A Real-time, Automatic Target Detection and Tracking Method for Variable Number of Targets in Airborne Imagery

Tunç Alkanat, Emre Tunali, Sinan Öz

2015

Abstract

In this study, a real-time fully automatic detection and tracking method is introduced which is capable of handling variable number of targets. The procedure starts with multiple scale target hypothesis generation in which the distinctive targets are revealed. To measure distinctiveness; first, the interested blobs are detected based on Canny edge detection with adaptive thresholding which is achieved by a feedback loop considering the number of target hypotheses of the previous frame. Then, the irrelevant blobs are eliminated by two metrics, namely effective saliency and compactness. To handle the missing and noisy observations, temporal consistency of each target hypothesis is evaluated and the outlier observations are eliminated. To merge data from multiple scales, a target likelihood map is generated by using kernel density estimation in which weights of the observations are determined by temporal consistency and scale factor. Finally, significant targets are selected by an adaptive thresholding scheme; then the tracking is achieved by minimizing spatial distance between the selected targets in consecutive frames.

References

  1. Achanta, R., Hemami, S., Estrada, F., and Susstrunk, S. (2009). Frequency-tuned salient region detection. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1597-1604.
  2. Andriyenko, A. and Schindler, K. (2011). Multi-target tracking by continuous energy minimization. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1265-1272. IEEE.
  3. Aytekin, C., Tunali, E., and O z, S. (2014). Fast semiautomatic target initialization based on visual saliency for airborne thermal imagery. In Proceedings of the 9th International Conference on Computer Vision Theory and Applications, Visapp'14, pages 490-497.
  4. Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features (surf). Computer Vision and Image Understanding, 110(3):346-359.
  5. Berclaz, J., Fleuret, F., Turetken, E., and Fua, P. (2011). Multiple object tracking using k-shortest paths optimization. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(9):1806-1819.
  6. Bolme, D. S., Beveridge, J. R., Draper, B. A., and Lui, Y. M. (2010). Visual object tracking using adaptive correlation filters. In Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, pages 2544-2550.
  7. Canny, J. (1986). A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6):679-698.
  8. Cheng, M., Zhang, G., Mitra, N. J., Huang, X., and Hu, S. (2011). Global contrast based salient region detection. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 7811, pages 409-416. IEEE Computer Society.
  9. Fortmann, T. E., Bar-Shalom, Y., and Scheffe, M. (1980). Multi-target tracking using joint probabilistic data association. In Decision and Control including the Symposium on Adaptive Processes, 1980 19th IEEE Conference on, volume 19, pages 807-812. IEEE.
  10. Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In Alvey vision conference, volume 15, page 50. Manchester, UK.
  11. Hou, X. and Zhang, L. (2007). Saliency detection: A spectral residual approach. In Computer Vision and Pattern Recognition, 2007. CVPR 7807. IEEE Conference on, pages 1-8.
  12. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82(1):35-45.
  13. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
  14. Niedfeldt, P. C. and Beard, R. W. (2014). Multiple target tracking using recursive ransac. In American Control Conference (ACC), 2014, pages 3393-3398. IEEE.
  15. Otsu, N. (1979). A threshold selection method from graylevel histogram. IEEE Transactions on System Man Cybernetics, SMC-9, No:1:62-66.
  16. Parzen, E. (1962). On estimation of a probability density function and mode. The annals of mathematical statistics, pages 1065-1076.
  17. Prewitt, J. M. (1970). Object enhancement and extraction. Picture processing and Psychopictorics, 10(1):15-19.
  18. Ramakoti, N., Vinay, A., and Jatoth, R. K. (2009). Particle swarm optimization aided kalman filter for object tracking. In Advances in Computing, Control, & Telecommunication Technologies, 2009. ACT'09. International Conference on, pages 531-533. IEEE.
  19. Reid, D. B. (1979). An algorithm for tracking multiple targets. Automatic Control, IEEE Transactions on, 24(6):843-854.
  20. Ristic, B., Arulampalam, S., and Gordon, N. (2004). Beyond the Kalman filter: Particle filters for tracking applications, volume 685. Artech house Boston.
  21. Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner detection. In Computer VisionECCV 2006, pages 430-443. Springer.
  22. Sobel, I. and Feldman, G. (1968). A 3x3 isotropic gradient operator for image processing. a talk at the Stanford Artificial Project in, pages 271-272.
  23. Tsai, C., Dutoit, X., Song, K., Van Brussel, H., and Nuttin, M. (2010). Robust face tracking control of a mobile robot using self-tuning kalman filter and echo state network. Asian Journal of Control, 12(4):488-509.
  24. VIVID (2005). http://vision.cse.psu.edu/data/vivideval/ datasets/datasets.html.
  25. Wei, Y., Wen, F., Zhu, W., and Sun, J. (2012). Geodesic saliency using background priors. In Proceedings of the 12th European conference on Computer Vision - Volume Part III, ECCV'12, pages 29-2, Berlin, Heidelberg. Springer-Verlag.
  26. Yilmaz, A., Javed, O., and Shah, M. (2006). Object tracking: A survey. Acm Computing Surveys (CSUR), 38(4):13.
Download


Paper Citation


in Harvard Style

Alkanat T., Tunali E. and Öz S. (2015). A Real-time, Automatic Target Detection and Tracking Method for Variable Number of Targets in Airborne Imagery . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 61-69. DOI: 10.5220/0005298400610069


in Bibtex Style

@conference{visapp15,
author={Tunç Alkanat and Emre Tunali and Sinan Öz},
title={A Real-time, Automatic Target Detection and Tracking Method for Variable Number of Targets in Airborne Imagery},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={61-69},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005298400610069},
isbn={978-989-758-090-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)
TI - A Real-time, Automatic Target Detection and Tracking Method for Variable Number of Targets in Airborne Imagery
SN - 978-989-758-090-1
AU - Alkanat T.
AU - Tunali E.
AU - Öz S.
PY - 2015
SP - 61
EP - 69
DO - 10.5220/0005298400610069