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We compare the performances of several Multi-Layer Perceptrons (MLPs) and Convolutional Neural Net-

works (ConvNets) for single text image Super-Resolution. We propose an example-based framework for both
MLP and ConvNet, where a non-linear mapping between pairs of patches and high-frequency pixel values is
learned. We then demonstrate that for equivalent complexity, ConvNets are better than MLPs at predicting
missing details in upsampled text images. To evaluate the performances, we make use of a recent database
(ULR-textSISR-2013a) along with different quality measures. We show that the proposed methods outper-
forms sparse coding-based methods for this database.

1 INTRODUCTION

Super-Resolution (SR) methods aim to provide a
high-definition image from one or several low resolu-
tion (LR) images. With the increasing quantity of vi-
sual data due to advances in information technologies
and portable devices, these methods have been exten-
sively studied in the last decades. SR can ensure a
better visual experience for HD displays or visual ap-
peal in videos or photographs, but also improve the re-
sults of automated resolution-dependent vision tasks
such as face recognition/detection or optical character
recognition (OCR), if used as a pre-processing step.
SR techniques can be divided into several cate-
gories. (Nasrollahi and Moeslund, 2014) provides a
complete overview of the existing methods, according
to the available single or multiple LR images. Mul-
tiple image Super-Resolution takes advantage of the
redundancy of the information in the different image
representing the same scene to merge this low res-
olution information into a high resolution (HR) im-
age after an alignment process. Several techniques
have been introduced such as Iterative Back Projec-
tions (Irani and Peleg, 1991), Projection Onto Convex
Sets (Stark and Oskoui, 1989), Maximum Likelihood
and Maximum A Posteriori (Cheeseman et al., 1996).
For Single Image Super-Resolution (SISR), the task
is of another nature as we only have one representa-
tion of the original scene. The recovery of the original
high-resolution is a drastically ill-posed inverse prob-
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lem, and the details lost during the down-sampling
process might only be refined either by processing
an up-sampled version of the LR image (interpolation
or reconstruction based methods, such as (Sun et al.,
2011)), or by training a system on some external data
(Freeman et al., 2002) to hallucinate high-resolution
information from a LR one (learning-based methods).

More specifically, Text Image SR — also referred
to as Text Document SR — has been handle in dif-
ferent ways. Several methods have been proposed
or applied for multiple images (Donaldson and My-
ers, 2005; Mancas-Thillou et al., 2005; Protter et al.,
2009). For the task of Single Images, (Thouin and
Chang, 2000) used an iterative method to minimize
a Bimodal-Smoothness-Average score, (Dalley et al.,
2004) adopted a bayesian approach for SR of binary
text images. (Luong and Philips, 2007) proposed a
non-local search to take advantage of characters re-
dundancies in documents. (Zheng et al., 2014) pro-
posed a fast matting technique that consists in ex-
tracting and interpolate foreground, background and
a matte (proportion of foreground/background), and
enhance the matte layer with a Teager Filter before
using it to mix the foreground and background layers
back together.

Most recent and successful text image are learn-
ing based ones, and this paper will start with a short
survey in 2. We then express the SR problem in 3
and depict our proposal in 4. We describe our ex-
perimentations in 5 and present the obtained results.
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Conclusion and perspectives are finally given in 6.

2 LEARNING-BASED METHODS
FOR SUPER-RESOLUTION

We provide a quick review of some learning-based
methods for SISR.

2.1 Dictionnary Training and Sparse
Coding

Different learning framework have already been pro-
posed in the literature. Authors successively proposed
to learn dictionaries of LR/HR patch pairs called D
and Dy, and reconstruct a SR image from a mixture
of the HR versions of the closest LR patches. (Free-
man et al., 2002) first proposed to look up for the 16
nearest neighbours in a dictionary and keep the high
patches showing a good spatial compatibility on over-
lapping region. A similar method have been applied
by(Fan et al., 2012) on text images. (Glasner et al.,
2009) set up a intra-image dictionary to take advan-
tage of the redundant structures inside an image at
different positions and scales. These methods exhibits
very good results given an image with redundancy
and a known Point Spread Function for the decima-
tion process.

Later, in (Yang et al., 2010; Walha et al., 2012),
authors proposed to find the best sparse representa-
tion of a feature vector y in D (called &) for the min-
imization problem:

B =argminky D ak3+ I kak, (1)
a

so that one can reconstruct the HR version of the cur-
rent patch with the same sparse &, but using Dy. To
ensure sparsity on &, a regularization parameter is
added, here using ‘1 norm. Note that in (Yang et al.,
2012) and (Peleg and Elad, 2014), Neural Networks
are used to speed up the choice of the sparse vector
a. In (Timofte et al., 2013), this speed-up is done by
pre-computing a neighbourhood for each atom in the
dictionary.

2.2 Autoencoders

With the recent work on autoencoding architectures,
two different approaches were proposed to take ad-
vantage of autoencoders for SR. The first one (Gao
etal., 2013) is strongly related to sparse coding meth-
ods. It encodes a dictionary of LR/HR patch pairs in a
Restricted Boltzmann Machine and take advantage of
the RBM framework to iteratively reconstruct an HR

image as a sparse mixture of the embedded patches,
via a sparse activation of hidden neurons. The second
(Nakashika et al., 2013) makes use of a Deep Belief
Network to learn the autoencoding of the DCT coef-
ficients of HR images. Then, from the low-frequency
coefficient of a scaled-up LR image, the network iter-
atively recovers high-frequency as it is the only kind
of image it has learned to produce. (Peleg and Elad,
2014) also use a RBM to encode a relationship be-
tween sparse representations in overcomplete dictio-
naries.

2.3 Artificial Neural-networks Based
Methods

ANN are architectures inspired from the human brain.
They interconnect cells that perform a non-linear
mapping between their weighted inputs (“dendrites™)
and their output (“axone”). The Perceptron model
was first introduced by (Rosenblatt, 1958) to model
human neurons. It applies a non-linear function F
(such as tanh) to the weighted sum of its inputs (see
1).
|
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Figure 1: Perceptron Model.

ANN for SR were introduced in (Ahmed et al.,
1995; Plaziac, 1999), where they proposed to take ad-
vantage of a neural networks to handle interpolation
problems: how to choose the best missing pixel be-
tween existing pixels. Later, (Pan and Zhang, 2003)
successfully applied a neural network design to es-
timate residual errors in an HR estimate from the
ones in LR on natural and text images. The first
model presented in this paper is related to their as we
want to automatically learn how to infer missing de-
tails. (Panagiotopoulou and Anastassopoulos, 2007)
trained a network successively using examples at dif-
ferent scales for scanned document SR. (Carcenac,
2007) proposed a Neural Network architecture for
face image super-resolution. Recently, (Dong et al.,
2014) proposed a Deep Convolutional Neural Net-
work, that maps an interpolated image to its HR coun-
terpart. A first layer is employed to extract features
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maps, which are non-linearly mapped onto a second
layer of feature maps of the same size. Finally, a fu-
sion of the maps is performed by a single fully con-
nected convolution.

In the present work, we compare two neural based
approaches and favour a high frequency restoration
scheme rather than an intensity based one.

3 PROBLEM FORMULATION

We model the SR problem by a reconstruction pro-
cess. Given an HR image x and its LR counterpart
y, we want to infer the missing details in an upscaled
version of the LR image. Therefore, we choose a sim-
ple interpolation method (e.g. bicubic) that produces
an estimate knic of the SR image. This estimate is
often smooth, blurry, and may also present ringing ar-
tifacts.

At each position (k;1) of an image, the estimate
knic (k; 1) differs from the original (or ideal HR) image
x(k;1) by an error e(k; I), defined as:

el =x(1) e (k1) ®)

the estimate ki being the upscaled version of the
original LR image:

kic = fi () (4)

with an interpolation function f,. Therefore, we want
a SR system to be able to provide an estimate b(k;1)
of this difference. This difference can be considered
as high spatial frequency information, as the interpo-
lated image gives a smooth version of the desired HR
image. The reconstruction process is then:

ks = kyic + 0 5)

In the next section, we present the set up of two
neural-based architectures able to provide this esti-
mate.

4 PROPOSED METHODS

In this paper, we aim to compare two neural networks
models for the SR problem. For both, the framework
is the same: a network takes as input a LR patch ex-
tracted from y, and targets, for a given scale factor
s, s% output values that correspond to the estimate
b for each s? central pixel in the corresponding SR
patch (see 2). We also wish to limit the complexity
of the networks, i.e. restrict the number of weights
to be learned to differentiate from deep learning ap-
proaches.
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Figure 2: Representation of a LR patch (left) and the
s2 = 4 central pixels (for a scale factor of two).

To train these networks, we start with collecting
pairs of LR patch and corresponding s? reconstruc-
tion errors (see 3). The weights of the neural networks
are classically trained using a backpropagagtion algo-
rithm with momentum to lower the mean square error

E= % (d o).

A simple normalization is applied to the input
patches by subtracting the central pixel value of the
LR patch, and dividing by a constant Kj,. The s out-
puts correspond to the missing details between the s?
ground truth pixel and the s*> upsampled pixels ob-
tained by the interpolation method. They are normal-
ized by a pre-determined constant Koy as well.
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Figure 3: Training dataset construction
(for 5 5 input patch and a scale factor s = 2).

At reconstruction (4), overlapping patches are ex-
tracted, and the estimated high-frequency details are
added to the interpolated imaae kni-.

LR . Trained Neural
Normalization
Image Network
Bicubic e e
Image N
Xbic XSR HR

Figure 4: Reconstruction scheme for a SR image
(represented for 5 5 input patch, s = 2 scale factor).

A classical alternative for input patches is to use
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an upscaled version of the patches (extracted from ky;c
for instance) to spread the information onto a wider
input area. The problem would get closer to a deblur-
ring one, but is still part of a SR approach as we origi-
nally rely on an interpolation method, which only de-
pends on some LR data and cannot be properly mod-
elled with a blurring kernel or a degradation model.
Here, we decided to keep the original LR information,
as it holds all the available information while keeping
reasonable dimensions for the input data.

4.1 Multi-Layer Perceptron

As stated in the previous paragraph, this method is
quite similar to the one described in (Pan and Zhang,
2003), but the direct use of pixel intensity to predict
details has not been exploited to the best of our knowI-
edge. We design a MLP with N2 neurons for the in-
put layer and s? linear neurons for the output layer.
The N? inputs correspond to a N N patch. Most

Hidden Hidden

Input Layer

e

Figure 5: Proposed MLP architecture for SR.

Output
Layer

Layer Layer

approaches in the literature only make use of one
hidden-layer for SR with MLP. We noted that two hid-
den layers, with respectively Ny1 and Nn2 neurons per
layer with tanh activation function, were more likely
able to capture the non linearity of the input-target
mapping. However, this increases the complexity of
the network.

4.2 Convolutional Neural Network

ConvNets (LeCun and Bengio, 1995) are biologically
inspired neural architectures that include several con-
volutional layers in the network. They can be consid-
ered as feature detectors that keep track of the spatial
position of those features, producing a set of feature
maps at each layer. The strength of this architecture
is that convolution kernels are learnt using backprop-
agation, leading to an optimal solution compared with
hand-crafted filters.

In classification, one can add pooling layers (orig-
inally called downsampling layers), when the precise

position of features is not crucial. For the SR prob-
lem, however, the spatial location of a feature in the
image is very important, and pooling, if used, should
be handled with care. Our experiments in this pa-
per do not involve any pooling layer, as simple test
demonstrated that the result do not benefit from such
layers.

Hidden
Layer

Cl1 C2

Input Layer
(patch)

i

Figure 6: Proposed ConvNet architecture for SR.

g Output
Layer

We propose to use the following architecture: the
LR patchat the input layer is convolved with N¢; ker-
nels, producing Ngz maps for the first layer C1. Each
of these maps are then convolved with a second set of
Nc2 kernels following the same connection scheme as
the one presented in (Garcia and Delakis, 2004). Each
map in C1 is convolved by two dedicated kernels to
foster specialization, giving a first subset of 2 Nc3
kernels for C2. In parallel, fusion is also performed
convolving each possible pair of maps of C1 by a ker-
nel, which gives another Ngl kernels. Therefore we

have:

Nc1!
Ne2=(@2 Nep)+ ———
co = ( c1) Ner 2121

(Nc12+ 3) (6)

We add a hidden layer of Ncz neurons, each of which
is connected to a single map, non-linearly merging
the information of the last maps into a single output
value that is presented to the output layer. The out-
put layer consists in s2 fully connected linear neurons.
Note that all the previous layers include tanh activa-
tion function. We train this network with our set of
patch and target pairs, using backpropagation to si-
multaneously learn the weights of the neurons and the
kernels of the convolutions.

= Nc1

5 EXPERIMENTAL RESULTS

To compare the performances of our proposed ap-
proaches, we use the text image database ULR-
textSISR-2013a released by (Nayef et al., 2014). The
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test set contained in this database consists in 30
grayscale images of black text over a white back-
ground: 5 different texts, each rendered with 3 differ-
ent fonts (Arial, Times, Courier) and 2 different sizes
(10 and 12 pt, at 150dpi), using anti-aliasing filters
during Portable Document Format (PDF) file genera-
tion. They contain bold and italic characters.

5.1 Evaluation Procedure: Measures

We use the same measure as (Nayef et al., 2014) to
evaluate the performances of the different proposed
methods: Mean Squared Error (MSE), Peak Signal to
Noise Ration (PSNR), OCR accuracy.

1. MSE reflects the squared difference in gray lev-
els between two images. Its square root (RMSE)
gives the standard error (in graylevel), indicating
the average error obtained in our reconstruction.

2. Employed in signal processing, PNSR give a more
absolute meaning to the reconstruction, given the
maximum-value the signal can-reach. "It is still
closely related to the MSE.

2552
PSNR=10 log MSE

3. When processing text images we can produce a
joint evaluation of both standard measures and
classification, recognition or detection scores.
Optical Character Recognition systems allow
to produce an accuracy measure for evaluation
(which is the Levenstein distance between recog-
nized characters and ground truth transcription,
divided by the total number of characters). Fol-
lowing the proposal of (Nayef et al., 2014), we
evaluate our performances of our using the same
tools (Tesseract OCR 3.02 and UNLV-ISRI accu-
racy tool). The results do not take into account
ground truth spacing characters, although includ-
ing the related errors.

5.2 Settings
5.2.1 Framework Global Settings

Normalization. We set Kj, = 256 to normalize the
input patch from which we subtract the central value.
This way, we ensure that values range from 1to 1.
For output detail pixels, we choose Koyt = 100 for im-
ages of black text over a white background, which is
Kout > N with n being the variance of the histogram of
target values in the training dataset.
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Patch Size. In order to provide an equivalent evalu-
ation of the two methods, we try to use an equivalent
amount of information at the entrance of both sys-
tems. For ConvNets, we use 9 9 LR patches. Tak-
ing into account the border effect of convolutions in
the first layers, we consider that presenting only 7 7
patches to the MLP is equivalent in terms of informa-
tion. Experiments show that the MLP does not benefit
from larger patches.

Scale. In this study, we only consider 2 SR since
the database (Nayef et al., 2014) was provided for this
upsampling factor, although our implementation can
handle higher scale factors (the output layers would
be3 3for 3SR,4 4for 4SR,etc)

Training Database. For training, we use text im-
ages generated with the process employed to build the
database (Nayef et al., 2014): Times and Arial fonts
(10 and 12pt at 150dpi), bold, italic and normal em-
phasis; FreeType generation and Matlab downsam-
pling. An interesting aspect of this database is that it
includes three different fonts (Arial, Times, Courier)
in the test data while only two of them are present in
the training data. This allows to evaluate if the SR
method generalizes to text of different nature.

We extract 120; 000 pairs for training as described
in 3. We simply reject strictly uniform input patches
(typically, white patches).

5.2.2 Performance Evaluation of the MLP

We evaluated with different numbers of neurons per
hidden layer and tried to outline a global trend (see
1). For each configuration, we run 100 epochs over
the whole set of pairs, with a constant learning rate
1 =10 2 and a momentum of 0:2. Generally, the re-
sults get better with an increasing number of neurons,
but it also depends on the repartition of the weights
and how Ny is related to Ny2. However, the con-
figuration seems to reach its limits and at a certain
point and increasing the complexity of the network
does not improve the performances. The best perfor-
mances are obtained for a network with 100 neurons
in N1, and 150 neurons in N2 layers (configuration 6,
20,754 weights).

5.2.3 Performance Evaluation of the ConvNet

To choose the most interesting network dimensions
for our purpose, and given the chosen architecture
(4.2), we tested several ConvNet sizes as reported in
2. For each configuration, we use 5 5 Kkernels for
Cland 3 3 kernels for C2. We can notice that small
networks with Nc1 as small as configurations 2 or 3
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Table 1: Performances of different MLP configurations.

Config. 1 2 3 4 5 6 7
N1-N2 10-10 10-50 50-50 50-100 50-150 100-150 100-200
Complex. | 654 1,254 5254 8,004 10,754 20,754 26,004
PSNR 22.01 22,67 23.05 23.25 23.63 24.15 24.05
MSE 2052 19.03 18.20 17.80 17.05 16.03 16.23
OCR 91.97 9328 9285 93.73 93.82 94.69 94.44
Table 2: Performances of different ConvNet configurations.
Config. 1 2 3 4 5 6 7 8 9 10
C1 2 4 8 12 16 20 24 28 32 40
Complex. 185 498 1,520 3,070 5,148 7,754 10,888 14,550 18,740 28,704
PSNR (dB) | 20.49 2159 2289 2325 23.88 23.79 24.18 24.16 24.55 24.48
MSE 2436 2151 1848 17.74 1647 16.67 1591 15.95 15.27 15.39
OCR (%) | 90.35 90.70 93.35 95.08 95.23 95.10 95.49 96.09 96.42 96.13

perform well with less than 2,000 weights. The ar-
chitecture reaches its limits for Nc; = 32 which has
18,740 weights.

As mentioned before, we tried to limit the size
of the network. We also explored larger networks
where the hidden layer was fully connected, increas-
ing drastically the complexity up to 481,784 weights.
They allow to reach higher scores (25.69 dB / 13.58
/ 96.67%) but are out of the scope of the desired low
complexity.

5.3 Results

For the selected architectures, we can observe in 1 and
2 the advantage of ConvNets compared with MLP.
For an equivalent complexity (e.g. around 20;000
weights), ConvNets produces a better version of miss-
ing high-frequencies, improving both pixel-wise mea-
sures (PSNR from 24.15 to 24.55 dB) and OCR score
(94.69 to 96.44%). Some results are shown in figures
7(b) and 7(c).

The bicubic image (7(a)) exhibits serious blur ar-
tifacts, and the gain of the proposed Neural-based
methods is clear. Moreover, we can note a better
reconstruction of some sensitive details for the Con-
vNets: holes in the "e” letters are more visible, ”s”
letters are better shaped, and some fine edges such as
”n”, 7K or ”g” curves are more nicely reconstructed.

We report in 3 the state of the art results published
on this database, and compare them with our best re-
sults. We can see the benefit of our method over the
sparse coding methods for both pixel-wise measures
and OCR accuracy score. We observe a gain for MLP
and ConvNet, of respectively +4:46 dB and +4:86
dB for PSNR, and +1:10% and +2:85% for OCR ac-
curacy.

All ehildren, except one, grow up.

up, and the way Wendy knew was tl

she was playmg m a garden, and sh

it to her mother. 1 suppose she must
(a) Bicubic interpolation

All children, except one, grow up. ]

up, and the way Wendy knew was tl

she was playing in a garden, and she

it to her mother. I suppose she must
(b) MLP result

All children, except one, grow up. ]
up, and the way Wendy knew was tl
she was playing m a garden, and shy
it to her mother. I suppose she must

(c) ConvNet result
Figure 7: Bicubic and Super-resolved test image.

Table 3: Proposed methods performances compared with
State-of-the-Art ones.

Method RMSE PSNR (dB) OCR (%)
Bicubic 34.92 17.32 88.57
Yang 26.75 19.69 93.59
Walha 29.45 18.82 93.16
MLPTextSR | 16.03 24.15 94.69
CNNTextSR | 15.27 24.55 96.44
Original HR - - 97.86

Supplementary Experiments

The proposed database is very specific as it only con-
tains text images with black font over a white back-

&9
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Table 4: PSNR scores for ”Set5”.

Bicubic ANR SRCNN Our(7 7) Our(9 9)
baby 3707 3844 383 37.92 37.96
bird 36.81 40.04 4064 40.23 40.32
butterfly | 27.43  30.48  32.2 3163 31.66
head 3486 3566 3564 35.47 35.48
woman | 32.14 3455  34.94 34.64 34.63

(a) Bicubic (b) ANR

(c) SRCNN

(d) Our method 9 9

(e) Groundtruth

Figure 8: Results for natural images ( 2).

ground. Thus, for the sake of generalization, we tried
our system on natural images. We use the same data
as (Dong et al., 2014) or (Yang et al., 2010) for train-
ing, and images extracted from BSD100 segmentation
database for validation. The test dataset is ”Set5”. We
tried to preserve fairness with the other methods. As
(Dong et al., 2014) use 24,800 32 32 subimages for
training their system while we use patches (7 7 or
9 9 for this last experiment), we consider that we can
randomly extract 2,000 patches from each of the 92
training images without turning into a deeper learn-
ing process than they do. In terms of complexity, their
system contains W = 8;032 weights. Using Nc1 = 20
forboth7 7and9 9 patch sizes, we end up with re-
spectively W; ;7 =7;434 and Wy ¢ = 7;754. We use
the same setting as 5.2.3, except for 3 3 convolutions
for all convolutions in the 7 7 input patches case.
Our results (4 and 8) are competitive with the recent
methods applied on this dataset: Anchored Neighbour
Regression (Timofte et al., 2013) and SRCNN (Dong
etal., 2014).

6 CONCLUSIONS AND
PERSPECTIVES

We compared two neural network based methods
and demonstrated the efficiency of reasonably sim-
ple Convolutional Networks to provide super resolved
single text images via a good estimate of missing de-
tails from overlapping patches of their low resolution
version. Furthermore, we observed better results than
the proposed state-of-the-art sparse coding methods.
The experiments on natural images demonstrated that
the proposed ConvNet architecture can be generalized
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to other types of images.

These results motivate further research: take
advantage of recent proposed architectures for
ConvNets in SR to enhance our model, confront our
system to noisy contexts where patch-based method
usually perform well at denoising and adapt it to dif-
ferent kinds of images such as overlaid text in TV
streams.
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