
The Critical Feature Dimension and Critical Sampling Problems 

Bernardete M. Ribeiro1, Andrew H. Sung2, Divya Suryakumar3 and Ram Basnet4 
1Department of Informatics Engineering, University of Coimbra, Coimbra, 3030-290 Coimbra, Portugal 

2School of Computing, University of Southern Mississippi, Hattiesburg, MS 39406, U.S.A. 
3Apple, Inc., Sunnyvale, CA, U.S.A. 

4Department of Computer Science, Colorado Mesa University, Grand Junction, CO 81501, U.S.A.  

Keywords: Data Mining, Knowledge Discovery, Critical Feature Dimension, Critical Sampling Random Selection. 

Abstract: Efficacious data mining methods are critical for knowledge discovery in various applications in the era of 
big data. Two issues of immediate concern in big data analytic tasks are how to select a critical subset of 
features and how to select a critical subset of data points for sampling. This position paper presents ongoing 
research by the authors that suggests: 1. the critical feature dimension problem is theoretically intractable, 
but simple heuristic methods may well be sufficient for practical purposes; 2. there are big data analytic 
problems where the success of data mining depends more on the critical feature dimension than the specific 
features selected, thus a random selection of the features based on the dataset’s critical feature dimension 
will prove sufficient; and 3. The problem of critical sampling has the same intractable complexity as critical 
feature dimension, but again simple heuristic methods may well be practicable in most applications. 

1 INTRODUCTION 

One of the many challenges of “big data” is how to 
reduce the size of datasets in tasks such as data 
mining for knowledge discovery. In that regard, 
effective feature ranking and selection algorithms can 
guide us in data reduction by eliminating features 
that are insignificant, irrelevant, or useless. In some 
bio- or medical informatics datasets, for example, the 
number of features can reach tens of thousands. This 
is partly because that many datasets constructed 
today for intended data mining purposes, without 
prior knowledge about what is to be specifically 
explored or derived from the data, likely have 
included measurable attributes that are actually 
insignificant or irrelevant, which inevitably results in 
large numbers of useless features that can be deleted 
to reduce the size of datasets without negative 
consequences in data analytics or data mining (Blum 
1997, Guyon 2003). 

We investigate in this paper the general question: 
Given a dataset with p features, is there a Critical 
Feature Dimension (CFD, or the smallest number of 
features that are necessary) that is required, say, for a 
particular data mining or machine learning process, 
to satisfy a minimal performance threshold?  That is, 
any machine learning, statistical analysis, or data 

mining, etc. tasks performed on the dataset must 
include at least a number of features no less than the 
CFD  or it would not be possible to obtain 
acceptable results. This is a useful question to 
consider since feature selection methods generally 
provide no guidance on the number of features to 
include for a particular task; moreover, for many 
poorly understood and complex problems to which 
big data brings some hope of breakthrough there is 
very little useful prior knowledge which may be 
otherwise relied upon in determining this number of 
CFD. 

In this position paper, the question is analyzed in 
a very general setting in the next section and shown 
to be intractable. Next, an ad-hoc method is proposed 
in section 2 as a first attempt to approximately solve 
the problem; and experimental results on selected 
datasets are presented to demonstrate the existence of 
a CFD for most of them. Section 3 presents the 
authors’ second position that for some data mining 
problems, it is the CFD that matters; in other words, 
random feature selection will be sufficient for 
satisfactory performance in data mining 
tasksprovided that the number of features selected 
meets the CFD. In section 4 the critical sampling 
problem is analyzed and shown to be of the same 
complexity as the CFD problem; and heuristic 
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methods for critical sampling are suggested as likely 
to be sufficient for practical purposes. Conclusions 
and discussions are given in section 5. 

2 THE CFD PROBLEM 

The feature selection problem has been studied 
extensively; and feature selection to satisfy certain 
optimal conditions have been proved to be NP-hard 
(Guyon 2003).  Here we consider the problem from a 
different perspective by asking the question whether 
there exist a CFD, i.e., a minimum number of 
features, that must be included for a data analytic 
task to achieve “satisfactory” results (e.g., building a 
learning machine classifier to achieve a given 
accuracy threshold), and we show the problem is 
intractable as it is in fact both NP-hard and coNP-
hard. 

Assume the dataset is represented as the typical n 
by p matrix Dn,p with n objects (or data points, 
vectors, etc.) and p features (or attributes, etc.)  The 
intuitive concept of the CFD of a dataset with p 
features is that there may exist, with respect to a 
specific “machine” M and a fixed performance 
threshold T, a unique number  ≤ p such that the 
performance of M exceeds T when a suitable set of  
features is selected and used (and the rest p   
features discarded); further, the performance of M is 
always below T when any feature set with less than  
features is used. Thus,  is the critical (or absolute 
minimal) number of features that are necessary to 
ensure that the performance of M meets the given 
threshold T. 

Formally, for dataset Dp with p features (the 
number of objects in the dataset, n, is considered 
fixed here and therefore dropped as a subscript of 
the data matrix Dn,p), a machine M (a learning 
machine, a classifier, an algorithm, etc.) and 
performance threshold T (the classification accuracy 
of M, etc.), we call  (an integer between 1 and p) 
the T-Critical Feature Dimension of (Dp, M) if the 
following two conditions hold: 
 There exists D, a -dimensional projection 
of Dp (i.e., D contains  of the p features) which 
lets M to achieve a performance of at least T,  i.e., 
(D ∝ Dp) [PM(D)  T], where PM(D) denotes the 
performance of M on input dataset D. 
 For all j < , a j-dimensional projection of Dp 
fails to let M achieve performance of at least T, i.e., 
(∀Dj ∝ Dp) [j <   PM(Dj) < T] 
To determine whether a CFD exists for a Dp and M 
combination is a very difficult problem. It is shown 

below that the problem belongs to complexity class 
DP = {L1 ∩ L2 | L1  NP, L2  coNP} 
(Papadimitriou 1984). In fact, it is shown that the 
problem is DP-hard.  

Since NP and coNP are subclasses of DP (Note 
that DP is not the same as NP ∩ coNP), the DP-
hardness of the CFD problem indicates that it is both 
NP-hard and coNP-hard, and likely to be intractable. 

2.1 CFDP Is Hard 

The Critical Feature Dimension Problem (CFDP) is 
stated formally as follows: Given a dataset Dp, a 
performance threshold T, an integer k (1 < k ≤ p), 
and a fixed machine M. Is k is the T-critical feature 
dimension of (Dp, M)? 

The problem to decide if k is the T-critical 
feature dimension of the given dataset Dp belongs to 
the class DP under the assumption that, given any Di 

∝Dp, whether PM(Di)  T  can be decided in 
polynomial (in p) time, i.e., the machine M  can be 
trained and tested with Di  in polynomial time. 
Otherwise, the problem may belong to some larger 
class, e.g., p

2 (Garey 1979).  Note here that (NP ∪ 
coNP)    DP    p

2 in the polynomial hierarchy of 
complexity classes.  

To prove that the CFDP is a DP-hard problem, 
we take a known DP-complete problem and 
transform it into the CFDP. We begin by considering 
the maximal independent set problem: In  an 
undirected graph, a Maximal Independent Set 
(MIS) is an independent set (Garey 1979) that is not 
a subset of any other independent set; a graph may 
have many MIS’s. 

EXACT-MIS Problem (EMIS) – Given a graph 
with n nodes, and k ≤ n, decide if there is a MIS of 
size exactly k in the graph is a problem known to be 
DP-complete (Papadimitriou 1984). Due to space 
limitations, we only sketch how to transform the 
EMIS problem to the CFDP. 

Given an instance of EMIS (a graph G with p 
nodes, and integer k ≤ p), to construct the instance of 
the CFDP, let dataset Dp represent the given graph G 
with p nodes (e.g., Dp can be made to contain p data 
points, with p features, representing the symmetric 
adjacency matrix of G), let T be the value “T“ from 
the binary range {T, F}, let  = k  be the value in the 
given instance of EMIS, and let M  be an algorithm 
that decides if the dataset represents a MIS of size 
exactly , if yes PM = “T“, otherwise PM = “F“, then 
a given instance of the DP-complete EMIS problem 
is transformed into an instance of the CFDP. 

Detailed examples that explain the proof can be 
found in (Suryakumar 2013).  
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The DP-hardness of the CFDP indicates that it is 
both NP-hard and coNP-hard; therefore, it’s most 
likely to be intractable (that is, unless P = NP). 

2.2 Heuristic Solution for CFDP 

From the analysis above it is clear that even deciding 
if a given number k is a CFD (for the given 
performance threshold T) is intractable, so, to 
determine what that number is for a dataset is 
certainly even more difficult. Nevertheless, a simple 
heuristic method is proposed in the following, which 
represents a practical approach in attempting to find 
the CFD of a given dataset and a given performance 
threshold with respect to a fixed learning machine. 

Though the heuristic method described below 
can be seen as actually pertaining to a different 
definition of the CFD, we argue that it serves to 
validate the concept that , the CFD, if not for all 
datasets; and we show that for most datasets with 
which experiments were conducted a CFD indeed 
exists. Finally, the   determined by this heuristic 
method is hopefully close to the theoretically-
defined CFD. 

In the heuristic method, the CFD of a dataset is 
defined as that number (of features) where the 
performance of the learning machine would begin to 
drop notably below an acceptable threshold, and 
would not rise again to exceed the threshold. The 
features are initially sorted in descending order of 
significance and the feature set is reduced by 
deleting the least significant feature during each 
iteration of the experiment while performance of the 
machine is observed. (For cross validation purposes, 
therefore, multiple runs of experiments can be 
conducted:  the same machine is used in conjunction 
with different feature ranking algorithms; and the 
same feature ranking algorithm is used in 
conjunction with different machines; then we can 
compare if different experiments resulted in similar 
values of the CFDif so the notion that the dataset 
possesses a CFD becomes arguably more apparent.). 

2.2.1 Critical Dimension Empirically 
Defined   

Let A = {a1, a2, …, ap} be the feature set where a1, a2, 
…, ap are listed in order of decreasing importance as 
determined by some feature ranking algorithm R.  
Let Am = {a1, a2, …, am}, where m ≤ p, be the set of 
m most important features. For a learning machine M 
and a feature ranking method R, we call µ (µ ≤ p) the 
T-Critical Dimension of (Dp, M) if the following 
conditions are satisfied: when M uses feature set Aµ 

the performance of M is  T, and whenever M uses 
less than µ features its performance drops below T. 

2.2.2 Learning and Ranking Algorithms 

In the experiments the dataset is first classified by 
using six different algorithms, namely Bayes net, 
function, rule based, meta, lazy and decision tree 
learning machine algorithm. The machine with the 
best prediction accuracy is chosen as the classifier to 
find the CFD for that dataset. 

For the experiments reported below, the ranking 
algorithm is based on chi-squared (2) statistics, 
which evaluates the worth of a feature by computing 
the value of the 2 statistic with respect to the class. 
Note that in the heuristic method the performance 
threshold T will not be specified beforehand but will 
be determined during the iterative process where a 
learning machine classifier’s performance is 
observed as the number of features is decreased. 

2.3 Results 

Three large datasets are used in the experiments, each 
is divided into 60% for training and 40% for testing. 
Six different models are built and retrained to get the 
best accuracy. The model that achieves the best 
accuracy is used to find the CFD. 

2.3.1 Amazon 10,000 Dataset   

The Amazon commerce reviews dataset (Frank 2013) 
is a writeprint dataset useful for purposes such as 
authorship identification of online texts, etc. 

Experiments were conducted to identify fifty 
authors in the dataset of online reviews. For each 
author 30 reviews were collected, totaling 1500.  
There are 10,000 attributes and they include authors’ 
linguistic style, such as usage of digit, punctuation, 
words and sentences’ length and usage frequency of 
words and so on. This becomes a multiclass 
classification problem with 50 classes, where the 
dataset contains numerical values for all features. 

The results are shown in Figure 1, where a CFD 
is found at 2486 features. The justifications that this 
is the CFD are, firstly, from 2486 downward, the 
performance drops quickly andunlike the situation 
at around 9000the performance never rises 
thereafter; secondly, the performance at feature size 
2486 is only slightly lower than the highest observed 
performance (at around 9000 features). Another point 
at around 6000 may also be taken as the CFD; 
however, 2486 is deemed more “critical” since there 
is a big difference between 6000 and 2486 but very 
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little difference between the performances at these 
two points.  

 

Figure 1: The CFD of the Amazon 10,000 dataset. 

2.3.2 Amazon Ad or Non-Ad Dataset   

The Amazon commerce reviews Internet 
advertisement dataset is a set of possible 
advertisements on web pages (Frank 2013). The task 
is to predict whether an image is an advertisement 
(“ad”) or not advertisement (“non-ad”). The dataset 
includes 459 ad and 2820 non-ad images. Only 3 of 
the 1558 attributes of the dataset are continuous 
values and the remaining are binary. It is also 
noteworthy that one or more of the three continuous-
valued features are missing in 28% of the instances. 
The classification results of the ad and non-ad dataset 
are shown in Figure 2 below, where a CFD at feature 
size 383 is seen. 

2.3.3 Thrombin Dataset 

The training set consists of 1909 compounds tested 
for their ability to bind to a target site on thrombin, a 
key receptor in blood clotting (Frank 2013).  Of these 
compounds, 42 are active and the others inactive. 
Each compound is described by a feature vector 
containing a class value (A for active, I for inactive) 
and 139,351 binary features describing 3-
dimensional properties of the molecule. Biological 
activity in general and receptor binding affinity in 
particular, correlate with various properties of small 
organic molecules. The task is to determine which 
properties are critical and to learn to accurately 
predict the class value. 

The classification results are shown in Figure 3, 
where a CFD of 8487 is apparent. 

Figures 4 and 5 summarize the results of 
experiments done on the three large datasets. 

We observe that each of the three datasets shows 
an apparent CFD, which is much smaller than the 
original feature dimension in each case while an 
acceptable level of performance is maintained. 

 

 

Figure 2: The CFD of the Amazon ad or non-ad dataset. 

 

Figure 3: The CFD of the thrombin dataset. 

 

Figure 4: Reduction in feature size of three large datasets. 

 

Figure 5: Prediciton accuracy at the CFD and at intial 
feature dimension (all features included). 

For additional reference, the results of 16 
different datasets that were studied earlier can be 
found in (Suryakumar 2013). 

3 RANDOM FEATURE 
SELECTION 

For certain data mining problems with large 
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numbers of features, it is suspected that performance 
depends more on the number of features used, than 
the specific features that are selectedprovided that 
the number of features used meets or exceeds the 
CFD. In other words, if the dataset possesses a CFD 
of µ, then a random selected feature set with µ 
features will guarantee satisfactory performance in 
model building.  In particular, the text classification 
problem is suspected to be such a problem where 
random feature selection may well be sufficient. 

3.1 Preliminary Results 

Experiments are carried out on a set of 4 well-known 
corpuses of texts, using C4.5, KNN, and NB. Each 
time a different set of µ randomly selected features 
is 

Table 1: Results of random feature selection in text mining 
of four datasets. 

Set  R8 (C4.5)  R8 (kNN)  WebKB  R52  News 
group 

1  70.86  87.11  82.43  58.37  63.82 

2  58.61  82.46  76.34  57.26  52.96 

3  64.84  82.2  72.05  55.26  55.28 

4  68.01  80.71  72.28  58.66  57.28 

5  69.33  84.22  75.43  55.61  57.28 

6  68.85  78.91  77.44  55.03  51.08 

7  68.51  85.26  73.5  49.28  51.2 

8  60.39  81.01  70.12  54.98  52.34 

9  66.5  80.13  72.65  55.78  57.28 

10  58.26  80.46  72.65  54.75  51.94 

Ave  65.42  81.75  74.49  55.5  55.05 

used, and the performance is measured, the average 
of 9 experiments is considered the performance of 
the respective learning machine for the dataset. The 
results are summarized in Table 1 above, where row 
1 lists results of using the top µ features, rows 2-10 
are 9 experiments using randomly selected µ 
features, and the last row is the average of 9 
experiments. 

To conclude, it would appear that text mining is 
an example of data mining problems where the 
number of features used is more important than the 
specific features selected. 

4 THE CRITICAL SAMPLING 
SIZE PROBLEM 

In this section, we consider the other problem of data

 reduction in big data mining: how to select a 
minimal sample of data points that will guarantee 
good performance?  Assume again the dataset is 
represented as an n by p matrix Dn,p. The concept of 
the Critical Sampling Size (CSS) of a dataset with n 
points is that there may exist, with respect to a 
specific machine M and a given performance 
threshold T, a unique number  ≤ n such that the 
performance of M exceeds T when some suitable 
sample of  data points is used; further, the 
performance of M is always below T when any 
sample with less than  data points is used. Thus,  is 
the critical (or absolute minimal) number of data 
points required in any sample to ensure that the 
performance of M meets the given threshold T. 

Formally, for dataset Dn with n points (the 
number of features in the dataset, p, is considered 
fixed here when only sample size is concerned, and 
therefore dropped as a subscript of the data matrix 
Dn,p),   (an integer between 1 and n) is called the T-
Critical Sampling Size of (Dn, M) if the following 
two conditions hold: 

1. There exists D, a -point sampling of Dn 
(i.e., D contains of the n vectors in Dn) which lets 
M to achieve a performance of at least T, i.e., 
(D  Dn) [PM(D)  T], where PM(D) denotes the 
performance of M on dataset D. 
2. For all j < , a j-point sampling of Dn fails to 
let M achieve performance of at least T, i.e., 
(∀Dj  Dn) [j <   PM(Dj) < T] 

In the above, the specific meaning of PM(D), the 
performance of machine (or algorithm) M on sample 
D, is left to be defined by the user to reflect a 
consistent setup of the data analytic (e.g. data 
mining) task and the associated performance 
measure.  For examples, the setup may be to train 
the machine M with D and define PM(D) as the 
overall testing accuracy of M on a fixed test set 
which is distinct from D; or the setup may be to use 
D as training set and use Dn  D as testing set. The 
value of threshold T, which is to be specified by the 
user as well, represents a reasonable performance 
requirement or expectation of the specific data 
analytic task. 

To determine whether a CSS exists, for a Dn and 
M combination, is a very difficult problem. 
Precisely, the problem of deciding, given Dn, T, k (1 
< k ≤ n), and a fixed M, whether k is the T-critical 
sampling size of (Dn, M) belongs to the class DP = { 
L1 ∩ L2 | L1  NP, L2  coNP} as well, where it is 
assumed that the given machine M runs in 
polynomial time (in n). In fact, it can be shown to be 
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DP-hard, exactly as the critical feature dimension 
problem (CFDP) analyzed in Section 2, and by using 
the same proof and merely selecting rows (instead of 
columns) of the adjacency matrix of the graph to 
construct a MIS.  Due to space limitations, details of 
the proof are omitted but can be found in 
(Suryakumar 2013). 

Due to the complete symmetry or similarity to 
the CFD problem, it is suspected that simple 
heuristic methods can be developed to be 
sufficiently useful for practical purposes in solving 
the CSS problem, in the same way heuristic methods 
proved useful for finding the “critical features” 
(even though the CFD found may be different from 
the value based on the formal definition), as 
illustrated in Section 2. 
Therefore, proposed in the following is a heuristic 
method for finding a critical sampling: 

1. Apply a clustering algorithm (such as k-
means) to partition Dn into k clusters.	
2. Select, say randomly, m points from each 
cluster to form a sampling D with mk points.	
3. Apply M (learning machine, analytic 
algorithm, etc.) on the sample, then measure 
performance PM(D).	
4. If PM(D)  T, then D is a critical sampling, 
and its size 	 is the critical sampling size for (Dn, 
M).  Otherwise enlarge D by randomly select 
another m points from each cluster, and repeat until 
a critical sampling is found, or the whole Dn is 
exhausted and procedure fails to find.	

The values of the parameters k and m are to be 
decided in consideration of the size and nature of the 
dataset, the specific data analytic problem or task 
being undertaken, and the amount of resource 
available. As usual in all data analytic problems, 
prior knowledge and domain expertise are always 
helpful in designing the experimental setup. 
Likewise, whether the random sampling is done with 
or without replacement is a decision to be made 
according to the dataset and the problem.  Also, 
progressive sampling techniques which possess nice 
properties (Provost 1999, Domingo 2002) may be 
incorporated into Step 4 instead of fixed increments 
during each iteration. 

The authors are conducting experiments for 
validation of the concept that simple heuristic 
methods are sufficient for application purposes in 
dealing with the critical sampling size problem, 
despite its high complexity. 

5 CONCLUDING REMARKS 

To meet some of the challenges in data mining 
brought about by the big data (National Research 
Council 2013), this paper presents some preliminary 
results of the authors’ ongoing research: 
 Complexity analysis of the critical feature 
dimension and critical sampling size problems. 
 Heuristic method for determining the critical 
feature dimension. 
 Study of the effect of random selection of 
critical features for the text classification problem. 
 Heuristic methods for finding critical sampling, 
currently under study.  

The corresponding positions of the authors being 
proposed are the following: 
 The critical feature dimension problem is 
intractable and requires heuristic solutions. 
 Simple heuristic methods are demonstrably 
sufficient for applicational purposes in determining 
the CFD of datasets. 
 Random selection of features that meets the 
CFD may well be sufficient for data mining 
purposes for certain problems whose associated 
datasets have large number of features. 
 Heuristic methods are likely to be practicable 
for finding critical sampling as well. 

In view of the preliminary results, it is believed 
that the ongoing research on heuristic methods for 
determining critical feature dimensions and for 
finding critical sampling, if successful, may lead to 
the development of effective solutions to cope with 
some of the challenges inherent in big data analytic 
problems due to the large dimensions of feature sets 
and the large number of samples in the big data. 
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