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Abstract: Research on judging decisions made by fallible (human) agents is not as much advanced as research on finding
optimal decisions. Human decisions are often influenced by various factors, such as risk, uncertainty, time
pressure, anddepthof cognitive capability, whereas decisions by an intelligent agent (IA) can be effectively
optimal without these limitations. The concept of ‘depth’, a well-defined term in game theory (including
chess), does not have a clear formulation in decision theory. To quantify ‘depth’ in decision theory, we can
configure an IA of supreme competence to ‘think’ at depths beyond the capability of any human, and in the
process collect evaluations of decisions at various depths. One research goal is to create an intrinsic measure
of the depth of thinking required to answer certain test questions, toward a reliable means of assessing their
difficulty apart from item-response statistics. We relate the depth of cognition by humans to depths of search,
and use this information to infer the quality of decisions made, so as to judge the decision-maker from his
decisions. We use large data from real chess tournaments and evaluations from chess programs (AI agents)
of strength beyond all human players. We then seek to transfer the results to other decision-making fields in
which effectively optimal judgments can be obtained from either hindsight, answer banks, powerful AI agents
or from answers provided by judges of various competency.

1 INTRODUCTION

In most applications related to human decision mak-
ing, the actors are aware of the true or expected value
and cost of the actions. The available choices are de-
terministic and known to the actor, and the goal is to
find some choice or allowed combination of choices
that maximizes the expected utility value. The deci-
sions taken can be either dependent or independent
of actions taken by other entities that are part of the
decision-making problem. Inbounded rationality,
however, such optimization is often not possible due
to time constraints, the lack of accurate computation
power by humans, the cognitive limitation of mind,
and/or insufficient information possessed by the actor
at the time of taking the decision. With these limited
resources, the decision-maker in fact looks for a solu-
tion that seems satisfactory to him rather than optimal.
Thus bounded rationality raises the issue of getting a
measure of the quality of decisions made by the per-
son.

Humans make decisions in diverse scenarios
where knowledge of the best outcome is uncertain.
This pertains to various fields, for example online

test-taking, trading of stocks, and prediction of future
events. Most of the time, the evaluation of decisions
considers only a few parameters. For example, in test-
taking one might consider only the final score; for
a competition, the results of the game; for the stock
market, profit and loss, as the only parameters used
when evaluating the quality of the decision. We re-
gard these asextrinsicfactors.

Although bounded-rational behavior is not pred-
icated on making optimal decisions, it is possible to
re-evaluate the quality of the decision, and thus move
from bounded toward strict rationality, by analyzing
the decisions made with entities that have higher com-
puting power and/or longer timespan. This approach
gives a measure of theintrinsic quality of the decision
taken. Ideally this removes all dependence on factors
beyond the agent’s control, such as performance by
other agents (on tests or in games) or accidental cir-
cumstances (which may affect profit or loss).

Decisions taken by humans are often effectively
governed bysatisficing, a cognitive heuristic that
looks for an acceptable sub-optimal solution among
possible alternatives. Satisficing plays a key role in
bounded rationality contexts. It has been documented
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in various fields including but not limited to eco-
nomics, artificial intelligence and sociology (Wiki-
Books, 2012). We aim to measure the loss in qual-
ity and opportunity from satisficing and express the
bounded-rational issues in terms ofdepthof thinking.

In multiple-choice question scenarios, there is no
standard metric to evaluate answers. Any aptitude test
allows multiple participants to answer the same prob-
lem, and based on their responses the difficulty of the
problem is measured. The desired measure of diffi-
culty is used when calculating the relative importance
of the question on their overall scores. The first is-
sue is how to distinguish theintrinsic difficulty of a
question from simple poor performance by respon-
dents? A second issue is how to judge whether a ques-
tion is hard because it requires specialized knowledge,
requires deep reasoning, or is “tricky”—with plausi-
ble wrong answers. Classical test theory approaches
are less able to address these issues owing to design
limitations such as having only a few choices with a
unique correct answer.

Accordingly, we have identified three research
goals:

1. Find an intrinsic way to judge the difficulty of de-
cision problems, such as test questions,

2. Quantify a notion ofdepth of thinking, by which
to identify satisficing and measure the degree of
boundedness in rational behavior.

3. Use an application context (namely, chess) in
which data is large and standards are well known
so as to calibrate extrinsic measures of perfor-
mance reflecting difficulty and depth. Then trans-
fer the results to validate goals 1 and 2 in applica-
tions where conditions are less regular.

Putting together all these aspects, we can develop
intelligent agents (IAs) that can segregate humans by
their skill level via rankings based on their decisions
and the difficulty of the problems faced, rather than
being based only on total test scores and/or outcomes
of games. IAs can be used for automated personnel
assessment which by analyzing performances of an
actor can pinpoint weaknesses and strength to help
him improve.

In our setting, we have chosen chess games played
by thousands of players spanning a wide range of
ratings. The moves played in the games are ana-
lyzed with chess programs, calledengines, which are
known to play stronger than any human player. We
can assume that given considerable time, an engine
can provide an effectively optimal choice at any po-
sition along with the numeric value of the position,
which exceeds the quality of evaluation perceived by
even the best human players. Our intelligent agents

use these engines as a knowledge-base to produce the
final judgment.

This approach can be extended to other fields of
bounded rationality, for example stock market trad-
ing and multiple choice questions, for several reasons,
one being that the model itself does not depend on any
game-specific properties. The only inputs are numer-
ical values for each option, values that have authori-
tative hindsight and/or depth beyond a human actor’s
immediate perception. Another is the simplicity and
generality of the mathematical components governing
its operation, which are used in other areas.

Our position is that as automated tools for judg-
ing personnel results come into prominence, we will
need a uniform structure for designing and calibrat-
ing them. Our model embraces both values and pref-
erence ranks, lends itself to multiple statistical fit-
ting techniques that act as checks on each other, and
gives consistent and intelligible results in the chess
domain. This paper demonstrates the richness and ef-
ficacy of our modeling paradigm. It is thus both a rich
testbed for measuring interoperability between intel-
ligent agents and a fulcrum for transferring evaluation
criteria established with big data to other applications.

2 BACKGROUND

Sequential sampling/accumulation based models are
the most influential type of decision models to date.
Decision field theory(DFT) applies sequential sam-
pling for decision making under risk and uncer-
tainty (Busemeyer and Townsend, 1993). One im-
portant feature of DFT is ‘deliberation’, i.e., the time
taken to reach to a decision. DFT is a dynamic model
of decision making that describes the evolution of the
preferences across time. It can be used as a predic-
tor not only of the decisions but also of the response
times. Deliberation time (combined with the thresh-
old) controls the decision process. The threshold is
an important parameter which controls how strong the
preference needs to be to get accepted.

Although item response theory(IRT) models do
not involve any decision making models directly, they
provide tools to measure the skill of a decision-maker.
IRT models are used extensively in designing ques-
tionnaires which judge the ability or knowledge of
the respondent. Theitem characteristic curve(ICC)
is central to the representation of IRT. The ICC plots
p(θ) as a function ofθ, whereθ and p(θ) represent
the ability of the respondent and his probability of
choosing any particular choice, respectively. Morris
and Branum et al. have demonstrated the application
of IRT models to verify the ability of the respondents
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with a particular test case (Morris et al., 2005).
On the chess side, a reference chess engineE ≡

E(d,mv) was postulated in (DiFatta et al., 2009). The
parameterd indicates the maximum depth the engine
can compute, wheremv represents the number of al-
ternative variants the engine used. In their model,
fallibility of human players is associated to a likeli-
hood functionL with engineE to generate a stochastic
chess engineE(c), whereE(c) can choose any move
amongmv alternatives with non zero probability de-
fined by the likelihood functionL.

In relation to test-taking and related item-response
theories (Baker, 2001; Thorpe and Favia, 2012; Mor-
ris et al., 2005), our work is an extension of Rasch
modeling (Rasch, 1960; Andrich, 1988) forpoly-
tomousitems (Andrich, 1978; Masters, 1982; Os-
tini and Nering, 2006), and has similar mathemati-
cal ingredients (cf. (Wichmann and Hill, 2001; Maas
and Wagenmakers, 2005)). Rasch models have two
main kinds of parameters,personand item parame-
ters. These are often abstracted into the single pa-
rameters of actorlocation(or “ability”) and itemdif-
ficulty. It is desirable and standard to map them onto
the same scale in such a way that ‘location> diffi-
culty’ is equivalent to the actor having a greater than
even chance of getting the right answer, or of scor-
ing a prescribed norm in an item with partial credit.
For instance, the familiar F-to-A grading scale may
be employed to say that a question has exactly B-
level difficulty if half of the B-level students get it
right. The formulas in Rasch modeling enable pre-
dicting distributions of responses to items based on
differences in these parameters.

3 CHESS ENGINES AND
METRICS USED

3.1 Chess Engines and Their
Evaluations

The Universal Chess Interface (UCI) protocol used by
most major chess engines specifies two basic modes
of search, calledsingle-pvandmulti-pv, and organizes
searches in both modes to have well-defined stages
of increasing depth.1 Depth is in unit ofplies, also
calledhalf-moves.2 In single-pv mode, at any depth,

1In all but a few engines the depths are successive in-
tegers. (The engine Junior used to produce evaluation at
depths at interval of 3 i.e., 3-6-9-12. . . .) Also ‘pv’ stands
for “principal variation”.

2A move by White followed by a move by Black equals
two plies.

only the best move is analyzed and reported fully. If
a better move is found at a higher depth, the evalua-
tion of the earlier selected move is not necessarily car-
ried forward any further. Whereas, in multi-pv mode,
we can select the numberℓ of moves to be analyzed
fully. The engine reports the evaluation of each of the
ℓ best moves at each depth. In our work, we run the
engine inℓ-pv mode withℓ= 50, which covers all le-
gal moves in most positions and all reasonable moves
in the remaining positions. Figure 1 shows output
from the chess engine Stockfish 3 in multi-pv mode
at depths up to 19.3

We aim to incorporate the idea of depth or process
of deliberation by fitting the moves by the chess play-
ers to itemized skill levels based ondepth of search
andsensitivity. The ability of a player can be mapped
to various depths of the engines. An amateur player’s
search depth for choosing any move may often not ex-
ceed two plies, whereas for a grandmaster it might be
possible to analyze moves at ply-depths as high as 20.
In this model we will attempt to generate a mapping
between engine depths and player ratings, and use it
to quantify depths of thinking for human players of
all rating levels.

3.2 Concept of Depth of Thinking

In most decision theory literature,deliberation time
is measured in units of seconds. In real-life decision
making, when we try to judge the quality of a deci-
sion, it is very difficult to store the exact timing in-
formation for each decision. Moreover, the popular
belief that quality of decisions is directly proportional
to the deliberation time is not applicable in every sce-
nario. Sometimes the correct decision looks reason-
able at the beginning of deliberation, loses its ‘charm’
after a while, yet finally appears as the best choice to
the decision-maker.

Chess tournaments place limits on the collective
time for decisions, such as giving 120 minutes for a
player to play 40 moves, but allow the player to bud-
get this time freely. Meanwhile, chess offers an in-
trinsic concept of depth apart from how much time a
player chooses to spend on a given position. In game
theory, depth represents the number of plies a player
thinks in advance. In chess, a turn consists of two
plies, one for each player. We can visualize depth in
chess as the depth of the game tree. In our model, the

3The position is at White’s 29th move in the 5th game
of the 2008 world championship match between Kramnik-
Anand with Forsyth Edwards Notation (FEN) code
“8/1b1nkp1p/4pq2/1B6/PP1p1pQ1/2r2N2/5PPP/4R1K1 w
- - 1 29”. Values are from White’s point of view in units
of centipawns, figuratively hundredths of a pawn.
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Table 1: Example of move evaluation by chess engines.

Moves 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Nd2 +230 +137 +002 +002 +144 +103 +123 +158 +110 +067 +064 +006 +002 +024 +013 -037 -018 000 000
Qg8 +205 +205 -023 -023 -059 -031 -058 -065 -066 -066 -053 -053 -103 -053 -053 -053 -053 -053 -053
Qh5 +101 +101 +034 +034 +034 -031 -058 -065 -066 -066 -053 -053 -103 -053 -053 -053 -053 -053 -053
Kf1 +108 +108 +108 +082 +029 +006 -087 -087 -090 -087 -048 -048 -087 -087 -077 -092 -092 -092 -092
Bxd7 +139 +139 -023 -023 -031 -039 -071 -071 -016 -020 -023 -023 -023 -017 -043 -042 -042 -083 -095
Rd1 +044 +044 +044 +016 -100 -094 -104 -124 -121 -121 -139 -143 -136 -150 -148 -122 -109 -122 -109
Nh4 +284 +161 +161 +161 +129 +116 +102 +046 +063 +028 +025 +028 -014 -078 -087 -097 -097 -127 -131
Kh1 +078 +078 +078 +051 -037 000 -019 -165 -165 -140 -140 -124 -157 -152 -185 -158 -158 -158 -172
Qg5 -107 -107 -091 -107 -113 -113 -130 -120 -202 -202 -197 -209 -200 -202 -200 -200 -189 -201 -174
Ng5 +402 +299 +299 +242 +163 +090 +008 +008 -033 -048 -041 -067 -067 -067 -115 -150 -150 -194 -177
Qh4 -107 -107 -107 -107 -113 -113 -130 -120 -202 -202 -186 -209 -203 -202 -200 -200 -189 -201 -191
Rf1 +003 +003 +003 -022 -138 -138 -138 -150 -168 -196 -183 -181 -220 -216 -205 -203 -211 -224 -205
h3 +084 +084 +084 +057 -237 -207 -230 -230 -257 -292 -279 -258 -249 -250 -253 -248 -249 -213 -236
Nxd4 -074 -074 -030 -054 -128 +243 +139 +139 +139 +091 +098 +098 +107 +093 +082 +061 -259 -250 -250
h4 +081 +081 +081 +055 -267 -267 -252 -243 -251 -255 -255 -247 -232 -246 -221 -244 -253 -253 -253
Ra1 +020 +020 +020 -007 -120 -120 -133 -145 -174 -196 -170 -211 -213 -172 -200 -217 -231 -231 -274
Rb1 +022 +022 +022 -005 -158 -158 -158 -145 -223 -196 -179 -172 -179 -209 -209 -217 -231 -231 -274
Qh3 +093 +093 +050 +050 -059 -019 -104 -104 -126 -208 -239 -210 -259 -217 -279 -310 -312 -312 -298
a5 +136 +136 +102 -191 -181 -181 -181 -288 -288 -288 -304 -327 -375 -376 -345 -428 -428 -430 -424
Be2 +097 +048 +062 +062 -051 -075 -205 -205 -278 -278 -282 -352 -379 -379 -375 -406 -447 -456 -451

evaluation of each chess position comes from the en-
gine with values for each move at each depth individ-
ually. We use regression measure effect on thinking
by utilizing move-match statistics for various depths.

3.3 Concept of Difficulty of a Problem

While the notion of difficulty of a problem is well
known in the IRT literature, the concept seems to
be little studied in decision making theories. We ar-
gue that having many possible options to choose from
does not make the problem hard. Rather the difficulty
lies in how close in evaluation the choices are to each
other, in how “turbulent” they are from one depth to
the next. The perceptions of difficulty differ among
decision-makers of various abilities. The difficulty
parameterβ is the point on the ability scale where a
decision-maker has a 0.50 probability of choosing the
correct response.

3.4 Concept of Discrimination

The discriminating powerα is an item (or problem)
parameter. An item with higher discriminating power
can differentiate decision-makers around ability level
β better. For 2PL logistic IRT model,α contributes to
the slope of the ICC atβ. In our domain, higher dis-
crimination may come from problems in which option
values change markedly between depths, as exempli-
fied in Table 1 by the rows for moves Nd2 and Nxd4.
Less competent decision-makers may be attracted to
answers that look good at low depths, but lose value
upon greater reflection.

4 JUDGING THE DECISIONS
AND THE DECISION MAKERS

Each chess position can be compared to a question
asked to a student to answer. We treat the positions
as independent and identically distributed (iid). The
upper bound for the number of reachable chess posi-
tions is 1046.25 (Chinchalkar, 1996) and even in top
level games, players often leave the “book” of previ-
ously played positions by move 15 or so. The lack of
critical positions that have been faced bymanyplay-
ers makes it hard to derive the item discrimination and
difficulty parameters for chess positions in the tradi-
tional IRT manners.

For typical IRT models, the expectation of the cor-
rect response for a particular examinee (of a certain
given ability) for a question is determined by the ratio
of the numberm of respondents with correct answers
to the total numbern of respondents. If we know the
abilities of the respondents beforehand, we can create
k subgroups of examinees, where each subgroup has
the same ability. Assuming each subgroup consists of
f j respondents wherej ∈ (1..k), andr j in each sub-
group give the correct answer, the probability of an-
swering correctly is deemed to bep j = r j/ f j . But in
our chess domain we do not have ‘n’. So instead we
use the utility values (evaluations) of the engines to
generate the probability. There is a clear advantage in
adopting this approach. Besides mitigating the prob-
lem of having enough respondents/players, we do not
need any additional estimation to evaluate the abil-
ity parameter of the examines, rather the evaluation at
various depths yields this. The various depth param-
eters without any additional tweaks work comparably
to the ability parameter of the IRT models.
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For achieving this goal, we need to address the
fundamental question of how to calculate the estimate
of the probability of playing the correct move, which
is a similar paradigm for a decision-maker’s probabil-
ity of finding the optimal solution. This part plays the
most critical role in the whole design and requires us
to introduce techniques to convert utilities into proba-
bilities.

We can assume that a player of Elo ratingeon av-
erage plays or thinks up to/around depthd. For any
particular depthd, for a positiont, we have a number
ℓ of available optionsa1,a2, . . . ,aℓ and a list of corre-
sponding valuesUd = (ud

1,u
d
2, . . . ,u

d
ℓ ). A player does

not know the values, but by means of his power of dis-
crimination can assign higher probability of playing a
move i with higher ud

i . For our basic dichotomous
model, we are only concerned about the the probabil-
ity of playing the best move where there are only two
binary decisions possible, namelyPi and Qi , which
represent the probability of playing the correct and
some incorrect move, respectively. It is possible to
extend this to polytomous cases, along lines of the
partial credit model of Muraki (1992).

4.1 Converting Utilities into
Probabilities

For calculating the probability, we measure the de-
viation δ of all the legal moves from the best evalu-
ation (u∗,d) at any particular depthd for any partic-
ular position. This generates the delta vector∆d =
δ1,d,δ2,d, . . . ,δℓ,d. If the best move at depthd is mj ,
where j ∈ {1, . . . , ℓ}, thenu∗,d = u j ,d and δ j ,d = 0.
We perform prior scaling based on the evaluation
of the position before the played move. For gener-
ating probabilities from utility values, we used ex-
ponential transformations with fixed parameters, via

pi =
e−2δi

∑ℓ
j=1 p j

. The choice of the constant 2 can be mod-

ified by fitting the sensitivity parameters at a later
stage, but nonetheless promises to be a good starting
point.

4.2 Fitting ICC for Estimating Item
Parameters

When IRT models are employed in test-taking ap-
plications, the parameters involved are calleditem
discriminationαi ∈ (0,+∞) and item difficultyβi ∈
(−∞,+∞). They are related by:

Pi(θ) = P(αi ,βi ,θ) =
1

1+e−αi(θ−βi)
. (1)

Once the probabilities of the moves are calculated,
our next task is generate item parameters for the two-

parameter logistic ICC model used in IRT literature.
We simplify Equation (1) by settinga= α , b= αβ .
The resulting equation becomes:

Pi = P(θi) = P(a,b,θi) =
1

1+e−aθi+b . (2)

For estimating the item parameters from the prob-
ability we have already deduced, we use least squares
estimation to minimize: L(a,b) = ∑d

i=1(pi − Pi)
2.

Here the residualpi −Pi is the difference between the
actual probability value of the dependent variable and
the value predicted by the model. Estimation ofa and
b can be performed by Newton-Raphson based iter-
ative procedure. The measure ofa andb is used to
judge the item parameters of the decision problem.

4.3 The ICC-Move Choice
Correspondence

When an IRT model is deployed in the context of
a theory of testing, the major goal is to procure a
measure of the ability of each examinee. In item re-
sponse theory, this is standardly the maximum like-
lihood estimate (MLE) of the examinee’s unknown
ability, based upon his responses to the items of the
test, and the difficulty and discrimination parameters
of these items. When we apply this idea for chess
moves assessed by various chess engines, we follow
the same procedure. We first calculate the MLE for
the moves the player played. This is performed by
evaluating the positions by various chess engines and
then assigning the probability of playing the correct
move at every depth. Finally we use maximum like-
lihood estimation to get the ability parameter of the
player. We convert the ability parameter to the intrin-
sic rating by regressing on data set specific to players
of known ratings.

For the completion of this estimation we make
four assumptions. First, the value of the item pa-
rameters are known or derived from engine evalua-
tion. Second, examinees are i.i.d sample or indepen-
dent objects and it is possible to estimate the param-
eters for examinees independently. Third, the posi-
tions given to the players are independent objects too.
Though the positions may come from the same game
we assume those to be uncorrelated. Fourth, all the
items used for MLE are modeled by the ICCs of the
same family.

If a player j ∈ {1, . . . ,N} facesn positions (either
from a single game or any set of random positions)
and the responses are dichotomously scored, we ob-
tainui, j ∈ {0,1} (1 for matching; 0 for not) wherei ∈
{1, . . . ,n} designates the items. This yields a vector
of item responses of lengthn: U j = (u1 j ,u2 j , . . . ,un j).
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From our third assumption, all theui j are i.i.d sam-
ples. Considering all the assumptions, the probability
of the vector of item responses for a given player can
be produced by the likelihood function

Prob(U j |θ j) =
n

∏
i=1

P
ui j
i (θ j)Q

1−ui j
i (θ j ). (3)

This yields the log-likelihood function

L = logProb(U j |θ j)

=
n

∑
i=1

[ui j logPi j (θ j )+ (1−ui j) logQi j (θ j)].

Since the item parameters for all then items are
known, only derivatives of the log-likelihood with re-
spect to a given ability will need to be taken:

∂L
∂θ j

=
n

∑
i=1

ui j
1

Pi j (θ j)

∂Pi j (θ j)

∂θ j

+
n

∑
i=1

(1−ui j )
1

Qi j (θ j)

∂Qi j (θ j)

∂θ j
. (4)

When Newton-Raphson minimization is applied on
L, an ability estimatorθ j for the player is obtained.
The value ofθ j determines the ability of the decision
maker.

5 CONCLUSION AND
PROSPECTS

In this position paper, we have outlined several mea-
surement procedures to quantify the quality of human
decisions. Our proposed model generates the predic-
tion of choices made by any decision-makers for any
problems. It also ranks the decision-makers by the
quality of the decisions made. The model is estab-
lished via the evaluations generated by an AI agent
of supreme strength, and uses this information as the
knowledge-base for the IA to analyze the problem.

These procedures can also be employed to model
an IA to mimic a decision-maker by tuning down
to match the decision-maker’s native characteristics.
Numerous aspects like speed-accuracy trade-off, ef-
fect of procrastination and impact of time pressure
also can be analyzed, and their effect on performances
by the decision-makers can be tested. Other fields
where this model can be applied include, but are not
limited to, economics, psychology, test-taking, sports,
stock market trading, and software benchmarking. Of
these fields test-taking has the closest formal corre-
spondence to our chess model.

We aim thereby to shed light on the following
problems, for application domains such as test-taking
for which we can establish a correspondence to our

chess model: Do the intrinsic criteria for mastery
transferred from the chess domain align with extrin-
sic criteria inferred from population and performance
data in the application’s own domain? How close is
the agreement and what other scientific regularities,
performance mileposts, and assessment criteria may
be inferred from it? What does this say about distri-
butions, outliers, and the effort needed for mastery?
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