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Abstract: Atrial fibrillation (AF) is the most common type of arrhythmia. This work presents a pattern analysis 
approach to automatically classify electrocardiographic (ECG) records as normal sinus rhythm or AF. Both 
spectral and time domain features were extracted and their discrimination capability was assessed 
individually and in combination. Spectral features were based on the wavelet decomposition of the signal 
and time parameters translated heart rate characteristics. The performance of three classifiers was evaluated: 
k-nearest neighbour (kNN), artificial neural network (ANN) and support vector machine (SVM). The MIT-
BIH arrhythmia database was used for validation. The best results were obtained when a combination of 
spectral and time domain features was used. An overall accuracy of 99.08 % was achieved with the SVM 
classifier. 

1 INTRODUCTION 

An electrocardiogram (ECG) is a recording of the 
heart’s electrical activity. This recording can be 
obtained in a non-invasive manner by placing 
electrodes on the surface of the chest. The basic 
components of the ECG waveform are depicted in 
Figure 1. The RR interval, time period between 
consecutive R waves, is used to compute the heart 
rate. Its regularity / irregularity is one of the first 
steps when analysing an ECG strip. 

 

Figure 1: Basic components of the ECG waveform (Huff, 
2006). 

Besides the standard 12-lead ECG, widely used 
in clinical practice, a number of other cardiac 
monitoring tools have been developed in the last few 
decades. Portable ECG devices that allow the 
diagnosis of arrhythmias (disturbances in rate, 
rhythm, or conduction) include Holter monitors, 
mobile cardiac outpatient telemetry systems, event 
recorders and patch monitors. An enormous amount 
of data can be collected by such devices and it is 
therefore essential to develop algorithms that aid in 
the analysis of the records. 

The problem of automatic detection of 
arrhythmic events from ECG records has been 
largely addressed. Many authors have focused on the 
classification of beat types and, to a lesser extent, 
rhythm classification has also been attempted. The 
types of beats / rhythms included and the 
methodologies adopted vary widely. A truthful 
comparison of the results is rather difficult since 
databases used for validation are not always 
publically available. 

In this paper we present an algorithm that 
distinguishes between normal sinus rhythm and the 
most common arrhythmia, atrial fibrillation (AF). 
Regarding the type of features, our focus is on 
spectral and time-domain parameters. Individual and 
combined assessment of these types of features are 
carried out. The performance of three different 
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classifiers is compared and the MIT-BIH arrhythmia 
database is used to validate the algorithm. 

The remaining of this paper is organized as 
follows. In section 2 a brief review of the state-of-
the-art concerning automatic beat / rhythm 
classification from ECG records is offered. 
Extracted features, validation process and classifiers 
used are detailed in section 3. In section 4 the results 
obtained are presented and discussed. Finally, 
section 5 contains the conclusions. 

2 STATE-OF-THE-ART 

In the last few decades a considerable effort was 
dedicated to develop methods for automatic analysis 
of ECG records. A large number of algorithms were 
developed to differentiate between different types of 
beats. The problem of detection and classification of 
arrhythmic rhythms was also addressed. All these 
studies vary widely in terms of features extracted 
from the ECGs and classification scheme. 

Temporal and morphological information were 
often combined to classify different beat types. 
(Chazal et al., 2004) used RR interval features, 
heartbeat interval features and ECG morphology 
features to distinguish between 5 beat types. Linear 
discriminants were used for classification with an 
overall accuracy of 84.5 %. Ectopic and normal 
beats were considered in (Iliev et al., 2007) where 
the features consisted of a QRS pattern matrix and 
the deviation of RR interval from the mean RR 
interval. Sensitivity and specificity values of, 
respectively, 99.81 % and 98.87 % were reported. 
(Silipo and Marchesi, 1998) used an artificial neural 
network structured as an autoassociator with inputs 
based on beat morphology and RR interval features. 
Recognition rates of 99 %, 96 % and 75 % were 
obtained respectively for normal beats, ventricular 
ectopic beats and supraventricular ectopic beats. 

To distinguish between normal sinus rhythm and 
AF ECG records, many authors have focused solely 
on features related with the heart rate. (Moody and 
Mark, 1983) and later (Artis et al., 1991) developed 
algorithms based on RR interval analysis. The first 
approach used Markov process models whilst the 
second achieved better results with an artificial 
neural network (sensitivity and specificity values of, 
respectively, 92.86 % and 92.34 % were reached).  

(Tateno and Glass, 2001) constructed standard 
density histograms of RR and ΔRR intervals 
(difference between two successive RR intervals). 
The performance of the coefficient of variation test 
and the Kolmogorov-Smirnov test was compared. 
When using the Kolmogorov-Smirnov test based on 
the ΔRR intervals, a sensitivity of 94.4 % and a 

specificity of 97.2 % were achieved with the MIT-
BIH atrial fibrillation database. More recently, the 
density histogram of ΔRR intervals was used to 
construct the ΔRR interval distribution difference 
curve (Huang et al., 2011). That is, the difference 
between the distribution of RR intervals before and 
after the current RR interval. The authors proceeded 
to detect and determine the boundaries of AF events. 
Using the same database, sensitivity and specificity 
values of 96.1% and 98.1%, respectively, were 
obtained. 

In (Park et al., 2009) the dynamics of inter-beats 
intervals were analysed using a Poincaré plot. The 
number of clusters in the plot, the mean stepping 
increment of inter-beat intervals and the dispersion 
of the points around a diagonal line were used, in 
combination with a support vector machine 
classifier. The authors reported specificity and 
sensitivity values of, respectively, 92.9 % and 91.4 
%. 

(Dash et al., 2009) used three statistical measures 
to deal with the variability, randomness and 
complexity of the heart beat intervals sequence. The 
root mean square of successive RR differences, the 
Turning Points Ratio and Shannon entropy were 
employed to detect onset of AF and non-AF. 
Sensitivity and specificity values above 90 % were 
achieved both with the MIT-BIH atrial fibrillation 
and arrhythmia databases. 

(Langley et al., 2012) showed the effectiveness 
of detecting AF in short duration beat interval 
recordings. Three algorithms were evaluated: 
coefficient of variation, mean successive difference 
and coefficient of sample entropy. The latter 
achieved a sensitivity of 95.2 % and a specificity of 
93.4 %, with 10 seconds recordings. 

(Yang et al., 1994) used not only RR-based 
features, but also other observations and measures 
from 12-lead ECGs, and studied the performance of 
deterministic logic and artificial neural networks 
classifiers. The best results were obtained with the 
artificial neural network for which sensitivity and 
specificity reached values of 92.0 % and 92.3 % 
respectively. In (Kaiser et al., 2010) a decision tree 
classifier was used with features extracted from the 
RR interval tachogram. The authors reported a 
sensitivity of 99.1 % and a specificity of 88.3 %. 

Frequency analysis methods were also used in 
the feature extraction process. The more traditional 
Fourier transform was naturally explored (Clayton et 
al., 1994) but more attention has been paid to 
wavelet transform which allows a multi-scale 
decomposition and overcomes some drawbacks in 
terms of frequency resolution. Energy parameters 
derived from the wavelet transform were used both 
in (Khadra et al., 1997) and (Al-Fahoum and Howitt, 
1999) to distinguish between 4 rhythm types 
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recurring respectively to a set of rules and a neural 
network. The latter study achieved a better 
performance with an overall accuracy of 97.5 %. A 
beat by beat classification was attempted in (Güler, 
2005) using a combined neural network model and 
statistical features from the wavelet decomposition. 
Four beat types were considered and an overall 
classification rate of 96.94 % was reached. (Kara 
and Okandan, 2007) computed the power spectral 
density of each wavelet scale and average values 
over sub-bands were fed to an artificial neural 
network to distinguish between normal sinus rhythm 
and AF records. An accuracy of 100 % was achieved 
on a small, private, database. (Martis et al., 2012) 
compared the performance of support vector 
machines, neural network and Gaussian mixture 
model in the distinction of normal and 12 different 
beat types. Features were obtained after a feature 
selection method was applied to the wavelet 
coefficients. The support vector machine performed 
better with an accuracy of 95.60 %. 

Feature sets containing both wavelet-based 
features and heart rate information have also been 
used for beat classification with promising results 
(Inan et al., 2006; Prasad and Sahambi, 2003; Shen 
et al., 2012; Ye et al., 2012). The types of beats 
included in the analysis varied but all these studies 
include in their feature sets wavelet coefficients and 
RR-related information. Neural networks and 
support vector machines were the preferred 
classifiers. 

The different tasks addressed by the cited 
studies, in terms of beats or rhythms included in the 
analysis, hamper a truthful comparison of the 
algorithm’s performance. Furthermore, although the 
MIT-BIH arrhythmia database is commonly used for 
validation, some authors opt for using databases that 
are not publically available. 

In this paper 60 seconds ECG records are 
considered. We attempt to distinguish between 
rhythm types independently of the occurrence of a 
particular beat (e.g. a normal sinus rhythm segment 
may contain a premature ventricular contraction). 
The MIT-BIH arrhythmia database is used for 
validation. 

3 METHODOLOGY 

The methodology proposed in this paper is 
schematized in Figure 2, encompassing the 
following steps: feature extraction, feature 
normalization, classifier training and testing. In the 
following subsections we will detail these steps. 

 

Figure 2: Automatic signal analysis methodology. 

3.1 Feature Extraction 

Two types of features were explored in this analysis: 
spectral parameters, derived from the wavelet 
decomposition of the ECG signals; and time domain 
parameters, translating heart rate characteristics. 

3.1.1 Spectral parameters 

Spectral parameters were extracted following the 
scheme shown in Figure 3. The power spectral 
density (PSD) of the wavelet decomposition of the 
signals was computed and two different feature sets 
were constructed. 

 

Figure 3: Feature extraction process of the spectral 
parameters. 

Signals were decomposed until the sixth level 
using the quadratic spline wavelet, depicted in 
Figure 4. Details of this wavelet function and the 
coefficients of the corresponding finite impulse 
response filters are given in (Mallat and Zhong, 
1992). Figure 5 shows a 10 s extract of the 
decomposition of a normal sinus rhythm ECG. The 
decomposition was achieved with the redundant 
discrete wavelet transform (RDWT), or algorithme à 
trous (Fowler, 2005). 
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Figure 4: Mother wavelet and scaling function of the 
quadratic spline wavelet. 

 

Figure 5: Approximation (A6) and detail (D1 to D6) 
coefficients of the wavelet decomposition of a 10 s normal 
sinus rhythm ECG. 

For each one of the 7 signals, corresponding to 
the coefficients of 6 detail and one approximation 
signals, the PSD was computed. Welch’s method, 
relying upon the concept of modified periodograms, 
was adopted (Welch, 1967). Segments of 256 
samples with 50 % overlap were used and a Hanning 
window was employed. Figure 6 depicts the PSD of 
the signals shown previously. 

 

Figure 6: PSD of each one of the approximation (A6) and 
detail (D1 to D6) wavelet coefficients. Dotted red lines 
delimitate the sub-bands of feature set A. 

Two feature sets of wavelet-based features were 
extracted: 

 For each one of the 7 PSD signals, the 
average value of the PSD over predefined sub-
bands was computed. The 6 sub-bands considered 
were: [0, 2]; [2, 4]; [4, 8]; [8, 16]; [16, 32]; and 
[32, 64] Hz. These sub-bands are depicted in 
Figure 6. This feature set, henceforth referred to as 
feature set A, contains therefore 42 features (6 
values for each one of the 7 signals). The same 
features are referred by Kara et al. (2007). 

 For each one of the 7 PSD signals, the 
integral over the range [0, 55] Hz was calculated. 
This computation was performed using the 
trapezoidal rule. A total of 7 features are in this 
way selected to represent each pattern. This feature 
set shall be referred to as feature set B. 

3.1.2 Time parameters 

To complement the information given by the 
spectral features, two time domain parameters were 
selected: average RR interval and standard deviation 
of RR intervals. These ought to be particularly 
interesting in the distinction of AF and normal 
rhythm due to the inherent irregularity of AF. 
Feature set C contains these two parameters. 

3.2 Feature Normalization 

An important step in classification tasks is feature 
normalization. This can highly influence the 
classifier’s performance. Once the dataset was 
divided into training and test sets, features from the 
training set were normalized and the same 
transformation was then applied to the test set. Two 
normalization schemes were considered: feature 
scaling to the range [0, 1] and feature 
standardization. These operations are detailed in 
Equations (1) and (2). 

xୱୡୟ୪ୣୢ ൌ
x െmin x

max x െmin x
 

(1)

xୱ୲ୟ୬ୢୟ୰ୢ୧୸ୣୢ ൌ
x െ μሺxሻ
σሺxሻ

 (2)

3.3 Classifiers 

The performance of three supervised learning 
classifiers was assessed: k-nearest neighbour (kNN), 
multilayer perceptron (MLP) and support vector 
machine (SVM). The kNN classifier simply assigns 
to a new pattern the label of the majority of the k 
closest neighbours. The Euclidian distance was used 
as a measure of similarity between patterns, and all 
features were weighted equally. 

BIOSIGNALS�2015�-�International�Conference�on�Bio-inspired�Systems�and�Signal�Processing

332



 

MLPs are the most common type of artificial 
neural networks (ANNs). The network first goes 
through a learning stage when labelled patterns are 
presented to it and weights between neurons are 
adjusted according to the desired output. Further 
details about MPs, the backpropagation training 
algorithm and acceleration techniques can be found 
in (Beale and Fiesler, 1997). Here, a single hidden 
layer was used and the most suitable number of 
neurons in this layer was found for each 
classification task. The activation function used in 
this analysis was the logic sigmoid and a momentum 
term of 0.1 was used to accelerate the training phase. 

In the last few years SVMs have become 
increasingly popular on the nonlinear classification 
of patterns. By using the so-called kernel trick, data 
is mapped unto a higher dimension where it can be 
linearly separated (Fletcher, 2009). The radial basis 
function kernel, given by equation 3 and dependent 
on the kernel parameter ߛ, was used in this analysis. 
The penalty parameter ܥ, which controls the trade-
off between smoothness of the decision boundary 
and misclassifications, takes also a user-defined 
value. These parameters were experimentally tuned 
for best performance. 

k൫ܠ୧, ୨൯ܠ ൌ eିቀஓฮܠ౟ିܠౠฮ
మ
ቁ (3) 

3.4 Validation setup 

Cross-validation was implemented to test the 
algorithm. A stratified 4-fold cross-validation was 
used: for each one of the 4 possible combinations, 3 
folds were used as training data and the fourth 
served as test. This process was repeated for 50 runs, 
and for each run a balanced dataset was generated by 
randomly sampling on the existing data. 

To evaluate the classifier’s performance a couple 
of accuracy measures, besides the error rate, were 
computed. Using the usual notation for true 
positives, true negatives, false positives and false 
negatives (that is TP, TN, FP and FN) we can define 
the precision (or positive predictive value) and the 
recall (or sensitivity) as shown in equations (4) and 
(5). The F1 score, also known as F-score or F-
measure, is the harmonic mean of precision and 
sensitivity and can be obtained by equation (6). 

Precision ൌ
TP

TP ൅ FP
 

(4) 

Recall ൌ
TP

TP ൅ FN
 

(5) 

Fଵ ൌ
2TP

2TP ൅ FP ൅ FN
 (6) 

4 RESULTS AND DISCUSSION 

4.1 Database Characterization 

The algorithm was tested using records from the 
MIT-BIH arrhythmia database (Moody and Mark, 
2001). A total of 48 two-channel Holter records are 
available, each approximately 30 minutes long. The 
upper signal is usually a modified limb lead II 
(MLII) but occasionally a modified lead V5. The 
lower signal is most often a modified lead V1 
(occasionally V2 or V5, and in one instance V4). All 
signals were digitized at a sample rate of 360 Hz. 
The database includes different sets of annotations 
verified by more than one cardiologist. All beats are 
identified and labelled according to their type (i.e. 
normal beat, premature ventricular contraction…). 
Annotations that mark the beginning of a rhythm 
type are also available. 

For this analysis only MLII records were used 
(records number 102 and 104 were therefore 
excluded). In order to perform rhythm classification 
each record was split into multiple segments 
according to rhythm annotations. Additional cuts 
were made in a non-overlapping manner to obtain 
segments of predefined length (60 s). A total of 911 
normal sinus rhythm and 98 atrial fibrillation 
segments were obtained in this manner. For the 
features based on the location of the R peaks, the 
position annotations present on the database were 
used. This assures that the performance of the 
algorithm is not affected by possible mistakes on the 
detection of the peaks. 

4.2 Experimental Results 

The experimental results obtained with the different 
feature sets and with combinations of features sets 
are presented next. For each experiment, multiple 
tests were performed in order to choose the most 
suitable classifiers’ parameters and only the best 
results are reported. For the ANN this consisted of 
varying the number of neurons in the hidden layer. 
For the kNN we varied the number of neighbours 
considered for classification, ݇. Regarding the SVM, 
the penalty parameter, ܥ, and the kernel parameter, 
 were varied in a logarithmic scale, respectively ,ߛ
between [10-2, 108] and [10-5, 103]. Chosen 
parameters were the ones that ensured a smaller test 
error. 

For both the kNN and the ANN classifiers the 
two types of normalization schemes were attempted. 
Feature standardization was applied for the SVM 
classifier. 
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4.2.1 Experimental results based on RR 
features 

A first attempt was made to distinguish between 
normal sinus rhythm and AF ECG segments relying 
only on heart rate related features (feature set C). 
The classifiers’ parameters that led to the best 
performance are summarized in Table 1. For the 
ANN the best result corresponded to standardized 
features with 10 neurons in the hidden layer. For the 
kNN classifier the best performance was achieved 
when features were standardized and three 
neighbours were considered. Concerning the SVM 
classifier, values of 1 and 10 respectively for the 
penalty, ܥ, and kernel, ߛ, parameters led to a more 
successful classification. 

The results obtained for the three classifiers are 
summarized in Table 2, showing mean values and 
standard deviations. We highlighted in bold the 
highest values of precision, recall and F-score for 
each class and the minimum test error achieved. 

Overall, the SVM classifier was the one that 
performed better, achieving a test error of 4.53 ± 
1.50 %. ANN and kNN classifiers have a similar 
performance in terms of test error. For the ANN it is 

interesting to note that precision and recall values 
respectively for normal and AF rhythms are 
considerably high (approximately 99 %). 

4.2.2 Experimental results based on spectral 
features 

Average PSD values 

The results obtained using as features only the 
average PSD over the 6 sub-bands (feature set A) are 
shown in Table 3. The classifiers’ parameters that 
led to these results are given in Table 1. 

The best results were obtained with the SVM 
classifier. 

Large range power features 

The best results obtained when using as features the 
integral of the PSD of the wavelet decomposition 
(feature set B) are presented in Table 4. Table 1 
summarizes the corresponding classifiers’ 
parameters. 

It is clear that the SVM classifier offered the best 
results whilst the performance of the ANN was 
considerably worst. 

Table 1: Best classifiers' parameters for each classification task. 

Feature set Classifier Normalization Parameters 

A 

ANN Scaling 55 Hidden Neurons 

kNN Standardization ݇ ൌ 1
SVM Standardization ܥ ൌ 10ଷ ;  ߛ ൌ 10ିଶ 

B 

ANN 

Standardization 

15 Hidden Neurons 

kNN ݇ ൌ 1
SVM ܥ ൌ 10ଶ ;  ߛ ൌ 1 

C 

ANN 

Standardization 

10 Hidden Neurons 

kNN ݇ ൌ 3
SVM ܥ ൌ1 ;  ߛ ൌ 10 

A + C 

ANN Scaling 35 Hidden Neurons 

kNN Scaling ݇ ൌ 1
SVM Standardization ܥ ൌ ߛ  ; 10଼ ൌ 10ିଶ 

B + C 

ANN 

Standardization 

14 Hidden Neurons 

kNN ݇ ൌ 1
SVM ܥ ൌ ߛ  ; 10 ൌ 1 

Table 2: Results obtained with feature set C. 

Classifier Rhythm Precision (%) Recall (%) F-score (%) Test error (%) 

ANN 
Normal 98.66 ± 1.00 90.31 ± 1.86 94.21 ± 1.22 

5.49 ± 1.15 
Atrial Fibrillation 91.27 ± 1.62 98.72 ± 0.98 94.78 ± 1.08 

kNN 
Normal 97.93 ± 1.34 91.4 ± 2.61 94.44 ± 1.77 

5.31 ± 1.65 
Atrial Fibrillation 92.19 ± 2.22 97.98 ± 1.34 94.90 ± 1.55 

SVM 
Normal 96.79 ± 1.41 94.23 ± 2.20 95.39 ± 1.55 

4.53 ± 1.50 
Atrial Fibrillation 94.56 ± 2.01 96.71 ± 1.50 95.53 ± 1.47 
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Table 3: Results obtained with feature set A. 

Classifier Rhythm Precision (%) Recall (%) F-score (%) Test error (%) 

ANN 
Normal 96.90 ± 1.83 86.36 ± 3.08 91.06 ± 1.83 

8.29 ± 1.57 
Atrial Fibrillation 88.18 ± 2.28 97.07 ± 1.84 92.24 ± 1.41 

kNN 
Normal 96.92 ± 1.11 91.27 ± 3.08 93.87 ± 1.88 

5.87 ± 1.72 
Atrial Fibrillation 92.04 ± 2.62 96.99 ± 1.15 94.35 ± 1.60 

SVM 
Normal 95.56 ± 1.62 93.77 ± 2.00 94.54 ± 1.46 

5.39 ± 1.44 
Atrial Fibrillation 94.10 ± 1.85 95.45 ± 1.70 94.66 ± 1.44 

Table 4: Results obtained with feature set B. 

Classifier Rhythm Precision (%) Recall (%) F-score (%) Test error (%) 

ANN 
Normal 95.24 ± 2.30 86.16 ± 3.60 90.18 ± 2.49 

9.21 ± 2.23 
Atrial Fibrillation 87.83 ± 2.84 95.41 ± 2.33 91.26 ± 2.06 

kNN 
Normal 96.73 ± 1.31 89.70 ± 3.38 92.91 ± 2.01 

6.73 ± 1.80 
Atrial Fibrillation 90.75 ± 2.80 96.84 ± 1.31 93.56 ± 1.63 

SVM 
Normal 96.74 ± 1.46 91.13 ± 2.67 93.70 ± 1.76 

6.04 ± 1.64 
Atrial Fibrillation 91.93 ± 2.31 96.78 ± 1.49 94.17 ± 1.55 

Table 5: Results obtained with feature sets A + C. 

Classifier Rhythm Precision (%) Recall (%) F-score (%) Test error (%) 

ANN 
Normal 99.17 ± 0.95 94.55 ± 2.57 96.73 ± 1.58 

3.13 ± 1.46 
Atrial Fibrillation 94.98 ± 2.22 99.19 ± 0.93 96.98 ± 1.37 

kNN 
Normal 98.29 ± 0.72 94.35 ± 2.48 96.19 ± 1.38 

3.67 ± 1.27 
Atrial Fibrillation 94.77 ± 2.17 98.31 ± 0.72 96.44 ± 1.19 

SVM 
Normal 98.23 ± 1.23 96.69 ± 2.05 97.39 ± 1.40 

2.55 ± 1.33 
Atrial Fibrillation 96.89 ± 1.80 98.20 ± 1.25 97.49 ± 1.28 

Table 6: Results obtained with feature sets B + C. 

Classifier Rhythm Precision (%) Recall (%) F-score (%) Test error (%) 

ANN 
Normal 99.36 ± 0.58 94.67 ± 2.30 96.89 ± 1.26 

2.98 ± 1.16 
Atrial Fibrillation 95.11 ± 1.98 99.37± 0.57 97.14 ± 1.08 

kNN 
Normal 99.06 ± 0.60 95.75 ± 2.10 97.31 ± 1.17 

2.60 ± 1.10 
Atrial Fibrillation 96.07 ± 1.85 99.04 ± 0.67 97.48 ± 1.04 

SVM 
Normal 98.64 ± 0.83 99.59 ± 0.64 99.10 ± 0.64 

0.92 ± 0.66 
Atrial Fibrillation 99.61 ± 0.62 98.57 ± 0.92 99.06 ± 0.68 

 
One can refer to Figure 7 to compare the results 

of the three sets of features. Considering the 
wavelet-based feature sets, we can note that the 
performance of all classifiers declined when using 
the large range power features. This can possibly be 
explained by some loss of information due to the 
reduction of the feature set from 42 to 7 features. 
However it is worth mentioning that this reduction 
considerably diminishes the training time. Among 
all feature sets, the time domain features allow a 
better differentiation between normal sinus rhythm 
and AF segments. In the next section an attempt to 
improve classifiers’ performance by combining 
different types of features is explored. 

 

Figure 7: Means and standard deviations of the test errors 
for feature sets C, A and B. 
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4.2.3 Experimental results based on 
combination of features 

Average PSD values + time parameters 

Average values over sub-bands were combined with 
average RR and standard deviation of RR intervals 
to construct a new feature set (feature set A + C). 
The best results obtained and the corresponding 
classifiers’ parameters are summarized respectively 
in Table 5 and Table 1. 

The SVM classifier was the one that achieved 
the best performance reaching a test error of 2.55 ± 
1.33 %. Contrary to what happened when using 
solely RR or wavelet based features, the ANN 
performed better than the kNN classifier. 

Large range power features + time 
parameters 

A feature set containing 9 features was constructed 
by combining integral values of the PSD with RR-
based features (feature set B + C). The results 
obtained for the three classifiers are presented in 
Table 6. Table 1 shows the corresponding 
classifiers’ parameters. 

The accuracy of the SVM classifier reached a 
value higher than 99 %. The performance of the 
kNN surpassed the one of the ANN. 

By comparing the results obtained here with the 
ones obtained previously, we can conclude that the 
combination of wavelet and RR-based features is 
beneficial for all three classifiers. Furthermore, the 
feature set constructed with integral values of the 
PSD of the wavelet decomposition, average RR and 
standard deviation of RR intervals offers the most 
promising results. This is made clear in Figure 8. 

 

Figure 8: Means and standard deviations of the test errors 
for feature sets A + C and B + C. 

In all cases studied the SVM classifier 
outperformed the results of the other two classifiers. 
Despite its more complex formulation and its ability 
to model nonlinear data, the ANN classifier was 

often surpassed by the much simpler kNN classifier. 
Moreover we noted that the training time required 
by the ANN largely exceeded that of kNN and 
SVM. 

5 CONCLUSIONS 

This paper addressed the problem of classification of 
60 seconds one-lead ECG segments as AF or normal 
sinus rhythm. The PSD of the wavelet 
decomposition of the signal at all scales was 
computed and two sets of features were extracted. 
An additional feature set containing average RR and 
standard deviation of RR intervals was considered. 
We compared the performance of three supervised 
learning classifiers on this classification task, using 
benchmarked data from the MIT-BIH arrhythmia 
database. 

A first analysis of the feature sets considered 
individually demonstrated the superior 
discrimination capability of heart rate related 
features when compared to wavelet-based features. 
This was true for all three classifiers. Better 
performances could be obtained when combining the 
two types of features. An accuracy of 99.08 % was 
achieved with the SVM classifier whilst kNN and 
ANN could not reach such a good performance 
(accuracies of 97.40 and 97.02 % respectively). 

Interesting tests could be performed to try to 
improve classifiers’ performance. Here we used the 
quadratic spline wavelet and decompose the signal 
until the sixth level. A more systematic procedure 
could have been undertaken to choose the most 
suitable wavelet function. It should be mentioned 
that a few tests were performed with Daubechies 10 
wavelets but the results were poorer. The 
decomposition level may also be varied. Another 
interesting test would be to assess the accuracy of 
the classifiers with segments of different lengths. 

In this paper we restricted our analysis to the 
distinction of AF and normal sinus rhythm ECG 
records. Although AF is the most common 
arrhythmia one could argue that it would be more 
realistic to include other types of rhythms in this 
classification task. Ongoing work addresses this 
issue by including additional arrhythmias. 
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