Shape Classification based on Skeleton-branch Distances

Salih Arda Boluk, M. Fatih Demirci

2015

Abstract

In recent decades, the need for efficient and effective image search from large databases has increased. In this paper, we present a novel shape matching framework based on structures that are likely to exist in similar shapes. After representing shapes as medial axis graphs, where vertices show skeletons and edges connect nearby skeletons, we determine the branches connecting or representing shape’s different parts. Using the shortest path distance from each vertex (skeleton) to each of the branches, we effectively retrieve similar shapes to the given query through a transportation-based distance function. A set of shape retrieval experiments including the comparison with two previous approaches demonstrate the proposed algorithm’s effectiveness and perturbation experiments present its robustness.

References

  1. Ardizzone, E., Cascia, M. L., Gesu, V. D., and Valenti, C. (1996). Content-based indexing of image and video databases by global and shape features. In Proceedings of the International Conference on Pattern Recognition (ICPR 7896) Volume III-Volume 7276 - Volume 7276, ICPR 7896, pages 140-, Washington, DC, USA. IEEE Computer Society.
  2. Aslan, C. and Tari, S. (2005). An axis-based representation for recognition. In ICCV, pages 1339-1346. IEEE Computer Society.
  3. Belongie, S., Malik, J., and Puzicha, J. (2002). Shape matching and object recognition using shape contexts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(4):509-522.
  4. Blum, H. and Nagel, R. (1978). Shape description using weighted symmetric axis features. Pattern Recognition, 10(3):167-180.
  5. Demirci, F., Shokoufandeh, A., and Dickinson, S. (2009). Skeletal shape abstraction from examples. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5):944-952.
  6. Dimitrov, P., Phillips, C., and Siddiqi, K. (2000). Robust and efficient skeletal graphs. In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 1, pages 417-423. IEEE.
  7. Eberly, D. (1994). A differential geometric approach to anisotropic diffusion. In Haar Romeny, B., editor, Geometry-Driven Diffusion in Computer Vision, volume 1 of Computational Imaging and Vision, pages 371-392. Springer Netherlands.
  8. Geusebroek, J., Burghouts, G., and Smeulders, A. (2005). The amsterdam library of object images. International Journal of Computer Vision, 61(1):103-112.
  9. Guocheng, A., Fengjun, Z., Hong'an, W., and Guozhong, D. (2010). Shape filling rate for silhouette representation and recognition. In Pattern Recognition (ICPR), 2010 20th International Conference on, pages 507- 510.
  10. Li, P., Wang, Q., and Zhang, L. (2013). A novel earth movers distance methodology for image matching with gaussian mixture models. ICCV.
  11. Ling, H. and Jacobs, D. (2007). Shape classification using the inner-distance. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(2):286-299.
  12. Liu, T. and Geiger, D. (1999). Approximate tree matching and shape similarity. In Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, volume 1, pages 456-462. IEEE.
  13. Ogniewicz, R. and Kübler, O. (1995). Hierarchic voronoi skeletons. Pattern recognition, 28(3):343-359.
  14. Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover's distance as a metric for image retrieval. International Journal of Computer Vision, 40(2):99-121.
  15. Sebastian, T. B. and Kimia, B. B. (2005). Curves vs. skeletons in object recognition. Signal Processing, 85(2):247-263.
  16. Sebastian, T. B., Klein, P. N., and Kimia, B. B. (2004). Recognition of shapes by editing their shock graphs. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(5):550-571.
  17. Shaked, D. and Bruckstein, A. (1998). Pruning medial axes. Computer vision and image understanding, 69(2):156-169.
  18. Sharvit, D., Chan, J., Tek, H., and Kimia, B. (1998). Symmetry-based indexing of image databases. In Content-Based Access of Image and Video Libraries, 1998. Proceedings. IEEE Workshop on, pages 56-62. IEEE.
  19. Shen, W., Bai, X., Hu, R., Wang, H., and Jan Latecki, L. (2011). Skeleton growing and pruning with bending potential ratio. Pattern Recognition, 44(2):196-209.
  20. Shokoufandeh, A., Keselman, Y., Demirci, M., Macrini, D., and Dickinson, S. (2012). Many-to-many feature matching in object recognition: a review of three approaches. Computer Vision, IET, 6(6):500-513.
  21. Siddiqi, K., Bouix, S., Tannenbaum, A., and Zucker, S. (2002). Hamilton-jacobi skeletons. International Journal of Computer Vision, 48(3):215-231.
  22. Sirin, Y. and Demirci, F. (2014). Skeleton filling rate for shape recognition. In 2014 22nd International Conference on Pattern Recognition (ICPR).
  23. Stricker, M. A. and Orengo, M. (1995). Similarity of Color Images. In Storage and Retrieval for Image and Video Databases (SPIE), pages 381-392.
  24. Sun, K. and Super, B. (2005). Classification of contour shapes using class segment sets. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20-26 June 2005, San Diego, CA, USA, pages 727-733. IEEE Computer Society.
  25. Vleugels, J. and Veltkamp, R. (2002). Efficient image retrieval through vantage objects. Pattern Recognition, 35(1):69-80.
  26. Wang, F. and Guibas, L. (2012). Supervised earth movers distance learning and its computer vision applications. In Computer Vision-ECCV 2012, pages 442- 455. Springer.
  27. Xu, J., Zhang, Z., Tung, A., and Yu, G. (2012). Efficient and effective similarity search over probabilistic data based on earth mover's distance. The VLDB JournalThe International Journal on Very Large Data Bases, 21(4):535-559.
  28. Yang, X., Bai, X., Yu, D., and Latecki, L. (2007). Shape classification based on skeleton path similarity. In Energy Minimization Methods in Computer Vision and Pattern Recognition, 6th International Conference, EMMCVPR 2007, Ezhou, China, August 27-29, 2007, Proceedings, pages 375-386.
Download


Paper Citation


in Harvard Style

Boluk S. and Demirci M. (2015). Shape Classification based on Skeleton-branch Distances . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 353-359. DOI: 10.5220/0005300503530359


in Bibtex Style

@conference{visapp15,
author={Salih Arda Boluk and M. Fatih Demirci},
title={Shape Classification based on Skeleton-branch Distances},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={353-359},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005300503530359},
isbn={978-989-758-090-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)
TI - Shape Classification based on Skeleton-branch Distances
SN - 978-989-758-090-1
AU - Boluk S.
AU - Demirci M.
PY - 2015
SP - 353
EP - 359
DO - 10.5220/0005300503530359