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This paper introduces a new distance function for comparing images in the context of content-based image
retrieval. Given a query and a large dataset to be searched, the system has to provide the user — as efficiently
as possible — with a list of images ranked according to their distance to the query. Because of computational
issues, traditional image search systems are generally based on conventional distance function such as the
Euclidian distance or the dot product, avoiding the use of any training data nor expensive online metric learning
algorithms. The drawback is that, in this case, the system can hardly cope with the variability of image
contents. This paper proposes a simple yet efficient zero-shot learning algorithm that can learn a query-adapted
distance function from a single image (the query) or from a few images (e.g. some user-selected images in a
relevance feedback iteration), hence improving the quality of the retrieved images. This allows our system to
work with any object categories without requiring any training data, and is hence more applicable in real world
use cases. More interestingly, our system can learn the metric on the fly, at almost no cost, and the cost of the
ranking function is as low as the dot product distance. By allowing the system to learn to rank the images,
significantly and consistently improved results (over the conventional approaches) have been observed on the

Oxford5k, Paris6k and Holiday1k datasets.

1 INTRODUCTION

Content-based image retrieval (CBIR) consists in
finding the visually closest images with regards to the
content of an input query. State-of-the art CBIR sys-
tems have been dominated for a while by the bag of
visual words (BoVW) representation (Sivic and Zis-
serman, 2003; Philbin et al., 2007) and its deriva-
tives (Perronnin et al., 2010; Jégou et al., 2012). The
BoVW approach involves quantizing local descriptors
(usually SIFT) into visual words and representing im-
ages by the frequencies of visual words. Approaches
based on BoVW derivatives differ from the BovW
approach in that they replace the frequency of visual
words with the aggregated version of the difference
between image local descriptors and their closest vi-
sual words. This aggregation can be done using either
Fisher Vector (Perronnin et al., 2010) or Vector of
Local Aggregated Descriptor (VLAD) (Jégou et al.,
2012). These recent works have been shown to per-
form significantly better than BoVW approaches.
Recently, researchers have been trying to scale
such systems up to large scale datasets, e.g. datasets
including a hundred of millions of images (Jégou
et al., 2012). In this latest trend, the efficiency be-
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comes more and more important. The ranking must
be able to retrieve the images from hundreds of mil-
lions of images, almost in real time. An effective re-
trieval system must be able to obtain high recall us-
ing relatively low number of candidates (high pre-
cision). Thus, the ranking function plays an im-
portant role in effective and efficient retrieval algo-
rithms. Ranking functions used in image retrieval sys-
tems can be broadly grouped into two categories: (i)
those based on conventional distance measures, and
(ii) those based on machine learning algorithms. Con-
ventional ranking, such as dot product, is very of-
ten the first choice of many researchers in the field,
owing to its simplicity, straightforward interpretation
and low computational cost. The second category is
employed to better capture the variability in the im-
ages and to retrieve semantically related images. A
typical scenario of this approach can be: retrieve all
the sunset images from the image database by feed-
ing into the system a ”sunset” query. This approach
is typically more robust when dealing with, seman-
tically related, largely-varying visual content. How-
ever, this second approach may need hundreds (or
even thousands) of training samples to produce mean-
ingful models. More importantly, they are limited to
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a few object categories due to the needed resources.

In this paper, we aim at bridging these two ap-
proaches together by means of the zero-shot learn-
ing paradigm, in which no training images are avail-
able for test categories. We assume indeed no an-
notation data nor predefined classes are available for
learning a classifier/manifold. Given a query image
and without any prior knowledge of the data/classes
the system should be able to learn a ranking function,
adapted to the query, that costs as less as possible and
rank the images on a visual-similarity basis. The pro-
posed system, based on Linear Discriminant Analy-
sis (LDA), needs as low as one single sample (the
query) to learn a new model for every single query.
The cost of learning new query-adapted model is neg-
ligible and the ranking is as fast as the dot product dis-
tance. This allows us to achieve the highest efficiency
comparing to other supervised learning, yet the results
can be significantly and consistently improved.

Linear Discriminant Analysis has been a rich
source of inspiration in the literature, giving birth to
many- different variations of the original LDA. For
instance, (You et al., 2011) proposed a kernel based
LDA algorithm. Differently, (Zhu and Martinez,
2006) extended the original LDA framework by the
use of subclasses in compelling complex within-class
variations. We claim that those variations of LDA
might produce better results over the original ver-
sion, but would need much more samples to train the
model and would require doing a lot of online com-
putations. This would limit the system to work only
on those annotation-available objects. In contrast, we
show that the original LDA, albeit its simplicity, al-
lows to learn a model without using any annotation
data and yet produces meaningful improvement over
traditional distance measure.

The remaining of the paper is organized as fol-
lows. In section 2, we begin by presenting some re-
lated work of LDA in the context of image retrieval
system. Then we go gently to various variations of
LDA in literature and zero shot learning in general.
In Section 3, we present our retrieval approach in the
framework of zero-shot learning approach. In section
4, we describe the experimentation protocol followed
by our experimental results and discussion. Finally,
we conclude the paper in Section 5.

2 RELATED WORKS

LDA has been long used in the context of image re-
trieval but are targeted for different tasks. For in-
stance, (Tao et al., 2006) used LDA in relevance feed-
back step to select a subset of image features to con-

struct a suitable dissimilarity measure. (Lu and He,
2005), instead of learning subspace of the image fea-
ture, use LDA to obtain the semantic subspace by
learning on a large number of user’s feedback infor-
mation. (Swets and Weng, 1996) used LDA for di-
mensionality reduction to select the most discrimi-
nant features then performed image similarity mea-
sure based on euclidean distance. We are interested,
in this paper, in using LDA as a query-adapted func-
tion for similarity measure (as we will detail in the
next section).

LDA has been widely used in literature for clas-
sification problems. A number of variations of LDA
has been largely studied (Kim et al., 2007; Zhao et al.,
2014; You et al.; 2011). In (Zhao et al., 2014) a new
way to combine the unlabelled data and labelled data
together is proposed to enhance the performance of
LDA. (Kim et al., 2007) suggested an incremental
LDA which is accurate as well as efficient in both time
and memory, and could be targeted for online learn-
ing tasks. (You et al., 2011) suggested an approach
to map: the ‘original class (or subclass) distributions
into a kernel space where they are best separated by
a hyperplane. Experimental results in a large vari-
ety of datasets have demonstrated that this approach
achieves higher recognition rates than most of other
methods based on LDA. In the latest work related to
LDA (Deng et al., 2014), the idea is to extend the
classical LDA technique to linear ranking analysis,
by considering the ranking order of class centroids on
the projected subspace. This technique, even if tar-
geted for zero-shot learning, would require annotation
data to optimize two criteria: (1) the minimization of
the classification errors with the assumption that each
class is gaussianly distributed; (2) the maximization
of the sum (average) of the k minimum distances of
all neighbouring-class (centroids) pairs.

However, these improved versions of LDA con-
trast with our motivation where we assume no anno-
tation data is available and the system should be able
to retrieve any object without prior knowledge of it.
To the best of our knowledge, we are the first to pro-
pose this ranking strategy based on one-shot learning
approach for image retrieval.

Unlike LDA, zero-shot learning is relatively new
in the domain. Zero-shot learning is useful to predict
a new class label whose training data is not available
for learning. For example, (Larochelle et al., 2008)
experimented and reported to be able to uncover the
novel classes of digits that were not presented in the
training set. The motivation comes from the fact that
no training data can cover all the possible objects
in real world, but only some sort of description is
available for that object category. Zero-shot learning
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makes use of those descriptions to uncover the hidden
category. In (Palatucci et al., 2009), the authors pro-
posed a semantic knowledge (concept) to extrapolate
to novel classes. The observation x is first described in
the feature space, then the model will map x in the fea-
ture space to a semantic space of p dimensions, then
map this semantic encoding to a class label. (Lam-
pert et al., 2009), however, introduced a binary at-
tribute layer to describe various object instances and
detect unseen object classes based on these attributes.
(Parikh and Grauman, 2011) worked on the same
"attribute based” principle, but in a relative way via
a trained ranking function. Interestingly, (Hoo and
Chan, 2013) used probabilistic latent semantic anal-
ysis to discover attributes (topic) in an unsupervised
manner and use it in zero-shot learning approach.

3 OUR APPROACH

Let g be a query image and q = fq1;q2;:::0pg 2 RP
a set of visual features representing the image. We
address the question of how to represent images by
D-dimensional features later in this section.

On the other hand, we assume having a large
collection of images, denoted as X = Xy;X2;:::Xn0,
Xj 2 RP:8j2[1 n]. These images are represented
using the same type of visual features as the query.
The retrieval system has to be able to retrieve, as effi-
ciently as possible, the set of the most similar images,
based on their distance to the query. This is to say that
we have to rank the images of the dataset according
to their distance to the query, i.e. we have to com-
pute X! = TXr(1)s Xr(2)s - Xrn)@ SUch that S(q; Xr(y) <
S@Xj) O i<j, wherei;j2[1 n]. Sisa
function measuring the visual similarity between two
images.

As said in the introduction, the most commonly
used similarity function is the dot product, i.e.

S(a:x) =q" % @
because of its simplicity and efficiency (Sivic and Zis-
serman, 2003; Jégou et al., 2012; Perronnin et al.,
2010)). However, as the dataset becomes larger, hav-
ing a better similarity function becomes crucial to
avoid overwhelming the user with irrelevant images.
The conventional ranking function is very fast but
does not cope well with variations of the images. Met-
ric learning is efficient and better captures the varia-
tions, but requires too much training data and can only
be applied to those data-available object categories
(implying that some categories must be pre-defined,
which is not the case in general).

Our approach consists in defining the similarity
function based on Linear Discriminant Analysis in the
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context of zero-shot learning to overcome this limita-
tion. The goal of zero-shot learning is to map the ob-
servations to an object class even if the direct mapping
function is not available (the model of this class could
not be trained). A general paradigm to achieve this
is first by mapping the observation into another space
(e.g. semantic space or attribute space). Next, an-
other mapper will map the observation from the mid-
level feature to the class label. Unlike other zero-shot
learning systems that mostly operate on mid-level fea-
tures (attribute or semantic layer) and for which there
are some available training data (on the seen category)
to derive unseen objects, our approach works on al-
most no seen object category. The only knowledge
we have to know lies in the two matrices p and S,
which are the mean and covariance of the distribution
of X. The interesting point is that these matrices can
be pre-computed once for all and do not depend on
the query.

Let us start by assuming that the images of X can
either be relevant or non relevant to the query g. The
distributions of these two classes can be approximated
by multivariate normal distributions characterized by
their means and the covariance matrices (Hy=1, Sy=1)
and (ky=o, Sy=0)-

LDA based Similarity Function. In LDA, an ob-
servation is labeled as relevant if P(y = 1jx) > P(y =
0jx) where P(y = kjx) is represented by a multivariate
normal distribution f:

f(X; ty=k; Sy=k)P(y = k)
120:1 £ (X Hy=1;Sy=1)P(y =)
where 5.1 P(y=1) =1and P(y =1) is the prior
probability of the class I. Using the log of the likeli-
hood ratios, the previous equation becomes:

P(y =kjx) = )

Piy=1x) _ f(X; by=1; Sy=1)
log P(y = 0jx) =log f(X; ly=0; Sy=0) @)
|og w >0
P(y=0)

However, we do not assume having any train-
ing image at all to explicitly define the two classes.
The idea is hence to approximate the value of (py=1,
Sy=1) and (My=0, Sy=0). The dataset X where the
non-relevant images are generally dominant is a good
distribution to approximate the non-relevant class.
Hence, let py=o and Sy=g denote the mean and co-
variance of the distribution of X. Even if this assump-
tion does not hold because it might contain some rel-
evant images, we will show that the achieved results
are significantly improved in the experimentation sec-
tion. To approximate the relevant class, we employed
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Figure 1: The black and the red circles represent o (mean
of the non relevant distribution) and p; (mean of the relevant
distribution) respectively. x; and x, represent two particu-
lar instances in the dataset. At each iteration, LDA is not
only looking for the direct similarity between the query to
the observation, but also take into account the non relevant
instance and make a comparison whether the observation is
closer to the query or to the non relevant distribution.

the query image q as a single known vector. The query
image will be used as the center of the distribution
(My=1 = @). As we do not have enough images to ap-
proximate the value of Sy=1, we make the assumption
that the two classes share the same covariance matri-
ces (Sy=0 = Sy=1 = S). Hence, the equation (3) can
be rewritten as:

P(y = 1jx) Py=1)
P(y = 0jx) P(y=0)

1
i(q |~1y=0)tS 1(q Hy=0)
+X'S (g py=0)>0

log
(4)

The ranking of the images can be obtain by simply
using w:x >C wherew=3S 1(q py=o) and C is a
constant based on prior probability, mean and covari-
ance. As we are interested by ranking the dataset and
not detecting relevant/non relevant images, C can be
ignored as it does not depend on x. By replacing this
new similarity function in the Eq. (1), we obtain:

S(ax) =w' x; ©)
wherew =S 1(q Hy=0). This is particularly useful
because the w can be obtained at almost no cost (sim-
ple products/sums) for each iteration and the value of
(Hy=0; S) can be calculated offline.

The dot product in Eg. (5) between the hyperplan
w and the observation xj can thus be seen as the dif-
ference between two mahalanobis distances, with the
same covariance matrix, of x; to the centers of the two
normal distributions. This can be illustrated by the toy
example shown in Fig.1. Unlike the conventional sim-
ilarity measures that compute the distance between
the observation x; and the query only, our LDA-based
similarity function allows one step further by consid-
ering also the distance between the observation x; and
the non relevant distribution (d (xi; Ho)).

Figure 2: Example of an original query (first left image)
and its associated positive samples generated by extracting
sub-windows on the original query (from Oxford Dataset).

Computation of the Mean(uy=1) using Sub-
queries. In practice, it is generally better to insert
more input images to produce a statistically stable
mean of the relevant class, so that the model can be
more robust to image variations. We introduce here,
some additional relevant images by computing sub-
windows on the original query (shown in Fig. 2). The
additional images are generated with at least 70% of
the original size to guarantee that the system is not in-
troducing noise into the model. The mean query g is
then calculated on this small set of generated images.
§ is then used in Eq. (5) in replacement of g. Hence,
we obtain:

S(@ixi) =w' xi;w=S (G py=o): (6)

Image Representation. To better assess the be-
haviour of our zero-shot learning approach, we em-
ployed two image representations namely Fisher Vec-
tor (Sanchez et al., 2013) and VLAD (Jégou et al.,
2012). The image is first described by a dense SIFT
descriptor of 128 dimension which is later reduced to
a 64 dimensional vector, thanks to a PCA and whiten-
ing, following (Jégou and Chum, 2012). Now, Let
P = fp;t = 1:::Tg denotes the set of d dimensional
local descriptors extracted from the image (d = 64).
A codebook of size K is built with a kmeans on these
descriptors. We will next calculate the VLAD and
Fisher Vector representations as follows:

VLAD. The VLAD descriptor associates each lo-
cal descriptor to the nearest neighbour visual words
(cluster) c;. Then the differences between each local
descriptor p; and its nearest visual words are accumu-
lated:

Vi = pt ¢ foralli=1:K @)

P:NN(pt)=i
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The VLAD vector is the aggregated version of all
vi. Thus it contains Kd dimensions where d is the
dimension of the local SIFT-based descriptor.

Fisher Vectors. Let us assume that the samples
are independent and can be modeled as a mixture of
K Gaussian distributions.

Let L = fwy; lk; Sk; k = 1:::Kg be the parameters
of the mixture of K Gaussians, where wy; Jx; Sk are
respectively the mixture weight, mean vector and co-
variance matrix. Each vector p; is associated to the
Gaussian k with a soft assignment g;(k) also known
as the posterior probability, and defined as:

() = P ©
~wjuj(p)
=1
where uk(p) denotes the k-th Gaussian and is defined
as:

1 0 1
E(p H)'S (P M)

u(p) = We 9)

The Fisher Vector of P can be expressed as the
concatenation of the three main components:

1 T
h=p— @K w) (10)
Wk t=1
1T (Pt M)
- AR FKJ
Oy = pWItzlgt(k)( 5. ) (11)
1T 1 .(pr m)?
P = Kp=[—" 1 12
Os, %Wk t=lgt( )&2[ 52 1 (12

where the division and exponentiation of vec-
tors should be understood as term-by-term operations.
The final dimension after aggregation is (2d + 1)K
where K is the number of Gaussians and d is the di-
mension of the local descriptors. To simplify the pro-
cess, we will follow the same direction as in (Jégou
et al., 2012), where it is suggested to keep only the
mean component (Eq. 10) and ignore other compo-
nents. In this case, the Fisher Vector will have only
Kd dimensions as in the case of VLAD.

4 EXPERIMENTAL RESULTS

In this section, we first introduce our experimenta-
tion protocol. Then, we present the experimental re-
sults with various settings to show how LDA performs
comparing to dot product. Finally, we present the ex-
perimental results based on LDA with product quanti-
zation and asymmetric distance computation in larger
scale retrieval system.
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Table 1: Datasets used in our experimentation. FlickrlM is
used as distractor only.

Dataset #Queries | #lmages
Oxfordsk 55 5064
Paris6k 55 6512
Holidaylk 500 1492
FlickrlM - M

4.1 Experimentation Protocol

Parameters. The dense SIFT extractor is set to ex-
tract 128 features from 24 24 patches, every 8 pix-
els. The 128D vectors are reduced to 64D using PCA
whitening, which has been reported to improve the
performance (Jégou and Chum, 2012). Regarding the
size of the codebook, we follow the same protocol as
in (Jégou et al., 2012) where K is between 16 and
64. A second PCA is used to reduce the number of
features of the VLADI/Fisher Vector; the reduced di-
mension is in the range 16 to 1024.

Baseline System. As baseline system, we choose
to employ dot product as similarity measure, all other
things being equal. The image representation is the
same as the one used in our retrieval system.

Datasets. To test the proposed technique, we em-
ployed three public datasets (see Table 1): Oxford5k,
Paris6k and Holiday1k. Since LDA needs more sam-
ples to produce a good covariance matrix, we em-
ployed also Flickr1M ! dataset as a distractor to form
Oxford1lM, ParislM and HolidaylM. The retrieval
result is measured by the Mean Average Precision
(mAP) as in (Philbin et al., 2007).

4.2 Results

In this section, we first investigate our approximation
of the mean and covariance matrices. We first
identify a good trade-off between the number of
sub-queries to be used and the computational time
to generate them. Then we present the effect of the
approximation of the shared covariance matrices.
Finally, we present the comparison results between
our zero-shot ranking system and the baseline.

Approximation of the Mean of the Relevant
Class. As shown in Section 3, our motivation is to
approximate the two distributions on the fly and to
allow the system to learn a new ranking function
(Eq. 12). Let us recall that the mean of the relevant
class can be approximated by one (the query) or
a small set of sub-queries. Fig. 3 shows the mAP
Vs an increasing size of sub-queries from 1 to 100

Lhttp://press.liacs.nl/mirflickr/dIform.php
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Oxford5K VL

Figure 3: Approximation of the mean of the relevant class
using the query or with additional sub-queries from 1 to 100
(abscissa). The ordinate shows the retrieval results measure
in MAP learnt with k=64 Oxford dataset. D' refers to the
dimension after PCA of Vlad and Fisher vector.

Oxfordsk VL. OxfordsK FV.

Figure 4: Influence of the approximation of the shared co-
variance matrix for LDA-based retrieval system. The tested
datasets are Oxford5k and Paris6k with different covariance
matrices approximated with the images in the dataset itself
with flickr1M.

(abscissa), with K = 64 and the dimension after PCA
D' 2 f16;32;64;128;256;512;1024g. The slope
of the curves appears to be null when the number
of positive samples is superior to 10. The same
behaviour is also observed with different codebook
sizes (K = 16) and other datasets (Holiday and Paris).
Interestingly, this suggests that we need only 10
samples to approximate a stable value of the mean.
This number is negligible comparing to the size of
the dataset. For the rest of the paper, we will fix the
number of positive samples to 10.

Approximation of the Covariance Matrices.
Because the data set might contain some relevant
instances and thus it might affect the covariance
matrices, we are interested in this section in the size
of the image used to approximate the covariance
matrices. We present in Fig. 4, the retrieval results
on Oxford5k and Paris6k by employing different

numbers of additional sub-queries to generate the
covariance matrices ranging from 5k (the original
size) to 1M by using the images from FlickrlM.
When using approximately 5k to calculate the
covariance matrices, we observed some unexpected
behaviour when the dimension of the vector becomes
larger. This effect might be the problem of having
no enough observations to produce statistically
stable covariance matrices. As shown in Fig. 4, our
approximation technique, even if simple yet achieves
significant improvement over the results provided by
the baseline system. In the following experiment, we
will used the covariance matrices calculated from 1M
VeCtors.

Comparison between LDA and Dot Product. Fig.
5 shows that the results based on LDA are signifi-
cantly higher than the ones from the dot product. The
three left and the three right columns show the re-
trieval results on (Parisék, Oxford5k, Holiday1k) and
(Paris1M, Oxford1M, HolidaylM). The abscissa rep-
resents. the dimension of the vector after PCA and
the ordinate represent the retrieval results measured in
mMAP. At almost every dimension and for each dataset,
the mAP of LDA is significantly higher than the re-
sults based on dot product. In addition, when inject-
ing more images (flickrlM) into the system, the dot
product distance seems not to capture well the differ-
ent variations in the image and thus results in decreas-
ing a lot of MAP while LDA-based retrieval seems to
better maintain the retrieval results. The average time
for retrieving a single query on a dataset of 1M images
based on dot product is around 3.9 seconds while with
LDA, it takes around 3.95 seconds.

4.3 Product Quantization

Product Quantization (PQ) and Asymetric Distance
Computation (ADC) have been proven to be an ef-
fective compression and approximation technique for
image retrieval (Jégou et al., 2012). We are interested
in this section on how Product Quantization (PQ) and
Asymetric Distance Computation (ADC) perform by
adapting them to our similarity ranking function. Let
ar 2 RP be the query vector and X = Fxq;X;:::Xn0,
Xj 2 RP:8j 2 [1 n], a set of vectors representing
the images in the data set. The ADC approximates
the distance between the query g, with x; 2 X by:

d(gr;xi) =d(ar;a(x)) (13)

where q(x;) is the quantized version (closest cluster
vector) of x; learnt prior to the search. In practice,
the size of the cluster should be large enough to bet-
ter approximate the distance. However, making the
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OxfordSk Paris6k Holidaylk
07

Oxford1M Paris1M HolidaylM

Figure 5: Retrieval results measured in mAP: comparison of LDA (plain line) and dot product (dash line). The abscissa
represents the dimension of the vector after PCA. The three left and the three right columns show the retrieval results on
(Paris6k, Oxford5k, Holidaylk) and (ParislM, Oxford1M, HolidaylM). The first and the second row show the retrieval
results based on VLAD and Fisher Vector respectively. The codebook sizes are K =16 (blue line) and K = 64 (red line). One
can see that the retrieval results based on LDA (plain line) are significantly higher than the dot product (dash line) distance

for almost all dimensions and datasets.

Table 2: Results on Oxford, Paris and Holiday with FlickrdM as distractor with and without PQ measured in mAP. The
codebook size is 64 and each segment has 16D. The tested dimensions after PCA are 128 and 1024 which corresponds to PQ

codes of 16 and 64 bytes.

Feature Method Oxford Paris Holiday
D’=128 D’=1024 | D’=128 D’=1024 | D’=128 D’=1024
VLAD LDA/Dot 0.25/0.11 0.38/0.15 | 0.29/0.14 0.31/0.14 | 0.49/0.41 0.57/0.53
LDA+PQ/Dot+PQ | 0.18/0.06 0.33/0.09 | 0.23/0.09 0.26/0.09 | 0.44/0.40 0.53/0.43
Fisher LDA/Dot 0.20/0.15 0.35/0.18 | 0.26/0.12 0.28/0.13 | 0.46/0.47 0.55/0.51
LDA+PQ/Dot+pQ | 0.17/0.08 0.32/0.14 | 0.21/0.09 ~ 0.24/0.10 | 0.41/0.36 0.44/0.44

codebook size higher is not favourable due to the cost
of complexity at approximation time. Another simple
solution is to construct a large set of sub-centroids by
splitting the feature vector into m segments and each
segment is encoded in the same manner with a cluster
Id number. Hence, the approximate distance can be
rewritten as:

.
d(gr;acxi)) =

d(uj(an);aj(uj(xi)))®  (14)
j

where j=1:mand uj(qr) 2 RDP=M corresponds to the
jth segment of the vector q,. Supposing the vector qr
has 128 dimensions and m is set to be 16, each quan-
tizer g;(:) has 256 clusters (and thus can be coded
with 1 byte), the total number of approximation vector
is 25518, During the processing phase, the calculation
can be accelerated by using a look-up table.

Although, this technique has been applied on Eu-
clidean distance (see Eq. 14), we aim at adapting this
technique with our ranking function where the dis-
tance is a simple dot product distance. Recalling our
similarity function (Eqg. 5), and by splitting the vector
into m segments:

S(a;xi) =wh X = i S(wj; Xi:j) (15)
j
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Note that, in the previous ADC calculation, the
approximation introduced two errors. One by replac-
ing the actual vector with the cluster center, another
one occurs when calculating the distance by the sum
of distances between each segment. In our dot prod-
uct, however, the second approximation error is elim-
inated thanks to the nature of the dot product distance.

We present in Table. 2, the results of PQ + ADC
adapted to our ranking function. The experimentation
is again running on the three dataset with FlickriM.
The dimension after PCA used are 128 and 1024
coded with 16 and and 64 bytes respectively for each
image. At every dimension D', the retrieval results
based on LDA are higher than the one provided by the
Dot product ranking. Furthermore, even with PQ, our
LDA-based ranking still achieves higher result com-
paring to the dot product approach. This make our
system more robust even if used with high compres-
sion technique.

5 CONCLUSION

We have introduced linear discriminant analysis as a
ranking approach for image search system in the con-
text of zero-shot learning. By allowing the system
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to learn to rank the image, significant and consistent
improvement has been validated on several datasets.
More interestingly, our approach is able to learn a new
query-adapted ranking function at almost no cost and
rank the images at the minimum cost as conventional
ranking functions. Furthermore, our query-adapted
function can be transformed into a single dot prod-
uct distance and is thus suitable for the state of the art
techniques for compression and fast distance calcula-
tion. This makes our ranking system suitable even for
the context of large-scale retrieval.
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