
Offline Evolution of Normative Systems

Magnus Hjelmblom1;2

1Faculty of Engineering and Sustainable Development, University of Gävle, SE-80176 Gävle, Sweden
2Department of Computer and Systems Sciences, Stockholm University, Forum 100, SE-16440, Kista, Sweden

Keywords: Norm-regulated Multi-Agent System, Normative MAS, DALMAS, Norm Evolution, Evolutionary Algorithm.

Abstract: An approach to the pre-runtime design of normative systems for problem-solving multi-agent systems (MAS)
is suggested. A key element of this approach is to employ evolutionary mechanisms to evolve efficient nor-
mative systems. To illustrate, a genetic algoritm is used in the process of designing a normative system for
an example MAS based on the DALMAS architecture for norm-regulated MAS. It is demonstrated that an
evolutionary algorithm may be a useful tool when designing norms for problem-solving MAS.

1 INTRODUCTION

Agent-based modeling and simulation is an active
field of study which, for example, may offer meth-
ods for solving complex optimisation problems. In
this setting, agents are required to cooperate to solve
the problem at hand. In complex systems with ad-
justable agent autonomy, sophisticated planning can
often be replaced by norms; see for example (Verha-
gen and Boman, 1999). The study of norm-regulated
multi-agent systems, often referred to as normative
MAS, has also attracted a lot of attention. The Nor-
MAS roadmap (Andrighetto et al., 2013b) is a com-
prehensive introduction to and overview of the field.
The combination of agent-based modeling and sim-
ulation and normative MAS is a promising field of
study. (Balke et al., 2013)

It is often desirable to replace planning (and re-
planning), since it may be a complex and time-
consuming task, especially in collaborative environ-
ments. On the other hand, designing good normative
systems is also a challenge. The approach suggested
here, whose basic ideas were outlined in (Odelstad
and Boman, 2004, pp. 164f), is to use evolutionary
mechanisms, employed in a genetic algorithm, to aid
the ‘off-line’ (i.e., pre-runtime) design of normative
systems for problem-solving multi-agent systems.

The paper is structured as follows. In Sect. 1.2,
previous work on the DALMAS architecture for norm-
regulated MAS is briefly presented. Sect. 2 intro-
duces an example DALMAS which is used in Sect. 3
to demonstrate how to employ evolutionary mecha-
nisms in the process of designing norms, by applying
an evolutionary algorithm to this example. Sect. 4
concludes and suggests some lines of future work.

1.1 Related Work

The runtime emergence of norms within artificial so-
cial systems has attracted the attention of many re-
searchers; see, e.g., (Andrighetto et al., 2013a). How-
ever, evolving normative systems as part of the pro-
cess of designing norm-regulated MAS is not as well
studied, but evolutionary approaches for learning be-
haviour patterns or strategies for coordination have
been successfully used in, e.g., the RoboCup1 do-
main; see for example (Luke et al., 1998; Di Pietro
et al., 2002; Nakashima et al., 2004). In fact, the sim-
ple decision policies evolved by Di Pietro et al. for
the RoboCup Keepaway game can be regarded as sim-
ple normative systems consisting of production rules
which prescribe certain behaviours in certain situa-
tions.

1.2 Previous Work

DALMAS (Odelstad and Boman, 2004) is an abstract
architecture for a class of norm-regulated multi-agent
systems. A deterministic DALMAS is a simple multi-
agent system in which the actions of an agent are con-
nected to transitions between system states. In a de-
terministic DALMAS the agents take turns to act; only
one agent at a time may perform an action. By al-
lowing ‘do nothing’ actions and accelerating the turn-
taking, systems with close to asynchronous behaviour
can be obtained.

Formally, a DALMAS is an ordered 9-tuple, where
the components are various sets, operators and func-
tions which give the specific DALMAS its unique fea-

1http://www.robocup.org

213Hjelmblom M..
Offline Evolution of Normative Systems.
DOI: 10.5220/0005284102130221
In Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART-2015), pages 213-221
ISBN: 978-989-758-074-1
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



tures. Of particular interest is the deontic structure-
operator, which for each situation of the system deter-
mines an agent’s deontic structure (i.e., the set of per-
missible acts) on the feasible acts in the current situa-
tion, and the preference structure-operator, which for
each situation determines the preference structure on
the permissible acts. A norm-regulated simple deter-
ministic DALMAS employs what is often referred to
as ‘negative permission’, by letting the deontic struc-
ture consist of all acts that are not explicitly prohibited
by a normative system. The preference structure con-
sists of the most preferable (according to the agent’s
utility function) of the acts in the deontic structure.
In short, a DALMAS agent’s behaviour is regulated by
the combination of a normative system and a utility
function; this ‘agent oeconomicus norma’2 chooses
the most desirable act, according to the utility func-
tion, within the ‘room for manouver’ determined by
the norms. The DALMAS’s normative framework is
based on an algebraic version of the Kanger-Lindahl
theory of normative positions, in which normative
consequences are formulated by applying normative
operators to descriptive conditions. From these gen-
eral normative sentences on conditions follow nor-
mative sentences regarding specific states of affairs,
which in turn result in permission or prohibition of
individual actions in specific situations. (See for ex-
ample (Lindahl, 1977; Lindahl and Odelstad, 2004;
Odelstad and Boman, 2004; Odelstad, 2008) for an
introduction.) Hence, the norms in the DALMAS ar-
chitecture play a different role, and is represented in
a fundamentally different way, than, e.g., the decision
rules in the RoboCup setting (see Sect. 1.1).

Since the agents take turns to act, each individ-
ual step in a run of a DALMAS may be characterised
by an ordered 5-tuple S = hx;s;A;W;Si whose com-
ponents are a set of states S, a state s, an agent-set
W = fx1; :::;xng, the acting (‘moving’) agent x, and
an action-set A = fa1; :::;amg.3 In this setting, a may
be regarded as a function such that a(x;s) = s+ means
that s+ is the resulting state when x performs act a in
state s. In the following, the abbreviation s+ will be
used for a(x;s) when there is no need for an explicit
reference to the action a and the acting agent x. Since
the action by the acting agent is deterministic and is
performed asynchronously, there is no simultaneous
action by other agents (including the ‘environment’,
which may be regarded as a special kind of agent).
Furthermore, we assume that a n-ary condition d is
true or false on n agents x1; :::;xn 2 W in s; this will

2Cf. (Odelstad, 2008, Sect. 1.8.3).
3In (Hjelmblom, 2013) such a tuple is called a transition

system situation.

be written d(x1; :::;xn;s).4 To facilitate the presenta-
tion, Xn will often be used as an abbreviation for the
argument sequence x1; :::;xn. Negations d0, conjunc-
tions (c^d) and disjunctions (c_d) can be formed in
the following way:

d0(Xn) iff :d(Xn),
(c^d)(Xn) iff c(Xp) and d(Xq), and
(c_d)(Xn) iff c(Xp) or d(Xq)

where n = max(p;q).5 Therefore, it is possible to
construct Boolean algebras of conditions.

Let the situation hx;si be characterised by the
moving agent x and the state s in a norm-regulated
simple deterministic DALMAS. In the following, we
assume that norms always apply to the moving agent
x in a situation hx;si, in order to facilitate the pre-
sentation. A norm in N is represented by an or-
dered pair hg;ci, where the (descriptive) condition g
on a situation hx;si is the ground of the norm and
the (normative) condition c on hx;si is its conse-
quence; see, e.g., (Odelstad and Boman, 2004). We
first define a set of ‘transition type operators’ Ca

k ,
based on Table 2 in (Hjelmblom, 2014a), and a set of
corresponding ‘transition type prohibition operators’
Pk, k 2 f1;2L;2W;4L;4W;5;6L;6W;7g, such that
Pkd(Xn;x;s) is intended to mean that if Ca

k d(Xn;x;s)
holds, then a is prohibited for x in hx;si.6 In effect,
Pkd(Xn;x;s) implies a prohibition of zero, one or two
of the four ‘basic transition types’ with regard to the
state of affairs d(Xn).7 For example, hc;Pkdi, where c
and d can have different arity, represents the sentence

8x1;x2; :::;xn 2W : c(x1;x2; :::;xp;x;s)!
Pkd(x1;x2; :::;xq;x;s)

where W is the set of agents, x is the acting agent
(to which the norm applies) in the situation hx;si,
and n = max(p;q). If the condition specified by the
ground of a norm for some agents in some situation,
then the (normative) consequence of the norm is in
effect in that situation. If the normative system con-
tains a norm whose ground holds in the situation hx;si

4In the special case when the sequence of agents is
empty, i.e. n = 0, d represents a proposition which is true
or false in s.

5The free variables in c(x1; :::;xp) must be the same, and
in the same order, as the free variables in d(x1; :::;xq), but
it is not necessary that p and q have the same arity. Cf.
(Odelstad and Boman, 2004, p. 146).

6The original set of operators in (Odelstad and Boman,
2004) contains seven operators, indexed 1-7. In (Hjelm-
blom, 2013), two new operators were added. See this paper
for an explanation of the somewhat peculiar indices.

7See (Hjelmblom, 2014a, Sect. 2) for a description of
the basic transition types.

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

214



and whose consequence prohibits the type of transi-
tion represented by x performing action a, then a is
prohibited for x in hx;si:

Prohibitedx;s(a) according to N
if there exists a p-ary condition c

and a q-ary condition d
and a k 2 f1;2L;2W;4L;4W;5;6L;6W;7g,

such that hc;Pkdi is a norm in N,
and there exist x1; :::;xn such that

c(x1; :::;xp;x;s) & Ca
k d(x1; :::;xq;x;s),

where n = max(p;q).

Hence, if c(x1; :::;xp;x;s) for some sequence
of agents x1; :::;xn, then the normative condi-
tion Pkd(x1; :::;xq;x;s) is ‘in effect’. Thus, if
Ca

k d(x1; :::;xq;x;s) holds, then a is prohibited for x in
s. (Cf. the examples in Sect. 3.1.) Table 1 shows the
set of nine norm-building operators, together with (in
the rightmost column) the corresponding Ca

k applied
to d(x1; :::;xq;s). Cf. Table VI in (Hjelmblom,
2014b), which also shows a suggested interpretation
of the Pk operators in terms of an extended set of
types of one-agent normative positions, based on the
Kanger-Lindahl theory of normative positions.

A general-level Java/Prolog implementation of the
DALMAS architecture has been developed, to facil-
itate the implementation of specific systems. The
Colour & Form system, the Waste-collector system
and the Forest Cleaner system are three specific sys-
tems that have been implemented using this frame-
work. The reader is referred to (Odelstad and Boman,
2004; Hjelmblom, 2008; Hjelmblom and Odelstad,
2009; Hjelmblom, 2011) for a description of these
systems and their implementations.

The approach to normative systems employed in
this framework is ideally suited for evolution of nor-
mative systems, since the set of Pk operators exhausts
the set of logical possibilities regarding prohibition of
transition types. Therefore each conceivable norma-
tive system, consisting of conditional norms based on
descriptive conditions selected from a set of potential
grounds and normative conditions selected from a set
of potential consequences, could become a candidate
for evaluation in the execution of an evolutionary al-
gorithm. This idea will be further explored in the fol-
lowing sections.

2 EXAMPLE: EXPLORER
DALMAS

Let us consider a class of systems of agents operat-
ing in an environment consisting of a grid of squares
ordered in rows and columns, in which each square

is assigned a pair of integer coordinates. Let us as-
sume that the joint goal of the agents is to explore as
much as possible of the grid using a fixed number of
moves. An agent can stay in the current square, i.e.,
do nothing, or move one square in one of eight direc-
tions (east, northeast, north, northwest, west, south-
west, south, southeast) as long as it stays within the
boundaries of the grid. In other words, in a given
situation, an action is feasible if and only if it does
not move the agent off limits. It should of course be
noted that these simple systems (in the following re-
ferred to as Explorer DALMASes) in themselves are of
limited interest, but the idea here is to illustrate how
evolutionary mechanisms could be used in the process
of designing normative systems for problem-solving
MAS.

To simulate a situation with limited possibilites for
communication between agents and only local knowl-
edge of the environment, we further assume that an
agent only knows the status (visited or unvisited) of
the immediately surrounding squares, and the loca-
tion of other agents within two squares. An agent’s
preference is represented by a very simple utility
function such that moving to an unvisited square is
preferred over moving to a visited square, and stay is
the least preferred action. In the case of a tie between
equally preferred actions, one of them is randomly se-
lected. In other words, all agents have the same utility
function.

To make the situation more concrete, let us assume
that the size of the grid is 7�7 squares and place three
agents at square (1;1), the leftmost lowest square.
Note that this system can be considered as an instance
of the Waste-collector system, in which visited (resp.,
unvisited) squares are represented by 0 (resp., 1) units
of ‘waste’. The higher number of ‘waste’ carried by
an agent, the higher number of unvisited squares have
been entered by that agent. It would not be a very
difficult task to design a plan where the agents take
turns to act in such a way that all remaining 48 squares
are visited in 48 moves. But if the environment gets
changed, e.g., is resized or reshaped, the plan must
be recalculated. What if we let norms replace plans
in this class of environments? Let us investigate the
interplay between the agents’ utility functions, repre-
senting their ‘desires’, and a normative system which
determines their ‘room for manouvre’. One idea is
to base norms on the spatial relationship between
the agents, potentially restricting how the agents may
move in the proximity of other agents. We define
a condition Lapn, n 2 f0;1;2;3;4;6;9g, with the in-
tended meaning that Lapn(x1;x2;s) holds if and only
if the ‘protected spheres’ of agents x1 and x2 overlap
with i squares in a state s. The protected sphere con-

Offline�Evolution�of�Normative�Systems

215



Table 1: Transition Type Conditions (L mnemonic for Leave and W for Oppose).

Pk-operator Corresponding Ca
k -operator Prohibiteda(x;s) if

P1 - -
P2L Ca

2L
d(Xq;s)^:d(Xq;a(x;s))

P2W Ca
2W

:d(Xq;s)^:d(Xq;a(x;s))
P4L Ca

4L
:d(Xq;s)^d(Xq;a(x;s))

P4W Ca
4W

d(Xq;s)^d(Xq;a(x;s))
P5 Ca

5 :d(Xq;a(x;s))
P6L Ca

6L
:(d(Xq;s)$ d(Xq;a(x;s)))

P6W Ca
6W

d(Xq;s)$ d(Xq;a(x;s))
P7 Ca

7 d(Xq;a(x;s))

Table 2: Possible changes of Lapn.

State of affairs Possible state of affairs in next state
Lap0(x1;x2) Lap0(x1;x2);Lap1(x1;x2);Lap2(x1;x2);Lap3(x1;x2)

Lap1(x1;x2) Lap0(x1;x2);Lap1(x1;x2);Lap2(x1;x2)

Lap2(x1;x2) Lap0(x1;x2);Lap1(x1;x2);Lap2(x1;x2);Lap3(x1;x2);Lap4(x1;x2)

Lap3(x1;x2) Lap0(x1;x2);Lap2(x1;x2);Lap3(x1;x2);Lap6(x1;x2)

Lap4(x1;x2) Lap2(x1;x2);Lap4(x1;x2);Lap6(x1;x2)

Lap6(x1;x2) Lap3(x1;x2);Lap4(x1;x2);Lap6(x1;x2);Lap9(x1;x2)

x1 6= x2 &Lap9(x1;x2) Lap6(x1;x2);Lap9(x1;x2)

sists of w’s square plus the eight surrounding squares.
See Fig. 1 in (Hjelmblom, 2008) for an illustra-
tion. Table 2 shows how the overlap can change from
one state to another, given the nine available actions.
Note that since it is always the case that Lap9(xi;xi),
Lapn(x1;x2) (Odelstad and Boman, 2004) x1 6= x2
for n < 9, and x1 = x2 (Odelstad and Boman, 2004)
Lap9(x1;x2). Furthermore, Lapn(x1;x2) (Odelstad
and Boman, 2004) :Lapm(x1;x2) for n 6= m. Now let
the ‘elementary’ conditions Lap0, Lap1, Lap2, Lap3,
Lap4, Lap6, together with the ‘non-elementary’ con-
dition (6= ^Lap9), form a set of potential descrip-
tive grounds for conditional norms. The set of po-
tential normative consequences corresponding to each
ground is constructed by applying the norm-building
operators P1, P2L, :::, P7 (see Sect. 1.2) to the con-
ditions listed in the corresponding rows in Table 2.
Thus, the potential consequences for, e.g., Lap1 are
P1Lap0,:::, P7Lap0, P1Lap1,:::, P7Lap1, P1Lap2,:::,
P7Lap2, and P1Lap4,:::, P7Lap4. Note that it would
be meaningless to, e.g., let PiLap4 be a potential con-
sequence for Lap0, since none of the available acts
can change the state of the system in such a way that
Lap0(x1;x2) holds in one state and Lap4(x1;x2) holds
in the next state.

With these building blocks available, norma-
tive systems for Explorer DALMASes can be con-
structed. Let us use the following approach: For

each condition c in the leftmost column of Ta-
ble 2, one norm hM1c;Pidi is added to the nor-
mative system for each condition d in the right-
most column.8 E.g., for Lap0 we add four norms:
hLap0;Pk0Lap0i, hLap0;Pk1Lap1i, hLap0;Pk2Lap2i,
and hLap0;Pk3Lap3i. Note that, as regards the ground
(6= ^Lap9), one of h(6= ^Lap9);Pk0Lap9i and h(6=
^Lap9);Pk1Lap6i is redundant (since the only condi-
tions that can follow Lap9 are Lap9 and Lap6) and can
therefore be removed. This gives a total of 24 norms.
Note, however, that not all normative systems formed
in this way are coherent. To begin with, some sets of
rules may be contradictory, according to the intended
meaning of the Pi operators, but the problem of coher-
ence (sometimes referred to as ‘absence of conflicts’)
cannot simply be reduced to logical consistency; see
for example (Alechina et al., 2013). We will return to
this issue in Sect. 3.1.

We would now like to find the ‘best’ normative
system, i.e., the normative system that, together with
the simple utility function described earlier, on aver-
age makes the Explorer system most efficient. The
following measure of ‘efficiency’ will be employed:

8The ‘move operator’ M1 identifies the agent to which
the normative condition applies with the acting agent and
with the first agent in the argument sequence Xn. See for
example (Hjelmblom, 2013) for an explanation. In the fol-
lowing, M1 is omitted to facilitate reading.

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

216



the normative system is applied to three different
Explorer DALMASes, operating on grids of (almost)
equal sizes but different shapes: 6� 8 squares, 7� 7
squares, and 10� 5 squares, respectively. On each
grid, three agents are initially placed on square (1;1).
A k-event run of each of these three systems will be
performed, where k is the number of unvisited squares
from the beginning. For each run, the ratio between
the total number of visited squares and the total num-
ber of unvisited squares in the beginning is calculated.
If the normative system is not coherent, in the sense
that at some point during the run all actions (includ-
ing stay) become prohibited for the acting agent, then
the evaluation score is set to 0. The score of the nor-
mative system under evaluation is then the average of
the three ratios obtained. We have now obtained an
optimisation problem which may be solved with the
help of an evolutionary algorithm.

3 EVOLUTION OF EXPLORER
NORMS

Evolutionary algorithms (EA), being a subfield of
evolutionary computation, use the principles of bi-
ological evolution (such as reproduction, mutation,
recombination, and selection) to solve problems on
computers. For a comprehensive introduction to this
field the reader is referred to, e.g., (Whitley, 2001).
In the Explorer DALMAS setting, there is some ran-
domness in the agents’ choices of actions, and in such
‘noisy’ domains, evolutionary algorithms are known
to work well. (Darwen, 2000) We thus implement
a basic genetic algorithm (one of the most common
forms of EAs) for Explorer DALMAS norms:

1. Genesis
Create an initial population of n candidate nor-
mative systems, half of which are entirely ran-
domly generated and half of which consist of
P1-consequences (the most permissive conse-
quences) only. Each candidate is represented by
a character string consisting of 24 characters from
f1; :::;9g.

2. Evaluation
Evaluate each member of the population, by trans-
lating the character string to a normative system
according to the scheme presented in Sect. 2, run-
ning three different systems regulated by this nor-
mative system and using as fitness function the av-
erage of the evaluation scores of the three runs.

3. Survival of the Fittest
Select a number of members of the evaluated pop-
ulation, favouring those with higher fitness scores,
to be the parents of the next generation.

4. Evolution
Generate a new population of offspring by ran-
domly altering and combining elements of the
parent candidates. The evolution is performed by
the two basic evolutionary operators cross-over
and mutation.

5. Iteration
Repeat steps 2-4 until the termination condition
(see Table 3) is met.

The evolutionary algorithm was implemented us-
ing the Java-based Watchmaker framework for evolu-
tionary computation9 together with a slightly adapted
Java/Prolog implementation of the Waste-collector
system (Hjelmblom, 2008; Hjelmblom and Odelstad,
2009).10 The latter was used in step 2 to perform the
k-event runs of Explorer systems to be evaluated.

3.1 Result

The algorithm was run with the parameter values
shown in Table 3; the execution time on an ordinary
laptop was 5-6 hours. The graph in Fig. 1 shows the
fitness values (evaluation scores) of the best norma-
tive system, as well as the average fitness values, in
each generation. We can see that, initially, the best
fitness (which is obtained by a normative system with
P1-consequences only, i.e., a normative system which
allows everything) is around 0:78. Up to around gen-
eration 25, we can see a slow but quite steady im-
provement in the best fitness values, although the im-
pact of the slight randomness in the agents’ choices
of actions is clear. The highest scores, just above
0:86, which roughly corresponds to three more vis-
ited squares per run, are obtained in generations 41
and 78. After 25 generations there seems to be no
significant improvement.

According to the log, the best normative system in
generation 41 (with P1-norms omitted for brevity) is
translated to

h(6= ^Lap9);P2WLap9i, hLap6;P6LLap9i,
hLap4;P6WLap4i, hLap3;P2LLap6i,
hLap2;P6LLap4i, hLap2;P4WLap3i,
hLap0;P4WLap2i, hLap0;P4LLap1i.

9http://watchmaker.uncommons.org/
10The source code is available for download via

http://drp.name/norms/nrtssit, together with a log of a run
of the algorithm.

Offline�Evolution�of�Normative�Systems

217



Figure 1: Evolution Progress. Lower curve shows mean fitness.

Table 3: Choice of Parameter Values.

Parameter Value
Population size 100 individuals
Termination condition 100 generations evolved
Level of elitism 25%
Crossover probability 0.7
Crossover points 6
Mutation probability 0.05
Selection strategy Roulette wheel selection

A closer look at the log reveals that, of the best
candidates with a fitness over 0.85, (1) all but
one (13 out of 14) contain either hLap6;P6LLap9i
or hLap6;P4LLap9i, and (2) all but three con-
tain hLap2;P6LLap4i or hLap2;P4LLap4i. Let
us first consider (1). As we see in Table 1,
the intended meaning of hLap6;P6LLap9i is
that if Lap6(x1;x2) for some agents x1 and
x2, then action a is prohibited for the moving
agent if :Lap9(x1;x2;s) ^ Lap9(x1;x2;a(x;s)) or
Lap9(x1;x2;s) ^ :Lap9(x1;x2;a(x;s)). Since Lap6
implies Lap09, the second disjunct never becomes true
when Lap6(x1;x2); hence a is prohibited for the mov-
ing agent if Lap6(x1;x2;s) and Lap9(x1;x2;a(x;s)).
The meaning of hLap6;P4LLap9i is that if
Lap6(x1;x2) for some agents x1 and x2, then a is
prohibited if :Lap9(x1;x2;s) ^ Lap9(x1;x2;a(x;s));
i.e., if Lap6(x1;x2;s) and Lap9(x1;x2;a(x;s)). Hence,
hLap6;P6LLap9i and hLap6;P4LLap9i are ‘opera-
tionally equivalent’ in the Explorer DALMAS setting,
in the sense that they prohibit the same actions in the
same situation. Furthermore, both are operationally
equivalent to hLap6;P7Lap9i with the intended

interpretation that if Lap6 then the moving agent
shall see to it that not Lap9. A similar case can be
made for (2); hLap2;P6LLap4i, hLap2;P4LLap4i and
hLap2;P7Lap4i are operationally equivalent and thus
interchangeable in this setting.

(1) and (2) illustrate that, in many settings,
the set of consequences may contain redundancy.
This is an effect of the fact that, in this particu-
lar setting, the set of grounds and the set of con-
sequences are constructed from the same set of
conditions. Whether this is a problem or not is
probably dependent on the particular setting. We
may also note that, for example, the meaning of
hLap0;P4WLap2i would be that if Lap0(x1;x2) for
some agents x1 and x2, then a is prohibited for the
moving agent if Lap2(x1;x2;s)^Lap2(x1;x2;a(x;s)).
Now, since Lap0 implies Lap02, Lap2(x1;x2;s) ^
Lap2(x1;x2;a(x;s)) can never become true when
Lap0(x1;x2). Hence, hLap0;P4WLap2iwill never pro-
hibit any actions, and is thus operationally equivalent
to, hLap0;P1Lap2i in this setting. This illustrates an-
other kind of redundancy. Another consequence of
employing negative permission is that normative sys-
tems may evolve which are incoherent (see Sect. 1.2)
according to the underlying logic of the Pk opera-
tors, but still meaningful in an ‘operational’ sense. To
avoid or at least reduce redundancy and logical in-
coherence (and thus, potentially, significantly reduce
the search space for the evolutionary algorithm) in
the setting at hand, a more precise representation of
genes and a more careful design (based on a more
thorough analysis of the relationships between poten-
tial grounds and consequences) of the genetic opera-

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

218



tors is required. For this purpose, the mechanisms for
norm addition and subtraction described in (Lindahl
and Odelstad, 2013, Sect. 4.3) might be very useful.

Based on the above analysis, the following set
of Explorer norms (again, P1-norms are omitted) is
suggested: fhM1Lap6;P7Lap9i,hM1Lap2;P7Lap4ig.
The intended interpretation is

(1) For all x;y: M1Lap6(x;y;x;s) !
P7Lap9(x;y;x;s)); and

(2) For all x;y: M1Lap2(x;y;x;s) !
P7Lap9(x;y;x;s)).
This represents the following simple set of ‘rules

of thumb’: (1) If you stand in the square next to
another agent’s square, you shall move so that you
do not end up in the same location as the other
agent, and (2) if your protected sphere overlaps an-
other agent’s protected sphere with two squares, you
shall move so that the overlap does not increase to
four. These rules may be expressed in logical form
using the deontic operator Shall and the action op-
erator Do: (1) 8x;y: Lap6(x;y), and x is the mov-
ing agent, implies Shall Do(x;:Lap9(x;y)); and (2)
8x;y: Lap2(x;y), and x is the moving agent, implies
Shall Do(x;:Lap4(x;y)). Cf. (Odelstad and Boman,
2004; Hjelmblom, 2014b).

Test runs indicate that the average improvement
with this very simple normative system compared
with a system with no restrictions is two to three
additional squares visited. As the Explorer DAL-
MAS example was chosen for demonstration purposes
only, we shall be content with the simple analysis per-
formed here. In more complex scenarios, other more
powerful (e.g., statistical) methods could be useful.

3.2 Discussion

Validation of the suggested approach to the design of
normative systems for problem-solving MAS is, of
course, a non-trivial problem. One aspect of this prob-
lem is the difficulty of applying this approach, but
most important is probably to focus on the quality of
the results it produces, i.e., to validate the systems ob-
tained by applying the approach. The performance of
norm-regulated MAS designed in this way could, for
example, be compared with the performance of sys-
tems (norm-regulated systems as well as, e.g., plan-
ning systems) designed ‘by hand’. Such compar-
isons require domain-specific performance measures,
which makes a general-level (i.e., domain indepen-
dent) validation very difficult, if not impossible. Even
within a specific domain, validation is non-trivial and
sensitivity analyses are required. A good starting-
point is to consider every tool in the evolutionary tool-
box, together with a thorough analysis of the domain

at hand, to increase the chance of evolving the optimal
normative system. First, the parameters controlling
the evolutionary algorithm may be varied: the pop-
ulation size, the number of evolved generations, the
level of elitism (i.e., the portion of the best candidates
which are allowed to survive into the next generation),
the probability of crossover, the number of crossover
points, and the selection strategy (e.g., tournament se-
lection instead of roulette wheel). Other ideas include
using other representations of chromosomes, such as
tree-based representations to allow for normative sys-
tems with a variable number of norms, or (as has al-
ready been mentioned) more carefully designed evo-
lutionary operators that exclude redundant and/or in-
coherent candidates from evaluation. More advanced
schemes, such as island evolution (where several pop-
ulations are evolved in parallel, with a small probabil-
ity of ‘migration’ between such ‘islands’) or cooling
(where the crossover and mutation probabilities grad-
ually decreases), could also be tried.

Furthermore, the parameters for the particular set-
ting may also be varied. For example, one might
want to consider grounds and consequences based on
other conditions. In the Explorer DALMAS domain
one could try, e.g., Lapn conditions based on larger
protected spheres (since it seems reasonable to ex-
pect that a normative system based on small protected
spheres will be most ‘effective’ when the agents are
relatively close to each other), or generalised versions
of Lapn conditions involving three or more agents.
Other ideas are to allow individual utility functions
for each agent, or evolving the utility function and
the normative system in parallel. In general, spe-
cial treatment is required for domains such as the
Explorer DALMAS where the fitness evaluations are
‘noisy’, i.e., subject to some degree of randomness.
To deal with noisy fitness evaluations, a number of
techniques are available, for example increasing the
population size, and resampling and averaging the fit-
ness. (Di Pietro et al., 2002, Sect. 3.3) As described
in Sect. 2, a variant of the latter technique is used
in the Explorer DALMAS fitness evaluations. Another
option regarding the evaluation function is to allow
more or less variation regarding, e.g., grid sizes or
shapes, number of agents, number of events per run
and number of runs per normative system. However,
large populations, in combination with expensive fit-
ness calculations in each generation, are computation-
ally challenging. The moving average approach by Di
Pietro et al. can be used to reduce the number of sam-
ples needed per generation, and thus allow for run-
ning more generations in a given run-time. When a
candidate is generated for the first time, its ‘fitness
array’ is initialised with n fitness evaluations. For

Offline�Evolution�of�Normative�Systems

219



each new generation, the evaluation score is calcu-
lated only once, and the oldest score in the fitness
array is replaced with the new score. A candidate’s
fitness is then the average of the evaluation scores in
the fitness array.

4 CONCLUSION AND FUTURE
WORK

A sketch of a methodology for using evolutionary
mechanisms as part of the pre-runtime design of nor-
mative systems for problem-solving MAS was pre-
sented. The idea behind this methodology is to use
a ‘top-down’ approach of selecting (a subset of ) the
most ‘efficient’ norms from an evolved normative sys-
tem, rather than a ‘bottom-up’ approach of designing
a normative system entirely from scratch. To illus-
trate the idea, a simple system, based on the DALMAS
architecture for norm-regulated MAS was employed
as part of the evaluation step of an evolutionary al-
gorithm. The results show that an evolutionary algo-
rithm has the potential of being a useful tool when de-
signing normative systems for problem-solving MAS.

Ideas for future work include trying to formalise
and further investigate the notion of operational
equivalence which was introduced in Sect. 3.1. Al-
sto left for future work is further validation of the
suggested methodology, for example by applying the
methodology in other domains in which the grounds
of the norms and the consequences are based on dif-
ferent sets of descriptive conditions, or by further
validating the evolved normative system for the Ex-
plorer DALMAS. One could experiment with differ-
ent domain-specific parameters as well as evolution-
ary algorithm parameters, as suggested in Sect. 3.2,
to see if better solutions can be found and thus gain
more support for the ideas suggested here. It could
be interesting to, e.g., explore variable-sized norma-
tive systems and evaluation functions which impose a
‘penalty’ for large normative systems, since in many
cases it could be desirable to rely on a small num-
ber of ‘rules of thumb’ and avoid overly complex
normative systems which may become expensive in
terms of calculations. Investigating the possibility
to design more ‘accurate’ evolutionary operators also
seems like a promising idea.

ACKNOWLEDGEMENTS

The author is very grateful to Jan Odelstad and Mag-
nus Boman for valuable ideas and suggestions.

REFERENCES

Alechina, N., Bassiliades, N., Dastani, M., Vos, M. D.,
Logan, B., Mera, S., Morris-Martin, A., and Scha-
pachnik, F. (2013). Computational Models for Nor-
mative Multi-Agent Systems. In Andrighetto, G.,
Governatori, G., Noriega, P., and van der Torre,
L. W. N., editors, Normative Multi-Agent Systems,
volume 4 of Dagstuhl Follow-Ups, pages 71–92.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany.

Andrighetto, G., Castelfranchi, C., Mayor, E., McBreen, J.,
Lopez-Sanchez, M., and Parsons, S. (2013a). (So-
cial) Norm Dynamics. In Andrighetto, G., Gov-
ernatori, G., Noriega, P., and van der Torre, L.
W. N., editors, Normative Multi-Agent Systems, vol-
ume 4 of Dagstuhl Follow-Ups, pages 135–170.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany.

Andrighetto, G., Governatori, G., Noriega, P., and van der
Torre, L. W. (2013b). Normative multi-agent systems,
volume 4 of dagstuhl follow-ups. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Balke, T., Cranefield, S., Tosto, G. D., Mahmoud, S.,
Paolucci, M., Savarimuthu, B. T. R., and Verhagen,
H. (2013). Simulation and NorMAS. In Andrighetto,
G., Governatori, G., Noriega, P., and van der Torre,
L. W. N., editors, Normative Multi-Agent Systems,
volume 4 of Dagstuhl Follow-Ups, pages 171–189.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany.

Darwen, P. (2000). Computationally intensive and noisy
tasks: co-evolutionary learning and temporal differ-
ence learning on backgammon. In Evolutionary Com-
putation, 2000. Proceedings of the 2000 Congress on,
volume 2, pages 872–879 vol.2.

Di Pietro, A., While, R. L., and Barone, L. (2002). Learning
in robocup keepaway using evolutionary algorithms.
In GECCO, volume 2, pages 1065–1072.

Hjelmblom, M. (2008). Deontic action-logic multi-agent
systems in Prolog. Technical Report 30, University of
Gävle, Division of Computer Science.

Hjelmblom, M. (2011). State transitions and normative
positions within normative systems. Technical Re-
port 37, University of Gävle, Department of Industrial
Development, IT and Land Management.

Hjelmblom, M. (2013). Norm-regulated transition system
situations. In Filipe, J. and Fred, A., editors, Proceed-
ings of the 5th International Conference on Agents
and Artificial Intelligence, ICAART 2013, pages 109–
117, Portugal. SciTePress.

Hjelmblom, M. (2014a). Instrumentalization of norm-
regulated transition system situations. In Filipe, J. and
Fred, A., editors, Agents and Artificial Intelligence,
volume 449 of Communications in Computer and In-
formation Science, pages 80–94. Springer Berlin Hei-
delberg.

Hjelmblom, M. (2014b). Normative positions within norm-
regulated transition system situations. In Web In-
telligence (WI) and Intelligent Agent Technologies
(IAT), 2014 IEEE/WIC/ACM International Joint Con-
ferences on, volume 3, pages 238–245.

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

220



Hjelmblom, M. and Odelstad, J. (2009). jDALMAS: A
Java/Prolog framework for deontic action-logic multi-
agent systems. In Håkansson, A., Nguyen, N., Har-
tung, R., Howlett, R., and Jain, L., editors, Agent
and Multi-Agent Systems: Technologies and Applica-
tions, volume 5559 of Lecture Notes in Computer Sci-
ence, pages 110–119. Springer Berlin / Heidelberg.
doi:10.1007/978-3-642-01665-3 12.

Lindahl, L. (1977). Position and change: a study in law and
logic. Synthese library. D. Reidel Pub. Co.

Lindahl, L. and Odelstad, J. (2004). Normative positions
within an algebraic approach to normative systems.
Journal of Applied Logic, 2(1):63 – 91.

Lindahl, L. and Odelstad, J. (2013). The theory of joining-
systems. In Gabbay, D., Horthy, J., Parent, X., van der
Meyden, R., and van der Torre, L., editors, Handbook
of Deontic Logic, volume 1, chapter 9, pages 545–634.
College Publications, London.

Luke, S., Hohn, C., Farris, J., Jackson, G., and Hendler,
J. (1998). Co-evolving soccer softbot team coordina-
tion with genetic programming. In Kitano, H., edi-
tor, RoboCup-97: Robot Soccer World Cup I, volume
1395 of Lecture Notes in Computer Science, pages
398–411. Springer Berlin Heidelberg.

Nakashima, T., Takatani, M., Udo, M., and Ishibuchi, H.
(2004). An evolutionary approach for strategy learn-
ing in robocup soccer. In Systems, Man and Cyber-
netics, 2004 IEEE International Conference on, vol-
ume 2, pages 2023–2028. IEEE.

Odelstad, J. (2008). Many-Sorted Implicative Conceptual
Systems. PhD thesis, Royal Institute of Technology,
Sweden. QC 20100901.

Odelstad, J. and Boman, M. (2004). Algebras
for agent norm-regulation. Annals of Math-
ematics and Artificial Intelligence, 42:141–166.
doi:10.1023/B:AMAI.0000034525.49481.4a.

Verhagen, H. and Boman, M. (1999). Norms can replace
plans. In IJCAI’99 Workshop on Adjustable, Au-
tonomous Systems.

Whitley, D. (2001). An overview of evolutionary algo-
rithms: practical issues and common pitfalls. Infor-
mation and Software Technology, 43(14):817 – 831.

Offline�Evolution�of�Normative�Systems

221


