes, such a colour has an achromatic component.
tual proper of uniqueness is maeeplicit (in Marr’'s Every colour point can be writtten uniquely either

jargon (Marr, 1982)) at V4 and not at the receptoral a5 an achromatic colour e §.1,0.1,0.1,0.1,0.1], or
level nor in the retina, the thalamus or V1 (Zeki, anachromatic colour plus a colour of a quaternary hue
1993). In fact, since the cone responses overlap (ase g. [0.1,0.2,0.2,0.2,0.2], or an achromatic colour
do the spectral responses of camera filters), it is notplus a colour of a quaternary hue plus a colour of a
possible to have a stimulus eliciting response from trinary hue, e.g.[0.1,0.2,0.4,0.4,0.4], or an achro-
only one cone type; instead of using the term unique- matic colour plus a colour of a quaternary hue plus a
ness of hue, to such hypothetical case, we refer to colour of a trinary hue plus a colour of a binary hue
as (receptoral) thenarinessof a hue. Further reti- ¢ . 10.1,0.2,0.4,0.7,0.9], or as an achromatic colour
nal, and cortical processing differentiates further the plus colour of a quaternary hue plus a colour of a tri-
hue in these hue families of a receptoral level; in our nary hue plus a colour of a binary hue plus a colour
trichromatic case, the receptoral familly>M > S of 5 unique hue as follows: [0.1, 0.2, 0.4, 0.7, 0.9] =
is subdivided into 2 cortical-hue families: oranges [0.1,0.1,0.1,0.1,0.1] +[0, 0.1, 0.1, 0.1, 0.1] + [0, O,
and citrines (greenish yellows) separated by cortical, 9.2 0.2, 0.2]+10,0,0,0.3,0.3] +[0, 0, 0, 0, 0.2], of
unique yellow (L = M). The cortical uniques and hue  hyes, correspondinglyndefineg[01111], [00111],
families are then unique red, reddish oranges, central[00011] and [00001].
orange, yellowish oranges, unique yellow, yellowish For a given a 5-tupley = [go, 1, G, O3, ] €
citrines, central citrine, greenish citrines and unique [0,1]5 there is at least one (of the 120 possible) per-
green. mutationp : {0,1,2,3,4} — {0,1,2,3,4} such that
Also in the trichromatic case, the vertices of the a nondecreasing orderingpo) < Gp(1) < Gpz) <
hue hexagopan equatorialS' in the PL $* given Up(3) < Gp(4) results. As already said, in the equatorial
by 9[0,1)%, called thechromatic hexagorin (Re-  3-spherep, the set of 5-tuples so ordered by a given
strepo, 2011), belong either foed green, bluporto  permutation is a tetrahedron; thus the 120 permuta-
{yellow, violet, cyar} (at the receptoral level, yellow  tions p determine a triangulation of the hue sphere
is a binary colour). With the modification of yellow g into 120 tetrahedra. Correspondingly, the 120 per-

to a unique and the corresponding addition of the bi- mutations determine a triangulation[6f1]° into 120
nary families orange and cetrine, the hue hexagon be-
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5-simplices where each 4-simplex is the topological is visited exactly once and every pair of consecutive
join of the achromatic segment and the corresponding 3-cubes have a square (the union of two triangles)

tetrahedron in the triangulation of face in common.
The permutations have the structure of a group; o _ ) o
algebraically, they are the elements of #yenmetric We indicate an iterative procedure of obtaining

group % and’ perhaps not an obvious fact, its ele- Hamiltonian circuits in the graph (ﬁ‘| Leten denote
ments can beyclically sequencedo that two con-  the identity element o§,. In Figure 1 the permuta-
secutive permutations differ by a transposition of con- tions of two elements are used to get the permutations
secutive coordinates (Johnson, 1963). From the view- Of & set of three elements in such a way that you get
point of the wavelength domain, two consecutive co- @ factorisation, into transpositions of consecutive el-
ordinates of a colour are better related than anotheréments, ofes from that ofe;. The symmetric group
pair of ccordinates. The swapping of two consecu- s With three elements is generated by the transposi-
tive colour coordinates is called mild, hue-family ~ tionsto := (0,1) andt; := (1,2). Denote the action
changeAlso, it so happens that the two tetrahedra of Of a transpositiott acting on an ordered set, or triple
o that correspond to such a permutation have exactly P = [Po, P1, P2]-ast(p), or simplytp; thus, for exam-
a triangular face in common; also, you can visit each Ple, (1, 2)[0, 1, 2] = [0, 2, 1]. From Figure 1, the
tetrahedra ob exactly once going from one tetrahe- Permutations of0, 1, 2] are cyclically ordered as
dron to the next through such triangles. Equivalently
stated, there is a Hamiltonian circuit in the Cayley
graph ofSs (Witte, 1982). . X

We say that each tetrahedron @fdetermines a
family of hues in the sense that in each tetrahedron
the relative contributions of the primaries is fixed. Figure 1: The lines mustard and red represent the symmet-
Ao,y hve hal he 120 e farlies e oyl 1€ RS A ement s postongd s
cally ordered. It is the fam|I|e§ of hue rathcy tha_ln the tation to getSz. The iteration of this gives a Hamilton circuit
hues themsalves that are cyclically ordered, unlike the o gacrs,.
trichromatic case where the hue sphere is triangulated
into 6 intervals (Restrepo, 2011), and each intervalis  [0,1,2]
linearly ordered, the points within each tetrahedronof ~ [1.0,2] =(0,1).[0,1,2]

, [1,2,0] = (1,2)(0,1).[1,2,0]
o do not have_ a.I|near qrder. 2.10] = (0.1)(1.2)(0.1).[0.1.2]
As we said in Section 2, th&* boundarys of [2,0,1] = (1, 2)(0, 1)(1, 2)(0, 1).[0,1,2]

[0,1]° consists of 10 4-cubes; each such 4-cube con-  [0,2,1] = (0,1)(1,2)(0,1)(1,2)(0,1).[0,1,2]
nects with 8 other 4-cubes via each 3-cube of its [0,1,2] = (1,2)(0,1)(1,2)(0,1)(1,2)(0,1).[0,1,2]
boundary. For example, the 4-cubfs= 0} and
{z= 1} connect via the 3-cubgr = 0,z=1}. In the The last ordering being the initial one. Thus, at
corresponding connectivity graph, having as nodes the last line you have a factorization of the identy
the 4-cubes and as branches the connecting 3-cubesyf the symmetric groufs as
there are several Hamiltonian circuits. e = MM = (1,2)(0,1)(1,2)(0,1)(1,2)(0,1)

Also, the 120 tetrahedra of tH# equatorial hue  into 6 transpositions of consecutive elements, either
sphereo can be grouped into 20 3-cubes; for exam- (0,1) or (1,2). In fact, the 6 permutations
ple, the 3-cubgv = 0,w = 0} groups the tetrahedra = M{_gti, j € /0,5/

{[v=0w=0x<y<2z, {v=0w=0y<x<2z}, of S are thus cyclically ordered. We simplify further
{v=0w=0y<z<x}, {v=0w=0z<y<x} the notation by writing only the first element of each
{v=0w=0,z<x<y}and{v=0w=0x<z<y}. transposition in the factorisations, for example=

That is, o can also becelled into 20 3-cubes, on  1.0.1.0.1.0.

each of which, as in the trichromatic case, the colour ~ The 24 permutations i, are likewise cyclically
points can be given the trichromatic attributes of hue ordered. By interleaving the sequences of transposi-
saturation and value. Each 3-cubeagiconnects with  tions 0:=(0, 1), 1:=(1,2), 2:=(2,3), 2:=(2, 3), and its re-
each of 6 other 3-cubes via a 2-square. For example,verse, alternatively in between each of the 6 transpo-
the 3-cubegv=1,x=0} and{x=0,z=1} connect  sitions in the factorisation afs € S3 and taking care
via the squardv = 1x=0,z= 1}, there are several of adding a one in the notation of the transpositions in
Hamiltonian circuits in the graph corresponding to es, after the end of an inserted sequence 2, 1, 0, but
this cellular decomposition af into 3-cubes. in such  not after an inserted sequence 0, 1, 2, (extending the
a way that each 3-cube (the union of six tetrahedra) idea in Figure 1) you get
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e =Mty
= [0.1.2.(0).2.1.0.(1+1).0.1.2.(0).2.1.0.(1+1).0.40?
.2.1.0.(1+1)7

1ti

where the transpositions in parenthesis are those cor-

responding tas; thus,
e=[0.1.2.0.2.1.0.2.0.1.2.0.2.1.0.2.0.1.2.0.2.170.2

where theT in NT indicates a reversing in the order-

ing of the factorizatiorTl. A cyclic ordering of the

elements ofS; is then{m|j € {0,1,2,...23}}, with

M = ﬂijzoti.

This procedure can be generalized. A factoriza-
tion of &5 € S into 5x 24 = 120 transpositions of
consecutive elements is

& = MM

=[a0a’1a2a’ 0020’ 1'a0aT 22a0a’ 1’
a2a’0Ca2a’1a0a’ 2 a0a’ 'a2a’ 0'a2a’
1Taoa’ 277

wherea = 0.1.2.3 and a prime, as in’, denotes
n+ 1, thatis,

=[a0a’ 2020’ 1a2a’ 20 00T 3a0a’ 2a 2
a' la2aT' 2000’ 3a0a’ 2020 1a2a’ 200
a’ 3"

=[0123007T201232a71012320720123
0a"301230a"T201232071012320720123
0073012300"T201232071012320720123
0aT 3"

=[012303210201232321010123232
102012303210301230321020123232
101012323210201230321030123032
102012323210101232321020123032103

and a ciclic ordering of the 120 elements $f is
{mlj € {0,1,2,...119} }, with

m=N)_gti,j € /0,119 @)

5 CODING AND DECODING THE
HUE

In the 120-cone space, the luminance and the chro-
matic saturation are coded in thg triangle while the
hue is coded as a point in the PL hue spher& his
code ofo is the basis for the definition of hue in the
S of the double-cone type space.

The cyclic ordering ot given by Equation 2, to-
gether with the initial ordering <w <x<y<z
denoted shortly agwxyz determine a cyclic ordering
of the orderings of the 5-tupldg,w, x,y, Z of coordi-
nates. Thus, an ordering &fw,X,y,Z] determines a
numberj given by the position in the list (see Table 1)
of the cyclic ordering ofs;, and viceversa. Equation

Table 1: A cyclic ordering of the 120 orderings of the 5-
tuple vwxy3.
| # | ordering| # | ordering] # | ordering]

0 vwxyz | 40 | vwzxy | 80 VWYyZzX
1 wvxyz | 41| wvzxy | 81 WVyzx
2 wxvyz | 42| wzvxy | 82 WYVZX
3 wxyvz | 43| wzxvy | 83 WYyzVvX
4 wxyzv | 44 | wzxyv | 84 WYZXV
5 xwyzv | 45| zwxyv | 85 YWZXV
6 Xwyvz | 46 | zwxvy | 86 YWzVX
7 Xwvyz | 47 | zwvxy | 87 YWVZX
8 xvwyz | 48 | zvwxy | 88 yvwzx
9 vxwyz | 49 | vzwxy | 89 VYWZX
10 | wvxywz | 50| vzxwy | 90 VyZWx
11| xvywz | 51| zvxwy | 91 YVZWX
12| xyvwz | 52| zxvwy | 92 YZVWX
13 | xywvz | 53 | zxwvy | 93 YZWVX
14 | xywzv | 54 | zxwyv | 94 YZWXV
15| xyzwv | 55| zxywv | 95 YZXWV
16 | xyzvw | 56| zxyvw | 96 YZXVW
17 | xyvzw | 57 | zxvyw | 97 YZVXW
18| xvyzw | 58| zvxyw | 98 yVZXw
19| wvxyzw | 59| wvzxyw | 99 VYZXW
20| wvxzyw | 60| vzyxw | 100 | vyxzw
21| xvzyw | 61| zvyxw | 101 | yvxzw
22 | xzvyw | 62| zyvxw | 102 | yxvzw
23| xzyvw | 63| zyxvw | 103 | yxzvw
24| xzywv | 64| zyxwv | 104 | yxzwv
25| xzwyv | 65| zywxv | 105 | yxwzv
26| xzwvy | 66| zywvx | 106 | yxwvz
27 | xzvwy | 67| zyvwx | 107 | yxvwz
28| xvzwy | 68| zvywx | 108 | yvxwz
29| wvxzwy | 69| vzywx | 109| vyxwz
30| wvxwzy | 70 | vzwyx | 110 | vywxz
31| xvwzy | 71| zvwyx | 111 | yvwxz
32| xwvzy | 72| zwvyx | 112 | ywvxz
33| xwzvy | 73| zwyvx | 113 | ywxvz
34| xwzyv | 74| zwyxv | 114 | ywxzv
35| wxzyv | 75| wzyxv | 115| wyxzv
36| wxzvy | 76 | wzyvx | 116 | wyxvz
37| wxvzy | 77| wzvyx | 117 | wyvxz
38| wvxzy | 78 | wvzyx | 118 | wvyxz
39| vwxzy | 79| vwzyx | 119 vwyxz

1 gives thej-th orderingr;[vwxyz of the 5-tuple; on
the other hand, to recover the numbefrom a per-
mutation of[vwxyz, we proceed as follows.

As a first step, reduce a given ordering of
[v,w,Xx,y, 2 to an ordering ofy, Z by deleting the let-
tersv, w andx from the given ordering; for exam-
ple, zyxwv— zy, then, notice if this corresponds to
an even or an odd permutation (odd in the example)
of yz next, reduce the initial permutation by deleting
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only the lettersv andw, obtaining a permutation of
[X,Y,2]; in the previous example, you gatxwv— zyx
and notice if the reduced permutatioxy— zyxin

the example) is even or odd (again odd, in the exam-

ple) next notice the parity of the reduced-bpermu-
tation wxyz— zyxw even, in the example); finally,
check the parity of the original (complete) permuta-
tion (vwxyz— zyxwy even, in the example.) Notice

also, as if going from a reduced ordering to a less re-

duced ordering, thpositionat which the added ele-

or a homeomorphism @&* and the kolorfulness with

an exponential law, separately. In the remaining of
this section we concentrate on the separate process-
ing of the hue, by "PL rotations” of5, a tool for the
transformation of pentachromatic hue.

By a PL rotationof o we mean the following. Ini-
tially, o is projected on the 4-subspddeof R® that is
orthogonal tap. Call 6* the embeddingt(c). Then,

M is rotated; then, the rotated versionasf(a PL S%)
is "fitted back” (see below) oo*. Then,o* is back

ment is inserted; this position is sometimes measuredprojected tao.

from left to right and sometimes from right to left. If

you are at an even ordering (e.g. 5432) the new ele-

ment (e.g. 1) is assumed to be inserted from left to

right (thus, in 54321, the 1 has been inserted at the 4-

th position) while, if you are based at an odd ordering,

The projectiormtis linear and each tetrahedron of
0 projects to a tetrahedron of‘. A point of 0 such
ash = [0,w,x,y,1], with averagen = ¥, has an
imagert(h) in * given byh* = [—n,w—n,x—n,y—
n,1—n] which has zero average. Notice that the or-

the inserted element is assumed to have been insertedlering of the coordinates bfis the same as that bf.

from right to left (thus, 54 being an odd permutation

h* defines the ray oR® given by{th* :t € [0,)}. To

tells us that in 543, the 3 has been inserted at the O-theach ray il ¢ R® there corresponds a unique point

position). These positions are the weight factgiis
the computation of the numbgrof the permutation,

that is,
n n|

> b ®)

wheren =5, andtx € /0,k—1/ is calculated as
described above.

j:

Given a colour point, for example [0.5, 0.4, 0.3,
0.2, 0.1], with Equation 3, we find that we are in the
tetrahedron number 64 af; also, its luminance and
its chromatic saturation are given py= 21592 = 0.3
andp = 0.5—0.1=0.4. Next, we find where in tetra-
hedron 64, the point [1, 0.75, 0.5, 0.25, 0] is (see
Equation 1); that is, we compute the barycentric co-
ordinates of point [1, 0.75, 0.5, 0.25, 0] in the tetra-
hedron with vertices [10000], [11000], [11100] and
[11110] which, in a sense, are the barycentric coordi-
nates of [0.75, 0.5, 0.25] in the tetrahedron with ver-
tices [1000], [1100], [1110] and [1111] &*. Since
[1,0.75,0.5,0.25,0] = a[1000 + B[1100 +y[1110 +
0[1111] anda + B+y+d =1, you can getr, B,y and
0.

6 HUE PROCESSING

A simple yet useful way of processing pentachromatic

of o* (and viceversa).

The the rigid motions 08® ¢ R* (the rotations of
R4 can coded with the help of unit quaternions, as
in rot(s) = ash with |a] = |b| = 1. The correspond-
ing group is known a§Q(4). After C I is rotated,
to each poinh* € o* there corresponds a new point
h** € I, not necessarily ic*. We find an appro-
priately corresponding iw* as follows. The order-
ing of the coordinates df** determines a tetrahedron
of ¢* that contains the point intersection of the ray
throughh** and o*; this intersection point is the a
"rotated” version ofh*. We compute the barycen-
tric coordinates of this intersection point with respect
to the vertices of the tetrahedron. Then we com-
pute in the correspoding tetrahedronaf the cor-
responding barycentric combination, with the com-
puted coordinates gives the "PL rotated” version of
h. The embedding 06* = (o) C I of o has an
inverse given by the addition of the constant vector
such that the resulting largest coordinate has value 1
and the smallest one has value 0. For example, con-
sider the hué = [0,0.4,0.5,0.6, 1] of average 0.5 and
projectionh* = [-0.5,—-0.1,0,0.1,0.5] that is rotated
to g* =[0.5,0.1,0,—0.1, —0.5] via multiplication by
the orthogonal matrix [00001; 00010; 00100; 01000;
10000]; the ray through** is in the terahedron of
with vertices 11110, 11100, 11000, 10000 which it
intersects at the same poimt* = g* and that is back
projected to point[.5.10-.1-5]+[.5.5.5.5.5]=[1

images is to process separately the hue. The remain-g 5 .4 0]]

ing pair of colour attributes of the luminance and the

saturation can likewise be processed separately using

e.g. exponential laws (A. Restrepo, 2009). The lu-

minance and saturation can be jointly processed with

flows of the points in the luminance-saturation trian-

gle. Likewise, the kolor can be processed as a rotation
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7 CONCLUDING REMARKS W. L. (2009). ??evolution and spectral tuning of visual
pigments in birds and mammals. TEMPLATE’06,

A model for colour vision in the case of 5 photore- éshtilln;?;?;“%mg&mgerence on Template Production
ceptor typg_s as WeII_as a Colou_r space Corr.eSpondngohnson, S. (1963). Generation of permutations by adjacent
to the additive combination of five primary lights are

dh Th h all d h transpositionsMath. Comput. 17, 83, 282-285
P et solour Im € approach alows to do pentac rO-Keﬂﬂer, A. (2006). Invertebrate colour vision. Inverte-

matic colour image processing and the study of pen- brate Vision, E. Warrant and D.E. Nilsson e@am-
tachromatic metamerism. bridge University Press.
Pentachromacy is relevant in the study of the vi- | enz, R. and Homma, K. (1996). Rotational symmetry: The
sion systems of many animals, e.g. pigeons (David lie group so(3) and its representations IQP 96.
M. Hunt and Davies, 2009) and dragonflies and flies Marr, D. (1982).Vision W.H. Freeman and Company, San
(Kelber, 2006). Most mammals are dichromatic (dol- Francisco.
phins are monochromatic) and old-world monkeys are Restrepo, A. (2011). Colour processing in runge space.
trichromatic; the reduction in cone type of mammals SPIE Electronic Imaging, San Francisco
is probably related to the fact that they evolved as Restrepo, A. (2012a). Tetrachromatic colour spa8eIE
nocturnal animals. Among vertebrates, only some Electronic Imaging, San Francisco
rodents and marsupials take advantage of ultraviolet Restrepo, A. (2012b). Tetrachromatic colour spabesapp
light. Light of short wavelengths is less absorbed by Rome
water and penetrates deeper in water. Restrepo, A. (2013a). Colour processing in tetrachromatic
By feeding three of the five channels of a pen- cqiur spaje NaRRREA"S ol ,
tachromatic image to the RGB inputs of a visualis- R€StréPo, A. (2013b). - Hue processing in tetrachromatic
ing device, useful information can be made explicit. SRaces S| EE i Imagmg.’ S0 Fran(.:'sco
. : - . Restrepo, A. (2014a). Tetrachromatic metamerisfsapp
Th|s, comblnedlwnh pentachroamnc colour process- Lisbon
Ing should p.rOVId.e with a useful tool forthe searc.h Restrepo, A. (2014b). Tri and tetrachromatic metamerism.
of objects with given spectral surface reflectance in SPIE Electronic Imaging, San Francisco

pentachromatic images. Restrepo, A. and Estupinan, V. (2014). Color visualisation

The visualisation of multispectral images can be of cyclic magnitudes.SPIE Electronic Imaging, San
done in time; for this, continuous changes of hue Francisco
(therefore 0ofSQ4)) are useful (Lenz and Homma, Restrepo, A. and Maldonado, E. (2015). Visualisation of
1996). tetrachromatic imagesSPIE Electronic Imaging, San
The colour vision of animals such as pigeons and Francisco

dragonflies can be tested according to these colourRoger P. A. Delnoij, K. P. E. N. (2012). lllumination system
components of luminance, saturation, 3D hue, kolor with four primaries. IrUS patent US 8174210 B2
and kolorfulness with the models provided and a five- Shmuel Roth, G. C. T. L. (2010). Multi-primary dis-
primary illuminating system that include two types of play with spectrally adapted back-illumination. U5
UV, in addition to RGB. Pentachromatic metamerism _ patent US 7714824 Bz. . L .
can also be studied along the lines of (Restrepo, Wme:qrz'm(sl%?sg}etgmgﬁlmg?nég?lggcu'ts in cayley dia-
2014b), (Restrepo, 2014a). This has applications in ;...; ' '1993) A Vision of the Brain Blackwell Scientific
illumination, photqgraphy_anq animal vision as well. Publications, London.

In the screen ilumination industry, it is also use-
ful to have models for more than three primary lights
(Shmuel Roth, 2010), (Roger P. A. Delnoij, 2012) in
the visible spectrum. It is a fact that three lights can-
not reproduce all colours, mainly when seen isolated;
nevertheless when colours are seen in context, chro-
matic contrast gives the illusion of many more colours
that those that can be projected in isolated form.
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