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Abstract: The paper presents a set of algorithms for the conversion of rule bases between priority-based and constraint-
based representations. Inspired by research in precedential reasoning in law, such algorithms can be used for
the analysis of a rule base, and for the study of the impact of the introduction of new rules. In addition, the
paper explores an optimization mechanism, built upon assumptions about the world in which the rule-based
system operates, providing a model of environmental adaptation. The investigation is relevant to practical
reasoning, agent modeling and agent programming.

1 INTRODUCTION

Practical reasoning in everyday life is often not based
on repeated deliberation, but on behavioural scripts
constructed and refined by some adaptation process.
Let us consider this simple story:Raphael, who lives
in a rainy country, always checks before he goes to
work whether it will rain, in which case he will bring
his umbrella. Samuel, who lives in a sunny country,
usually goes out without checking the weather. Both
of them believe in taking an umbrella if it rains, how-
ever. Intuitively, if Raphael or Samuel moved from
one country to the other, we would expect that they
would change their habits eventually.

According to traditional optimization theory,
adaptation comes from the agent’s efforts to obtain
a better overall pay-off. In contrast, Heiner’s theory
of predictable behaviour (Heiner, 1983) explains how
behavioural regularities arise in the presence of unre-
solvableuncertaintyabout the “right” course of action
to follow: being predictable seems to pay off by itself.

Regardless of its explanation, we acknowledge the
existence of a sort of structuring process in the agent,
which results in behavioural rules or scripts that are
followed without consciouslyreflectingon them. The
foundations of agent modeling, agent programming,
and before those, of expert systems, are for the most
based on such behavioural rules or scripts.

A similar analysis can be performed on collective
agencies, whose behaviour is described/prescribed
via formalized artifacts and procedures. Focusing on
administrative organizations, Boer and Van Engers
recognize in (Boer and Engers, 2013) three spheres of

activity: operations, planning/design, policy making.
The three spheres are concerned by different activi-
ties and often utilize different resources. For instance,
people at the operations provide services depending
on the procedures and the resources assigned by the
design department.

For simplicity reasons, this paper divides the
agency/system in only two levels: theregulated(non-
reflective) component and theregulatory (reflective)
component. In contrast to approaches like machine
learning, theory induction, etc. our agent is not con-
structing the rules that govern his behaviour from the
facts he observes, but he follows the prescription a
given set of rules (cf. agent programming), possibly
making its operationalization more efficient.

Two research questions are mainly addressed.
First, how to revise (the operational knowledge of) a
rule base if a new rule is introduced?This problem is
common in practical reasoning, statutory law and case
law. Horty recently explored in (Horty, 2011) the dy-
namics of normative systems based on common law,
examining phenomena likedistinguishingon binding
precedent rules. Inspired by his work, we generalize
the analysis of revision in law to a generic intelligent
system whose operational knowledge is described by
a rule base. Focusing on two ways to represent a
system of rules,priority-basedandconstraint-based
(§ 2), we identify and organize the algorithms to pass
from one representation to the other (§ 3).

Then, analyzing the interactions of the evaluation
of rules with default assumptions, we extend the anal-
ysis to consider the rewriting of the rule base due to
new informational commitments, in order to tackle
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down the second question:how to refine rules when
certain expectations are ascribed to the environment?
(§ 4) As the change of informational commitment and
the beginning of the rule revision process are only
asynchronously linked, the coupling is worth further
analysis (§ 5).

Both the rules that govern the practical behaviour
of the agent and the default assumptions about the
world may change. For these reasons, our work is
affine to the spirit of defeasible logic. Rather than
focusing on a formal framework following this tra-
dition, however, we prefer at this stage to propose a
direct computational implementation.

2 REPRESENTATION TYPES

We summarize some practical definitions that will be
used throughout the paper.

• A fact f is a true proposition.

• A rule r is a conditional statement relating a
premisewith a conclusion. Premise and conclu-
sion are propositions, or expressions of proposi-
tions. They are called alsobodyandhead.

• Given a ruler, Premise(r) is a function returning
the set of atomic propositions that should be true
when itspremiseis true. These components are
also calledfactors. Conclusion(r) is a function
returning the atomic propositions asserted by the
rule when the premise is true.

• A situationΣ is a set of facts:Σ = { f1, f2, . . . , fn}.

• The applicability condition is expressed byΣ |=
Premise(r).

• A rule baseis a set of rules:∆ = {r1, r2, . . . , rn},
possibly partially ordered.

Evidently, different rules may share part of the
premises, or stated equivalently, share part of their
domain of applicability. In general, a set of facts can
apply on several rules. Furthermore, when attacking
each other conclusions, rules are potentiallyin con-
flict. When conflicting rules apply, we have the prob-
lem of determining which is the right conclusion. Two
solutions are possible:

• athorizontal level, modifying adequately the con-
tent of rules, i.e. redefining the constraints of ap-
plicability of mutually conflicting rules;

• at vertical level, defining relations of hierarchy or
priority between rules.

Two representational attitudes are directly related
to those approaches:constraint-basedand priority-
based.

2.1 Constraint-based

A rule base written following a strict constraint-based
approach is a non-ordered set. The relative position
of rules (e.g. the position in the artifact describing the
regulatory system, the chronological time of creation,
etc.) is not relevant. A rule is required to transport all
what is needed to check its applicability, i.e. all the
relevantfactorshave to be made explicit.

On the down side, however, the complete set of
rules has to be (maintained) consistent as a whole.
The problem can be explained referring to the pro-
gramming constructswitch. . . case, which separates
execution paths depending on a certain condition:

switch (condition) {
case value : [...]; break;
[...]

}

In order to be functional, theconditionvariable has to
index precisely one value position in the list.

As the application of a rule is triggered by the rel-
evant factors in the premise being true, the most basic
encoding is built upon the permutations of all factors
described in the rule base. If the rule base is sensitive
to N factors, there are 2N situations to be encoded.
Suchfull-tabular encoding implies that the requests
for a rule are inflected also in terms of factors which
are irrelevant for the rule in itself, but are relevant to
other rules. Other more efficient encoding are possi-
ble.

2.2 Priority-based

In all acts of communication there is an intrinsic
strictly ordered dimension, usually referred to as the
discourse. It can be temporal, as in the case of inter-
actions; or positional, as with texts.

Priority-based representations take advantage of
the meta-information intrinsic to the composition of
content to reduce its redundancy. In programming,
something similar occurs with the constructif. . . else:

if (condition1) [...];
else if (condition2) [...];
else [...];

In order to avoid to repeat the same calculations, a
good programmer implements the conditions to be
checked in a convenient way, conscious of the sequen-
tial processing of the code. For instance, he knows
that if condition2 is being evaluated,condition1 is
necessarily false.

Considering such structured enchaining in the
evaluation of rules, each new evaluation could remove
the conjunction of factors which have been already

A�Constructivist�Approach�to�Rule�Bases

541



computed. The resulting rewriting of the rules is more
efficient (in size terms) than the original version. Con-
versely, the application of a rule may require more
computational effort than a constraint-based represen-
tation, as the applicability must be strictly checked
following the given ordering.

So far, we have considered priority as directly re-
lated to ordering (positional or chronological). In
such conditions, if we introduce a new rule with a cer-
tain domain of application, we overwrite all existing
rules whose domains subsume that of the new rule.
There are situations in which it is useful to avoid this
mechanism. This occurs for instance in law with the
principle calledlex specialis derogat legi generali: a
more specific law overrules the more general. Princi-
ples like this createmeta-rules: their conclusion is not
a fact, but apriority constraint. In the following we
suppose that we are always able to apply meta-rules
to obtain the relative priority between rules.1

3 INCREMENTAL DYNAMICS

Depending on the underlying representation, inter-
ventions on a rule base require a different attention:

• in a constraint-basedrule-base, we need some
kind of rule revision process (Horty calls itrefine-
ment) on the rules whose applicability is affected
by the addition, so that after the update each rule
is again consistent with the whole, and can be also
read separately;

• in apriority-basedrule-base, the addition of rules
or modification of priorities is straightforward;
however, we cannot infer the resulting practi-
cal consequences without taking into account the
whole rule-base.

Our objective is therefore to provide a conversion
method from one representation to the other, in order
to cope with the respective limitations. While the nat-
ural way of handling the incremental construction of
a rule-base is via priority-based representations, the
more direct way to access the actual applicability of a
rule comes from a constraint-based representation.

From Compound to Simple Rules. In the follow-
ing, we will often refer tosimple rules, i.e. rules
with no disjunction in the body, nor conjunction in
the head. They can be seen as the atomic components

1For instance, the implicit ordering of rules with fac-
tors expressed at different levels of generalization can be
obtained via Pearl’ssystem Z(Pearl, 1990).

of the conditional. Compound rules can be reduced to
simple rulesapplying the following properties:

(a→ c∧d)⇔ (a→ c)∧ (a→ d) (1)

(a∨b→ c)⇔ (a→ c)∧ (b→ c) (2)

Relevance. Given two simple rulesr1 and r2, we
say thatr1 is relevant in respect tor2, if the propo-
sitional content of their conclusions are positively or
negatively aligned:Conclusion(r1) = Conclusion(r2)
or Conclusion(r1) = ¬Conclusion(r2).2

Illustrative Example. Let us assume the existence
of a principle like lex posterior derogat legi prior,
i.e. the last rule has higher priority than the previ-
ous ones. Consider a rule base consisting of just one
rule r1 : A→ P. With one factor (A), we can have two
situations, but our rule refers only to one of them. The
associated representations are:3

Constraint-Based Priority-Based
A→ P A→ P

[¬A→ ?]

At this point, we add a second rule:r2 : B→¬P.
Considering two factors (A, B), we have four possi-
ble situations. In a constraint-based representation,
we have to refine the previous rule in order not to lose
consistency, asr1 and r2 have opposite conclusions,
and therefore may be in conflict. Removing the do-
main of applicability ofr2 from the domain ofr1 we
obtain the following representations:

CB (full-tabular) CB (intermediate) PB
A∧¬B→ P A∧¬B→ P A→ P
A∧B→¬P B→¬P B→¬P
¬A∧B→¬P
[¬A∧¬B→?]

The table distinguishes two types of constraint-
based representations:full-tabular, where the con-
figuration of all factors is written explicitly for each
rule, andintermediate, where redundancy is reduced
via boolean simplification.

We follow this illustrative example to propose
some algorithms to transform one representation into
another. This is sufficient to handle the problem of in-
cremental construction. Given a constraint-based rule
base∆, the refinement required for the introduction

2This is a “narrow” definition of relevance. In general,
given a rule, we care also of the rules whose conclusions are
premise for the rule, etc.

3For completeness, we use the expression→ ? to iden-
tify the lack of consequence, for situations which do not
imply any conclusion.
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of a new rulern is equivalent to the conversion of the
priority-based rule-base∆+{rn}, wherern has higher
priority than all other rules.

3.1 From Priority-based to
Intermediate Constraint-based
Representation

Suppose we have a strictly ordered set of simple rules
∆= {r1, r2, .., rn}, wherer1 is the rule with lowest pri-
ority, rn with the highest. The following algorithm
overwrites the elements of∆ with their translation in
a constraint-based intermediate representation:4

for eachr i ∈ ∆, starting fromrn down tor2
for eachr j ∈ ∆, starting fromr i−1 down tor1

if Conclusion(r j) = ¬Conclusion(r i) then
r j :=

∧
Premise(r j)∧¬

∧
Premise(r i)

→ Conclusion(r j )

Stated in words, each cycle adds the complement
of the domain of applicability of the rule with higher
priority to the rule with lower priority.

The negation in the core formula usually applies to
sequence of multipleand expressions, so it is equiv-
alent a sequence ofor expressions. Using thebody
disjunctionformula (2) we can divide such compound
rule in its simple components, and some of those may
be redundant with other rules in the rule base. This is
not the only potential cause of redundancy: for histor-
ical or clarity reasons, redundant rules may have been
introduced already in the priority-based account (ex.
r3 : A∧ ¬B → P). As a consequence, the previous
algorithm may produce subsumed or cloned rules5,
which can be removed without harm.

3.2 From Intermediate to Full-tabular
Constraint-based Representation

The same regulation can be described with several in-
termediate representations. A way to compare them
is to fully compute their extensional meaning, i.e.
the underlying full-tabular representation. In order to
do that, we can expand each rule with the unspeci-
fied factors which are relevant (i.e. are part of the
premises) for relevant rules (i.e. having the same con-
clusion or its complement) in the rule base.

For instance, in the illustrative example,r1 andr2
are relevant to each other, and refer to the two factors

4∧{ f1, f2, ..., fn}⇔ f1∧ f2∧ ...∧ fn
5Given two rulesr i and r j such thatConclusion(r i) =

Conclusion(r j), if Premise(r i) ⊇ Premise(r j) then r i sub-
sumesr j ; if Premise(r i) = Premise(r j) thenr i clonesr j .

A andB. However,r2 : B → ¬P does not explicitly
refer to the factorA, but it can be rewritten as two
full-specified rules using some boolean properties:

B→¬P⇒ (B∧A→¬P)∧ (B∧¬A→¬P)

If a rule hasn unspecified factors in the constraint-
based intermediate representation, then it is written as
2n rules in the full-tabular representation.

3.3 From Full-tabular to Minimal
Constraint-based Representation

Our objective at this point is to find a way to produce
aminimal intermediate form, i.e. removing all redun-
dancy. The solution we propose is to pass by the full-
tabular representation and then simplify using known
algorithms for boolean simplification.

We have a set of rules∆ = {r1, r2, .., rn}, repre-
sented in a full-tabular constraint-based way. Its char-
acterization can be visualized using a table similar to
a truth table. The only difference is that we are not
interested in showing the specific truth value of the
output variable for all combinations of inputs, but in
mappingwherespecific outputs are defined. Consid-
ering the illustrative example, we have:

A B P ¬P ?
T T X
T F X
F T X
F F X

To reduce the implicit redundancy of the full-
tabular representation, we can apply then the same
principle of themintermexpansion used for logic cir-
cuits, in order to compute the characteristic function.

First, we aggregate all rules which share the same
conclusionφ into seedrulesrφ:

for eachr i ∈ ∆, with r i 6= rφ
φ := Conclusion(r i)
if rφ is not set thenrφ := r i
elserφ :=

∧
Premise(rφ)∨

∧
Premise(r i)→ φ

Second, we apply an algorithm for boolean reduc-
tion — e.g. Quine-McCluskey (Mccluskey, 1956)6 —
to reduce eachrφ to its minimal form.

These algorithms take as input the logical addition
(disjuction,or) of the products (conjunction,and) of
factors producing a targetφ. The output is a ruler ′φ
which may be a compound rule. In this case, it can be

6The Quine-McCluskey algorithm provides an optimal
solution, but is costly in computational terms. There are
heuristics which provide suboptimal solutions consuming
less computational power exist, e.g. Espresso.
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divided in its componentsr ′φ1, r ′φ2, . . . using thebody
disjunctionformula.

Finally, considering both positive and negative
characterizations of a certain conclusionφ, we obtain
∆φ = {r ′φ1, r

′
φ2, . . . , r

′
¬φ1, r

′
¬φ2, . . .}, which is by con-

struction the minimal constraint-based representation
of theφ-relevant component of the initial rule-base.

3.4 From Constraint-based to
Priority-based Representation

Suppose we have a set of rules∆, given in a minimal
constraint-based representation. In order to obtain
an associated priority-based representation we need
some partial ordering between the rules. Such order-
ing can be: (a)hard-coded, i.e. provided as input,
(b) obtained by some evaluative function which takes
the rules as inputs (§ 4). In the following we suppose
the ordering is already available; for simplicity, we
assume that the input priorities constructs a strict or-
der on the rule set (we labelrn the rule intended to be
with the highest priority,r1 with the lowest one). The
following algorithm performs the transformation of∆
according to such priority labeling:

for eachr i in ∆, from rn to r1
φ = Conclusion(r i)
factors:= RelevantFactors(∆,φ)
if notYetEvalSituationsφ is not set

notYetEvalSituationsφ := Allocate(factors)
if establishedFactorsφ is not set

establishedFactorsφ =∅

create two empty rule bases∆i and∆′
i

addr i to ∆i
convert∆i to full tabular consideringfactors
for eachr j ∈ ∆i

if Premise(r j) ∈ notYetEvalSituationsφ
newPremise:= Premise(r j); apply:= true
for eachf ∈ establishedFactorsφ

if ¬ f ∈ Premise(r j )
apply:= false; break

else if f ∈ Premise(r j)
newPremise:= newPremise\ { f}

if apply∧newPremise6=∅

r ′j :=
∧

newPremise→ φ; addr ′j to ∆′
i

notYetEvalSituationsφ :=
notYetEvalSituationsφ \Premise(r j)

establishedFactorsφ :=
ExtractFacts(notYetEvalSituationsφ)

apply Quine-McCluskey on∆′
i obtainingr ′i

The general principle of the algorithm is to cre-
ateclustersof rules depending on the conclusion, and
to synthesize the reciprocal dependency only within
these clusters. We leverage the following information:

which factors are relevant, considering the whole rule
base, in respect to the conclusion [Relevant(∆,φ)]; the
set of all possible situations, via the allocation of a
truth value to such relevant factors [Allocate(·)]. Ex-
panding the rule to its full-tabular components, we
prune the situations which are evaluated, and we ex-
tract the set of factors which have been established on
the not yet evaluated situations [ExtractFacts(·)].7

4 INTEGRATING ASSUMPTIONS

In a constraint-based representations all relevant and
discriminatory factors are made explicit. In an opera-
tional setting, however, it is difficult and not efficient
to evaluate all of them: the check of conditions may
require external investigations.

Following optimization principles, it is important
to put in the beginning checks on conditions which
cost less (more in general, have better pay-off) and
provide more discrimination in the set of possible ex-
ecution paths (i.e. are moreinformative, in Shannon’s
terms). This means that knowledge about the world
and of the operational mechanisms of the systemdo
provide elements to create a priority in the evaluation.
Consider for instance this example:

if (f()) [...];
else if (g()) [...];
else [...];

This implementation would be really poor iff() is
very costly and often false, whileg() is not computa-
tionally expensive and often true.

4.1 Payoff Analysis

In general, the expected payoff in performing an ac-
tion can be decomposed as:

E[payoff] = p(success) ·E[payoff of success]

+ p(failure) ·E[payoff of failure]

Actions are expected to have some side effects, which
may occur at symbolic level (e.g. acquiring new in-
formation) and at practical level (e.g. modifying the
physical environment). The second aspect may be
critical in certain settings. For instance, trying to get a
certain evidence often brings the risk to destroy other
evidence. Such side effects modify what the agent
could do in the following step. For simplicity, we ne-
glect this dynamic component in this work. Consider-
ing a (non invasive) action, the most important voice

7An implementation in Java/Groovy of the algorithms
is available on our site. http://justinian.leibnizcenter.org/
rulebaseconverter
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related to side effects remains a quantification of the
expected cost.

Suppose that the action is aninvestigation. The
success corresponds to reach a certain conclusion
aboutφ. Assuming the cost is known and the same
for both success and failure, the previous equation be-
comes:
E[payoff] = p(success) ·E[payoff of concludingφ]

+ p(failure) ·E[payoff of non concludingφ]
− cost

The investigation is worth ifE[payoff]> 0, i.e. if
E[payoff of concludingφ]>
cost− (1− p(success)) ·E[payoff of non concl. φ]

p(success)
In the case in which no positive or negative out-

come is entailed from not concludingφ, the previous
constraint is simplified to:

E[payoff of concludingφ]>
cost

p(success)
(3)

4.2 Rule Guided Investigation

Suppose our knowledge is described in the form of a
rule base. Let us consider a target matterφ. We know
that the factors concerningφ, i.e. the factors rele-
vant for rules implyingφ or¬φ, are thereasonswhich
possibly allow us to concludeφ or ¬φ. In Shannon’s
terms, they provide the dictionary of symbols which
should be possibly extracted from the informational
source for our investigative purposes.

4.2.1 Individual Evaluation

Suppose we have a rule whose conclusion isφ, be-
longing to a rule base∆ described in a constraint-
based representation. The probability that the state
of the world satisfies the domain of applicability ofr
is given by:

p(applicable(r)) = p(
∧

Premise(r))

An action on investigation performed following a cer-
tain rule is successful if it is able to bring to the in-
tended conclusionφ. Therefore, accounting the set of
known factsK:

p(success) = p(
∧

Premise(r)|K)

Going further, the function quantifying the informa-
tional cost can be written in the formc(D,K), where
D is a set of factors we need to investigate, andK is
the set of known facts.

cost= c(D,K)

Thus, the ruler should be evaluated only if:

E[payoff of concludingφ]>
c(D,K)

p(
∧

Premise(r)|K)

4.2.2 Optimization

In general, the rule base may contain several rules
which entailφ. The choice about which rule should
be evaluated first is optimal if the rule maximizes the
investigative payoff.

The payoff of reaching a conclusion aboutφ is in-
dependent of the rule used, therefore can be labeled
as a constant:

G= E[payoff of concludingφ]

Furthermore, in respect to a ruler, the set of desired
factorsD consists of the factors in the premise which
are not known:

D = Premise(r)\K

Neglecting the payoff of not concludingφ, we have:

E[payoff] = G · p(
∧

Premise(r)|K)− c(D,K) (4)

The next paragraphs consider a few simple configura-
tions.

Equal Probabilities. Suppose that there aren fac-
tors relevant forφ, statistically independent and with
equal probability. Supposingc(D,K) negligible, we
have:

E[payoff] ∝
1
n

#D

Suppose also we are ignorant about the world, there-
fore #D = #Premise(r). In a full-tabular constraint-
based representation, all rules have the same num-
ber of premises, therefore the expected payoff is
the same for all rules. Conversely, in a minimal
constraint-based representation, rules have been con-
structed by functional aggregation reducing the num-
ber of premises. Therefore the optimal choice is to
choose the rule with less conditions in the premise.

Unequal Probabilities. In condition of ignorance,
and with statistically independent factors, we have

p(Premise(r)) = p( f1) · p( f2) · . . . · p( fn)

At this point, it is interesting to refer to the theory
of communication introduced by Shannon (Shannon,
1948). Defining the information related to a certain
symbolsas:

I(s) =− log2(p(s))

the information of a messagemcomposed of different
and statistically independent symbols (s1, s2, . . . , sn)
is given by the sum of information of each symbol:

I(m) = I(s1)+ I(s2)+ . . .+ I(sn)
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Thus, assigning each factor to a symbol, the premise
of a ruler can be interpreted as a message. As infor-
mation maintains monotonicity, we can consider the
best rule to be chosen not in terms of maximizing the
product of probabilities, but as minimizing the sum of
information required to reach the target conclusion,
possibly integrating the cost component.

4.3 Default Assumptions

Let us consider again the story reported in the intro-
duction. Both Samuel and Raphael think it is normal
to take the umbrella if it is raining. Simplifying8, we
can write this practical rule as:

rain → umbrella

With no prior assumptions, the rule base of both
agents consists of a simple rule. Now, suppose the
agents have a probabilistic model of the world. Ac-
cording to (4), the payoff of the evaluation of that rule
is equal to:

E[payoff] = G · p(rain)− c({rain},K)

If the agent already knows the fact that it will rain,
supposing retrieval costs negligible, the overall costc
is null. In such case, the payoff of the investigation is
always positive. It tends to 0 when the agent thinks
that the probability of rain is very low, as in the case
of Samuel, living in a sunny country:p(rain)∼ 0.

However, if Samuel’s knowledge base does not
contain the “rain” fact, the expected payoff of the in-
vestigation may be negative: ifG · p(rain) is small
enough, the payoff constraint is violated, so the rule
shouldn’t be evaluated.9 Raphael is in the opposite
condition: asp(rain) is not null, the positive addend
in the expected payoff of investigation makes the cost
of checking the weather negligible.

4.3.1 Prioritization with Default Rules

The analysis of evaluation payoffs provides an op-
timal order of investigation and such ordering can
feed the conversion from constraint-based to priority-
based representations (§ 3.4). However, if the ex-
pected payoff is null or negative, the related investi-
gation is not worth and the agent should rather con-
sider to introduce a default assumption rule. A simple

8We put aside all issues related to causality, intentional-
ity, action, etc.

9The payoffG of concluding the fact that it rains can be
interpreted in terms of the practical consequences that such
conclusion entails. For instance, the agent will avoid to be-
come wet, by taking the umbrella. How much this is valu-
able to the agent depends on subjective components, and
plausibly changes in time.

way to represent that is to introduce thenegation as
failure operator, as defined for instance inAnswer Set
Programming(Baral and Gelfond, 1994; Lifschitz,
2008). In practice, when we commit to a default as-
sumption concerning the factf , we add to the rule
base the following rules:

(not¬ f → f )∧ (not¬ f ∧not f →¬ f )

Note that there is an implicit priority between the
two rules, cf.system Z(Pearl, 1990). Such interven-
tion does not modify the previous rules, but overrides
the investigations concerningf . In other words, they
force the agent not to perform the investigation but
just to refer to his current knowledge, so that the pay-
off constraint is not violated.10

5 CONSTRUCTION AND
RECONSTRUCTION

The paper investigated two types of events changing a
rule base. The first type of events consisted of incre-
mental modifications: new rules are added by external
intervention, determining a partial reconfiguration of
the operational knowledge used by the agent. Because
of distinguishing actions, the new rules brings to the
foreground factors left implicit in the previous rules.

The second family of events concernedad-hocre-
organizations, aiming for better adaptation. However,
when a rule base is “compiled” to a more efficient
priority-based form, the agent loses the reasons moti-
vating that structure (e.g. probabilistic assumptions),
and therefore he cannot check if those reasons are still
valid.

To rewrite the rule base again, the agent has tore-
flectover the rule base. He has to unveil the underly-
ing constraint-based representation, removing all de-
fault assumptions and recompute the optimal priority-
based indexing.

What may motivate the agent to do that? An in-
tuitive answer is because of (repeated) failures of his
current practical reasoning. For instance, if Samuel
moves in a rainy place, his default assumption about
the rain will lead him to get wet often. If the num-
ber of practical failures exceeds a certain (subjective)
threshold, we expect the agent will look for a better
adaptationto the context, asynchronously starting the
reflection cycle.

10There may be more radical transformations. For in-
stance, destructive simplifications can be imagined remov-
ing f from the premises of the rules, removing from the rule
base rules which have¬ f in the premises, etc.
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6 CONCLUSION

Part of a wider research concerningagility in pub-
lic administration and policy making (Boer and En-
gers, 2013), the present paper starts the development
of a computational framework operationalizing acon-
structivistapproach to rule bases. By dividing agency
in a regulatedand aregulatorysub-systems, we ex-
plicitly disjoin the processing of facts, depending on
the rule base, from the modification of the rule base.

The analysis we presented is not targeting
beliefs—in the traditional sense of thebelief revision
literature, e.g. (Fermé, 2011)—nor built upon a model
of dynamictheory revisionof knowledge accounting
for both facts and rules, as inmachine learning, see
e.g. (Omlin and Giles, 1996), (Goldsmith and Sloan,
2005). Similarly to Horty (Horty, 2011), our specific
scope is onrules, as components of a rule base,al-
ready defined at symbolic level.

In psychology, the theory of constructivism is tra-
ditionally related to Jean Piaget (Piaget et al., 2001),
who investigated the mechanisms under which knowl-
edge is internalized by learners. He argued that in-
dividualsconstructtheir knowledge through the two
processes of:

• assimilation: the process of framing new experi-
ences through the existent knowledge framework,
without changing it; the structure exists, it is filled
by data;

• accomodation: the process of re-framing the
agent’s knowledge framework, usually respond-
ing to contradictions or operational failures of
their knowledge framework; the structure is reor-
ganized.

This theory is aligned with our contribution, as:

• rule bases are interpreted as compiled programs
for reactive symbolic processing modules, which
respondto facts (e.g. data fed by sensors), pos-
sibly performing actions (e.g. sending stimuli to
actuators, communicating, etc.);

• construction and reconstruction of rule bases pro-
vide the reflective, adaptive processing dimen-
sion, which occurs concurrently to the first one.

The paper is a starting operationalization, there-
fore several research directions remain to be inves-
tigated. First, an evaluation of the application of
our proposal on more complex rule bases, possibly
in comparison with other approaches from theexpert
systemsliterature. Related to that, an in-depth analy-
sis of the proposed algorithms is required, measuring
their complexity, and suggesting possible optimiza-
tions. Second, an investigation of possible theoretical

interactions with the insights coming from belief re-
vision, e.g. (Dubois, 2008), but applied on our defini-
tion of rule revision.

Finally, the paper explores adaptation only as a
problem ofmaximization of payoffs, studied in deci-
sion theory, game theory and similartop-downper-
spectives. In the future, we plan to analyze it through
the lens of Heiner’s theory of predictable behaviour
(Heiner, 1983); in this way, we expect to be able to
model adaptation as abottom-upmechanism as well.
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