
Formalizing the Qualitative Superposition of Rectangles in
Proof Assistant Isabelle/HOL

Fadoua Ghourabi and Kazuko Takahashi
Graduate School of Science and Technology, Kwansei Gakuin University, Nishinomiya, Japan

Keywords: Knowledge Representation and Reasoning, Qualitative Spatial Reasoning, Theorem Proving, Isabelle/HOL,
Rectangle Superposition.

Abstract: We formalize and verify the superposition of rectangles in Isabelle/HOL. The superposition is associated with
the arrangement of rectangular software windows while keeping some regions visible and other hidden. We
adopt a qualitative spatial reasoning approach to represent these rectangles and the relations between their
regions. The properties of the model are formally proved and show some characteristics of superposition
operation. Although, this work is limited to 29 structures of rectangles, the superpositions produce hundreds
of cases that are tedious to tackle in Isabelle/HOL. We also explain our strategy to optimize the proofs.

1 INTRODUCTION

Qualitative spatial reasoning (QSR) methods describe
the objects of the space qualitatively. Such approach
provides a low demand in numerical computation
and, furthermore, contains enough expressiveness to
teach a program to reason about the spatial objects.
QSR methods target various applications, such as ge-
ographical information systems and robotics (Liu and
Daneshmend, 2004; Bennett, 1996). The importance
of QSR methods leads us to address their reliability
and correctness. While various research works focus
on developing QSR methods, little attention is given
to their formal verification.

On the other hand, proof assistants are increas-
ingly used to formalize mathematical models (Avi-
gad and Harrison, 2014). With the help of proof
assistants, mathematical proofs are formally verified
where each step is transparent and, thus, the involved
logical reasoning can be checked. In the case of the
field of QSR, there are two major approaches: the
topological knowledge about objects (e.g. RCC calcu-
lus (Randell et al., 1992b)), and the positional knowl-
edge about objects (e.g. direction relations (Frank,
1991; Clementini et al., 1997)). Both of RCC and di-
rection relations are formalized using first-order logic
and relation algebra, which motivate us to use them in
automated reasoning by a proof assistant such as Is-
abelle/HOL (Nipkow et al., 2002). The only work that
tackle the formal verification in QSR of which we are
aware dates back to early 90s. The OTTER proof sys-

tem for first-order logic has been used to assist pen-
and-paper proofs of theorems in RCC (Randell et al.,
1992a). As far as we know, there is no (full) formal
presentation of QSR methods using proof assistant.

The purpose of this research is to extend the use of
proof assistants to the field of QSR. We focus on win-
dow allocation problem. When using software, we
often rearrange windows by dragging, resizing, su-
perposing, etc. until obtaining better visibility. A su-
perfluous information in a window can be hidden and
superposed by a relevant information in another win-
dow. A systematic method of superposing windows is
proposed in (Konishi and Takahashi, 2012). The win-
dow parts that should be visible are pre-specified by
the user. The window and its parts form a rectangu-
lar structure. The problem of arranging software win-
dows is regarded as the problem of superposing rect-
angles while keeping some pre-specified parts visible.
The rectangles are regarded as spatial objects, and the
superposition is examined from a QSR point of view.

This paper is based on the method presented
in (Konishi and Takahashi, 2012), and the contribu-
tion that we seek is twofold.

1. The original qualitative representation of rectan-
gles is simple but not expressive enough. When
checking properties about superposition, extra
conditions are defined to detect degenerate situ-
ations. Due to the numerous cases of superpo-
sition, the question is whether all the degenerate
situations are covered. We therefore propose a
more expressive representation based on matrices

530 Ghourabi F. and Takahashi K..
Formalizing the Qualitative Superposition of Rectangles in Proof Assistant Isabelle/HOL.
DOI: 10.5220/0005280005300539
In Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART-2015), pages 530-539
ISBN: 978-989-758-074-1
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

of direction relations. The matrix representation
is more natural as the correspondence between
the parts of a rectangular structure and the ele-
ments of its matrix representation is straightfor-
ward. Furthermore, the extra conditions are not
required and a single set membership test is suffi-
cient.

2. We formalize our revised method of superposition
in Isabelle/HOL. Proof assistants are interactive
systems. The formal proofs are, consequently, te-
dious to do if the model present hundreds of cases.
We therefore take into consideration the practical-
ity of proving in Isabelle/HOL despite the numer-
ous cases of superposition. Our proof strategy re-
lies on establishing equivalence relations between
the qualitative representations of rectangles and
grouping them into classes.

The structure of the rest of the paper is as follows. In
Section 2, we summarize the notations that we use.
In Section 3, we define matrices in Isabelle/HOL. In
Section 4, we explain the operations over matrices. In
Section 5, we give matrix representation to rectangu-
lar units. In Section 6, we apply matrix superposition
to compute the superposition of units. In Section 7,
we introduce properties about superposition of units
and explain how we proceed in order to prove them.
In Section 8, we conclude with remarks on future di-
rections of research.

2 NOTATION

A matrix m of dimensionp×q has p rows andq
columns, wherep, q ∈ N. We write for short “p×q
matrix m”. The expressionm(i, j) denotes the ele-
ment ofm at thei -th column and thej -th row, where
0≤ i < q and 0≤ j < p. Let S be the set of matrices,
m be a matrix inS andf :S → S be an unary function,
we usemf to mean the termf (m) and f n to denote
then(∈ N) compositions off. We recurrently use the
notationmf n

for f n(m).
The formalization presented in this paper is done

in the proof assistant Isabelle/HOL (Nipkow et al.,
2002). The choice of the tool is made principally due
to the availability of powerful libraries for reasoning
with equivalence classes (Paulson, 2006) and mathe-
matical operations on matrices (Sternagel and Thie-
mann, 2010) on which the proposed qualitative rep-
resentation depends. In the following, we present the
elements of syntax used in this paper. Isabelle/HOL
provides a rich collection of formalized theories, use-
ful proof tactics (e.g. natural and structural induction,
and case splitting), elaborate techniques for pattern

matching and term rewriting, etc. Furthermore, Is-
abelle/HOL is a strongly typed system. The expres-
sion “m::′a list” is a type constraint over a variable
m. The variablem is of type list whose elements are
of variable type′a. The type of a functionf is writ-
ten “f::τ1 ⇒ . . . ⇒ τn ⇒ τn+1”. In this paper, we use
Isabelle/HOL expression “f x1 . . . xn” to denote the
termf (x1, . . ., xn). A list is represented by a sequence
of elements between square brackets, i.e. [e0, e1, . . .,
en]. The constructor “#” adds an element to a list, i.e.
v#[e0, e1, . . ., en] = [v, e0, e1, . . ., en]. Thei-th element
of a listm is given by “m ! i”. For an equivalence rela-
tion r, the expressionr ‘‘ {x} in Isabelle/HOL denotes
the equivalence class [x]r .

The formulas that we prove are written using com-
mon mathematical symbols. We explain some of the
proof in Isabelle/HOL using natural language. We
use Isar, which is an extension of Isabelle/HOL, to
write structured and human-readable proofs (Wenzel,
1999). The proofs in the classical Isabelle/HOL proof
style intertwines with Isar proofs.1

3 FORMALIZATION OF
MATRICES

In Isabelle/HOL, no type is defined for matrix. We
use the types “’a vec” and “’a mat” provided by the
Matrix Arith theory (Sternagel and Thiemann, 2010).

type synonym ’a vec = ’a list
type synonym ’a mat = ’a vec list

A matrix is implemented as a list of lists, i.e. a
list of columns. For example, list [[a, b],[c, d],[e, f]]
is of type “′a mat”, and represents the 2×3 matrix
(

a c e
b d f

)

.

3.1 Dimension

The following issues arise when working with matri-
ces as list of lists. First, a matrix of type “’a mat”
has a dimensionp×q, i.e. the length of the whole list
is q, and each column list hasp elements. To make
sure that we work with mathematically valid matrices,
we use predicatemat::nat⇒nat⇒’a mat⇒bool (Ster-
nagel and Thiemann, 2010).

mat p q m,

(length m= q) ∧ (∀ x∈ set m. length x = p),
(1)

1For a closer look at the proofs, our Isabelle/HOL
theory files are available at http://ist.ksc.kwansei.ac.jp/
∼ktaka/SuperpositionTheory/.

Formalizing�the�Qualitative�Superposition�of�Rectangles�in�Proof�Assistant�Isabelle/HOL

531

wherelengthandsetare Isabelle/HOL functions that
compute the length of a list and the set of elements of
a list, respectively.

Second, empty matrix (i.e. []) and matrices with
empty columns (i.e. [[]], [[],[]], etc.) are of type
“ ′a mat”. We want to exclude these matrices for the
following reasons. In the case of empty matrix, the
second part of the conjunction in definition (1) causes
vacuous truth that we wish to avoid (i.e. “mat p0 []”
holds for anyp). Moreover, the transpose of a matrix
with empty columns gives rise to the empty matrix,
hence we wish to avoid these cases too. We there-
fore restrict ourselves to a setM of type “′a mat set”
whose elements satisfy the following condition.

m ∈ M , ∃p q::nat. mat (Suc p) (Suc q) m

The theorems that we prove in this work are defined
for matricesm ∈ M. In the premises, we impose the
conditionm ∈ M from which we can deduce the di-
mensionp×q by adding the following Isar line.

from ‘m ∈ M‘ obtain p q
where mat p q m and 0 < p and 0 < q
by (rule M.cases, simp)

The command “by (rule M.cases, simp)” proves
that the dimension of m isp×q and thatp andq are
strictly positive.

3.2 Matrix Equality

The equality is established between two matrices of
the same dimension. In order to assert that two matri-
ces are equal, we either check that all their respective
elements are equal or that their respective column lists
are equal, depending on the proof strategy. Lemmas
about the equality of matrices are provided by the Ma-
trix Arith theory.

4 OPERATIONS ON MATRICES

We explain two operations on matrices, namely rota-
tion2 and superposition.

4.1 Rotation

Before giving a formal definition of rotation, we first
examine what does rotation of a matrix intuitively
mean. An operation of rotation has a spatial con-
notation. It involves a circular movement of objects

2Here, operation of rotation over matrices is not to be
confused with “rotation matrix” used to compute the new
coordinates of a geometrical object that undergoes rotation
in Euclidean space.

defined by parameters such as the center of rotation,
angle of rotation, etc. If we picture a matrix as an ob-
ject (not only as data-structure), we can perform aπ

2
counter-clockwise rotation. For instance, if we rotate

the matrix
(

a c e

b d f

)

by π
2 in a counter-clockwise

direction, we obtain







e f

c d

a b






.

From a computational point of view, functionρ =
R◦T represents the rotation operation over matrices.
FunctionsT andR denote the transpose and the re-
verse. For a matrixm∈M, mρ = mR◦T is obtained by
reversing the columns ofmT. In the previous exam-

ple, the transpose is







a b

c d

e f






. Then, the result of

reversing the columns of the transpose is







e f

c d

a b






.

Functionstranspose, reverseand ρ implementT, R
andρ in Isabelle/HOL. We use functiontranspose::
nat ⇒ ′a mat ⇒ ′a mat given in the MatrixArith
theory, and we define functionsreverseandρ (both
of type ′a mat⇒ ′a mat) as follows.

reverse m,map rev m

ρ m , reverse (transpose (nrmat m) m)

Functionrev reverses a list, and functionreverse
appliesrev to all the column lists. Note that function
transposehas two arguments. The first argument is
a natural number that corresponds to the number of
rows, which is computed by the function call “nr mat
m”.

Furthermore, we can performn successive rota-
tions of matrixm by computingmρn

, wheren∈N. In
Isabelle/HOL, we use the notation for function power,
i.e. “ρ ˆˆn”, to implement successive rotations. We
prove a collection of useful properties about rotation
operation that are stated as inference rules in (2)− (7)
depicted in Fig. 1.

The variables in the rules (2)− (7) are universally
quantified, and their types are understood from the
context. Rule (5) expresses the transitivity ofρn. A
matrix is invariant by a number of rotations multiple
of 4 (c.f. rules (4) and (6)). If matrixm2 is obtained
by n rotations of matrixm1, thenm1 can be obtained
back by 3×n rotations ofm2 (c.f. rule (7)).

Based on rotation, we establish a relationrot rel.
In other words, if a matrixm2 is obtained byn rota-
tions of matrixm1, then we write (m1, m2) ∈ rot rel.

rot rel,{(m1,m2)|∀m1 m2.∃n::nat.

m1 ∈ M ∧ m2 ∈ M ∧ m2 = m1
ρn
}

(8)

We furthermore prove that the relationrot rel is an
equivalence relation over the setM.

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

532

m∈ M mat p q m even n
mat p q mρn (2)

m∈ M mat p q m ¬even n
mat q p mρn (3)

m∈ M

mρn
= mρn mod4 (4)

m∈ M

mρn1+n2 = mρn1◦ρn2
(5)

m∈ M

mρ4×n
= m

(6)
m1 ∈ M m2 ∈ M m2 = m1

ρn

m1 = m2
ρ3×n (7)

Figure 1: Rules on rotations of matrices.

lemma equiv M rot_rel

Relation rot rel is obviously reflexive overM
sincem = mρ4×n

. From property (5), we deduce that
rot rel is transitive, and from property (7) thatrot rel
is symmetric.

4.2 Superposition

The other operation that we consider is superposition
of matrices. Intuitively, we superpose two matrices
m1 and m2 by “putting” m2 onto m1. The super-
position requires that both ofm1 andm2 are of the
same dimensionp×q. The superposition amounts to
“putting” elements ofm2 onto elements ofm1.

Let f ands be two functions of type′a mat⇒ ′a
mat ⇒ ′a mat and ′a ⇒ ′a ⇒ ′a, respectively. We
define predicateis superpositionas follows.

samedimension p q m1 m2 , mat p q m1 ∧ mat p q m2

is superposition f s,
∀m1 m2 ∈ M. ∀p q i j::nat.
(samedimension p q m1 m2)→ i < q→ j < p→

(f m1 m2)(i, j) = s m1(i, j) m2(i, j)

If “ is superposition f s” holds then we write that
f is a superposition with respect tos. For instance,
addition over matrices is a superposition with respect
to addition operation.

lemma is_superposition mat_plus plus

The implementation off that we use in this paper
is the functionmapthreaddefined as follows.

fun map_thread::(’a ⇒’a ⇒’a)⇒’a mat⇒
’a mat⇒ ’a mat
where map_thread s m1 m2 =
map (λ(v1,v2). map (λ(a1,a2). s a1 a2)
(zip v1 v2)) (zip m1 m2)

Since matrices are implemented as lists, the super-
position “mapthread” applies functions to pair-wise
combinations of elements ofm1 and m2. Function
s is applied to elements ofm1 andm2 that have the
same position (i.e. same column and row numbers).

For instance, calling “(mapthread s) [[a1, a2, a3], . . .]
[[b1, b2, b3], . . .]” gives rise to the matrix “[[s a1 b1, s
a2 b2, s a3 b3], . . .]”. We show that “mapthread s” is
a superposition with respect tos.3

lemma is_superposition (map_thread s) s

Furthermore, we prove properties about superpo-
sition of rotation of matrices shown in rules (9)−
(11). In the left-side of the equation in (9), we com-
pute the superposition of matricesm1 andm2 rotated
by the same numbern. We can takeρn outside as
shown in the right-side of the equation in (9), i.e. we
first superposem1 andm2 then rotate the result byn.

More relevant to our formalization is showing how
superposition behaves when we rotatem1 andm2 by
distinct numbersn1 andn2, respectively. Depending
on whethern1 is less thann2, we distinguish the two
cases in (10) and (11). In casen1 ≤ n2, we can take
ρn1 outside as shown in the right-side of (10). There-
fore, matrixm2 is rotated byn2 − n1. Rules (10) and
(11) are used as substitution rules to replace the occur-
rence of left-side of the equality by the right-side of
the equality. The two rules are important to optimize
the proofs which we will explain later in Sect. 7.2.

Recall that from properties (2) and (3), the dimen-
sion of matrixm1

ρn1 depends on whethern1 is even.
Hence,m1

ρn1 andm2
ρn2 are not necessary of the same

dimension, and therefore we cannot always perform
superposition. A sufficient condition, but not neces-
sary, is to consider onlyp×q square matrices, where
p = q. So far, all the lemmas that we have proved are
for arbitraryp×q matrices, but, as we see in next sec-
tions, only square matrices are used to formalize the
superposition of rectangles.

The qualitative spatial reasoning approach to the
problem of superposition of software windows is
based on operations of rotation and superposition of
matrices. First, a window is given a qualitative rep-
resentation using matrices, which is the subject of the
next section.

3The type of functions is not specified in the statement
of the lemma since it is inferred by Isabelle/HOL.

Formalizing�the�Qualitative�Superposition�of�Rectangles�in�Proof�Assistant�Isabelle/HOL

533

m1 ∈ M m2 ∈ M

(map thread s) m1
ρn m2

ρn
= ((map thread s) m1 m2)ρn (9)

m1 ∈ M m2 ∈ M n1 ≤ n2 mat p p m1 mat p p m2

(mapthread s) m1
ρn1 m2

ρn2 = ((mapthread s) m1 m2
ρn2−n1)

ρn1
(10)

m1 ∈ M m2 ∈ M n2 < n1 mat p p m1 mat p p m2

(map thread s) m1
ρn1 m2

ρn2 = ((map thread s) m1 m2
ρ3×(n1−n2))

ρn1
(11)

Figure 2: Inference rules on matrix superposition.

5 QUALITATIVE
REPRESENTATION OF UNIT

The spatial object that we investigate is the software
window modelled as a rectangle, calledunit. Some
parts of a unit are required to be visible, which are
modelled as white rectangular plates. The parts that
can be hidden are black rectangular plates. The size
of a unit is unfixed, and changes in a fashion similar
to the way software windows are shrunk or expanded.
We explain the qualitative representation of a unit that
reflects its structure, i.e. locations of its black and
white plates.

5.1 Black Plates

LetU be a rectangular unit of unfixed lengthl and un-
fixed heighth, i.e. of sizel ×h. In this paper, we use
units with at most two black plates, and we consider
the following two assumptions about the black plates
of a unitU .

1. If U has one black platep, then the size ofp is
eitherl × v or u×h, whereu≤ l andv≤ h. Each
of the units in Fig. 3(a) and 3(b) has one black
plate that stretches along the length/height of the
unit.

2. If U has two black platesp1 andp2, then they are
perpendicular, and at least one of them is of size
u×h or l ×v, whereu≤ l andv≤ h. Furthermore,
p1 andp2 must be overlapping. The overlapping
part forms a rectangular shared area denoted by
p1⊓ p2 (e.g. the units in Fig. 3(c) and 3(d)).

5.2 Regions of Unit

We work with units that are located on the 2D plane.
The 2D plane is the grey region, simply denoted byg.
From the white and black plates, we compute regions

(a) (b)

(c) (d)

Figure 3: Examples of units with one black plate ((a)
and (b)) and with two perpendicular and overlapping black
plates ((c) and (d)).

of unit, namely white and black regions that we de-
notew andb, respectively. We define the datatyperg
as follows.

datatype rg = w | b | g | N

The regionN is called undefined region that is rel-
evant for checking the success of superposition which
we explain in Sect. 6. The regionsw andb of a unit
U are determined as follows.

(a) A white plate ofU is aw region.

(b) If p is the only black plate ofU , thenp is also the
only b region ofU .

(c) If p1 and p2 are two distinct black plates ofU ,
then together they generate 3, 4 or 5b regions de-
pending on their placements (cf. Fig. 4). Note that
the areap1⊓ p2 is one of theb regions generated
by p1 andp2.

Next, we define the core of a unit. The core region
of unitU , denoted byCU , is ab region. IfU has only
one black platep, thenp is the coreCU . Otherwise, let
p1 andp2 be the two black plates ofU , then the core
of U is the shared area betweenp1 andp2, i.e.CU =
p1⊓ p2. Since a unit has at most two black plates as
established in the assumptions in the previous section,

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

534

b b

b

(a)

b b

b

b

(b)

b b b

b

b

(c)
Figure 4: Black plates,b regions and the core regions.

then a unit has one and only one core. In our figures,
the cores are highlighted in darker black (cf. Figs. 3
and 6).

5.3 Representation

One common approach to represent positional know-
eledge is the use of matrix representation. In particu-
lar, theobject interaction matrix(OIM) (Chen et al.,
2010) encodes the direction relations between spa-
tial objects. In this paper, we use OIM matrix to
represent the positions of the unit regions w.r.t. the
core region. Recall that the coreCU is a rectangu-
lar black area, thus it has 4 edges and 4 vertices.
Extending the edges ofCU divides the plane into 9
tiles where the central tile is bounded and 8 are un-
bounded (e.g. the tiling in Fig. 5). The tiles decom-
pose the plane into the 9 regions of direction rela-
tions, i.e.up left, left, bottomleft, up, center, bottom,
up right, right, bottomright. The core region occu-
pies the central bounded tile. The intersection of the
tiles and the rectangular unit determines the direction
relations between the coreCU and the 8 regions of the
unit that are connected to the core.4

The reference of direction system, being the core,
is the center of the matrix representation. The remain-
ing elements of the matrix are the values of the inter-
sections of the unit and the 8 unbound tiles. We use
the following 3×3 matrix to represent the positions of
the 8 regions that surround the core.




up le f t up upright
le f t core right

bottomle f t bottom bottomright





We place a unit in the 2D plane and we substitute
the valuesg, b, w for the elements of the above ma-
trix. The obtained matrix is the qualitative represen-
tation of the unit. For instance, the qualitative rep-

resentations of the units in Fig. 3 are







g w g

g b g

g g g






,







g g g

w b w

g g g






,







w b g

b b g

g g g






and







w b w

b b b

w w w






, re-

spectively.

4Regions that share a point are considered connected.





w b w
b b b
w w w





Figure 5: Tiling of the plane and the OIM matrix of a unit.

In Isabelle/HOL, we provide a setrgM of all the
3×3 matrices withb core region, and prove thatrgM
is a subset ofM defined in Sect. 3.1.

definition core::rg mat ⇒ rg
where core m = m!1!1

definition rgM ::rg mat set where
rgM = {m. (mat 3 3 m)∧(core m = b)}

lemma rgM ⊂ M

5.4 Valid Units

There are 29 possible cases of fitting one or two black
plates in a rectangular unit. They are depicted in
Fig. 6. We call themvalid units. Since we deal with
qualitative representation of units where size does not
matter, we observe that some units are obtained by
rotating others.

6 SUPERPOSITION OF UNITS

Superposition of units is a non-symmetric binary op-
eration. Superposing two unitsU1 andU2 means that
we putU2 onto U1 while keeping thew regions of
U1 visible. The superposition, that we define in this
paper, operates by putting the coreCU2 onto the core
CU1. The coresCU1 andCU2 are not necessarily of
the same size. Operations of shrinking, expanding,
lengthening are performed onU1 andU2 so that their
cores fit. Consequently, the sizes of the units and their
regions change. Such operations may also affect the
amount of visible information. We assume that the
operating system or the software application automat-
ically generates scrollbars for the viewing. For the
simplicity of our examples, we only modify the size
of U2 and its core. The changes in the size do not af-
fect the matrix representation since it is a qualitative
representation.

Formalizing�the�Qualitative�Superposition�of�Rectangles�in�Proof�Assistant�Isabelle/HOL

535

(a) Class B (b) Class W

(c) Class I1

(d) Class I2

(e) Class L1

(f) Class L2

(g) Class L3

(h) Class T1

(i) Class T2

(j) Class PLUS

Figure 6: Valid units grouped into 10 equivalence classes.

The result of superposition is a unitU3 whose core
is CU3 =CU2 = CU1. The superposition ofU1 andU2
is computed from the superposition of their respective
matrix representations. In Sect. 4.2, we introduced
superposition of matrices where functions has not yet
been defined. In the following section we discuss an
implementation ofs.

(a) Unit L1

(b) Unit I1

(c) Result of I1 on L1
Figure 7: Superposition of unit I1 onto unit L1.

6.1 Functionon

We define a functionon that computes superposition
of regions.

fun on::rg ⇒ rg ⇒ rg
where
on g u = u | on u g = u |
on N _ = N | on _ N = N |
on w _ = N | on _ w = w | on _ b = b

The equation “on x y = z” means that regiony is to
be put on regionx, and the result is regionz. Function
on is defined using Isabelle/HOL function definition
fun. The order of appearance of the equations “on x y
= z” matters. The pattern matching of “on w b” suc-
ceeds first with the 5th equation and thus gives rise to
N, i.e. the superposition should not be allowed since
a w region is hidden.

The superposition of two matricesm1 andm2 is
achieved by calling “(mapthread on) m1 m2”.
Example. We take the two units of type L1 and
I1 in Fig. 7(a) and 7(b) with matrix representations

m1 =







w b g

b b g

g g g






andm2 =







g w g

g b g

g g g






, respec-

tively. We resize I1, then we putCI1 ontoCL1. The
computation of “(mapthread on) m1 m2” gives rise

to







w w g

b b g

g g g






which corresponds to the unit in

Fig. 7(c).
The unit in Fig. 7(c) has one moreb region besides

the core. Theb region is adjacent to the core to the
left. In other words, it shares an edge with the core.
We merge it with the core to form oneb region. The
conditions for the merge as well as its impact on the
matrix representation of a unit are discussed in the
next section.

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

536

(a) (b)

b b

(c)
Figure 8: The result of putting I2 type unit on L1 type unit.

6.2 Merging Black Regions

The merge is necessary only if the following two con-
ditions apply.

1. There is only oneb region that is connected to the
core by an edge. In other words, there is a unique
b region located either up or left or bottom or right
to the core. Fig. 7(c) illustrates such situation. Be-
sides the core, only left region is black.

2. If the above condition holds, then we check
whether theb region and the core are connected to
the same regions. Referring to Fig. 7(c) with ma-

trix representation







w w g

b b g

g g g






, both b region

and core are connected to the same upperw re-
gion, and to the same bottomg region. In that
case we can merge the left, up left and bottom
left regions into oneg region. Hence, the matrix

representation becomes







g w g

g b g

g g g






. In the ex-

ample illustrated by Fig. 8, we put I2 unit on L1
unit. The result of superposition (cf. Fig. 8(c))

has the matrix representation







g w w

g b b

g w g






. The

right region is the onlyb region besides the core.
The core is connected to aw bottom region while
the right region is connected to ag bottom region.
We, therefore, cannot merge the right, up right and
bottom right regions into oneg region.

The final result is merging the superposition (if appli-
cable) which is given by functionputon = merge◦
(mapthread on).

7 ON PROVING PROPERTIES
ABOUT puton

7.1 The Properties

We define properties to answer questions about the
final result of superposing two units. Letm1 andm2
be matrices inrgM, the properties of applying “puton
m1 m2” that we want to check are the following.

Success.Are all thew regions visible?

Effectiveness.Does the final result of superposition
has only oneb region?

Validity. Is the final result of the superposition a
valid unit?

The superposition proceeds by putting the core of a
unit onto the core of another one. This does not guar-
antee that all thew regions are visible. In order to
judge whether a superposition is successful, we com-
pute the occurrence ofN in the matrix representation
obtained byputon.

definition successful::rg mat ⇒ bool where
successful m ≡ (occurs N (concat m))=0

Naturally, effectiveness and validity are checked
for successfulputon. “puton m1 m2” is said effective
if its result has only oneb region.

definition effective::rg mat ⇒ bool where
effective m ≡ (occurs b (concat m)) = 1

“puton m1 m2” is valid if its result is one of the
29 units in Fig. 6.

definition valid::rg mat ⇒ bool where
valid m ≡ ∃V::rg mat. V ∈ U0 ∧

(m ∈ rot_rel‘‘{V})

7.2 Proof Strategy

Given the units in Fig. 6, the number of all the
pairwise combinations is 29× (29− 1) + 29= 841.
Checking properties of success, effectiveness and va-
lidity for all possible superpositions involves numer-
ous computations ofputon. It is crucial to design
an efficient proof strategy to prove a large number of
properties.

Earlier in Sect. 4.2, we explained the results (10)
and (11) about superposition of rotations of matrices.
Namely, ifm1 andm2 are two square matrices of the
same dimension, and given that “mapthread on” is
a superposition with respect to functionon, then we

Formalizing�the�Qualitative�Superposition�of�Rectangles�in�Proof�Assistant�Isabelle/HOL

537

Table 1: Computation of “map thread on” for elements of the classesC1 andC2.
H
H
H
H
H

C1

C2 m2 m2
ρ m2

ρ2
m2

ρ3

m1 f m1 m2 f m1 m2
ρ f m1 m2

ρ2
f m1 m2

ρ3

m1
ρ f m1

ρ m2 f m1
ρ m2

ρ f m1
ρ m2

ρ2
f m1

ρ m2
ρ3

m1
ρ2

f m1
ρ2

m2 f m1
ρ2

m2
ρ f m1

ρ2
m2

ρ2
f m1

ρ2
m2

ρ3

m1
ρ3

f m1
ρ3

m2 f m1
ρ3

m2
ρ f m1

ρ3
m2

ρ2
f m1

ρ3
m2

ρ3

Note: Functionf stands for “map thread on”.

Table 2: Results of applying (12) on the entries of Table 1.
H
H
H
H
H

C1

C2 m2 m2
ρ m2

ρ2
m2

ρ3

m1 f m1 m2 f m1 m2
ρ f m1 m2

ρ2
f m1 m2

ρ3

m1
ρ (f m1 m2

ρ3
)ρ (f m1 m2)ρ (f m1 m2

ρ)ρ (f m1 m2
ρ2

)ρ

m1
ρ2

(f m1 m2
ρ6

)ρ2
(f m1 m2

ρ3
)ρ2

(f m1 m2)ρ2
(f m1 m2

ρ)ρ2

m1
ρ3

(f m1 m2
ρ9

)ρ3
(f m1 m2

ρ6
)ρ3

(f m1 m2
ρ3

)ρ3
(f m1 m2)ρ3

Note: Functionf stands for “map thread on”.

have the following.

(mapthread on) m1
ρn1 m2

ρn2 =
{

((map thread on) m1 m2
ρn2−n1)ρn1

, if n1 ≤ n2

((map thread on) m1 m2
ρ3×(n1−n2))ρn1

, otherwise
(12)

Suppose that we want to check properties of all
the possible applications ofputonon elements of two
equivalence classesC1 andC2. We need to compute
“(mapthread on) m1 m2” for all m1∈ C1 andm2∈ C2
as shown in Table 1. By applying the result in (12),
the entries of Table 1 are equivalent to those depicted
in Table 2.

The 16 entries in Table 2 can be grouped into
equivalence classes using relationrot rel. Namely, we
have the following 4 equivalence classes [f m1 m2],
[f m1 m2

ρ], [f m1 m2
ρ2

] and [f m1 m2
ρ3

]. Note that
due to rule (4), the entries (f m1 m2

ρ6
)ρ2

and (f m1

m2
ρ9

)ρ3
in Table 2 are equal to (f m1 m2

ρ2
)ρ2

and
(f m1 m2

ρ)ρ3
, respectively, and therefore elements of

the classes [f m1 m2
ρ2

] and [f m1 m2
ρ], respectively.

Now to finish computingputon, we need to ap-
ply function merge. To that end, we introduce (in-
fix) predicate “preserves”. A function g preserves an
equivalence relationr if the image of all the elements
in [x] r by g are in [g x]r .

g preservesr , ∀x y. (x,y) ∈ r → (g x,g y) ∈ r

We prove thatmergepreserves relationrot rel.

lemma merge preserves rot_rel

Applying mergegives rise to the 4 equivalence
classes [merge (f m1 m2)], [merge (f m1 m2

ρ)],
[merge(f m1 m2

ρ2
)] and [merge(f m1 m2

ρ3
)].

Next, we use (infix) predicate “respects” defined
in the EquivRelations theory (Paulson, 2006). A
functiong respects an equivalence relationr if g re-
turns the same value for all the elements of an equiv-
alence class generated byr.

g respectsr , ∀x y. (x,y) ∈ r → g x= g y

The properties that we want to check, namely
successful, effective and valid can be regarded as
boolean functions. We prove that they respectrot rel.
If a property P(∈{successful, effective, valid}) holds
for one element of a class then it holds for all the re-
maining elements, otherwise it gives False for all the
remaining elements.

lemma successful respects rot_rel
lemma effective respects rot_rel
lemma valid respects rot_rel

In order to check properties ofputon applied to
all the 16 pairwise combinations of two equivalence
classesC1 andC2, it is sufficient to check them for 4
puton computations that are theputonsapplied to a
representative ofC1 and all the elements ofC2.

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

538

8 CONCLUSION

We covered the formalization of superposition of rect-
angular units in Isabelle/HOL. A unit is given a quali-
tative matrix representation. The superposition of two
units is regarded as superposition function applied to
their respective matrix representations. Functionpu-
ton is defined to refine the result of superposition
by merging black regions. We defined properties of
success, effectiveness and validity, and explained our
proof strategy to tackle the numerous cases of super-
position. We can think of two directions for future
work of this research.

First, we plan to relax all the assumptions on the
unit structure that are enumerated in Sect. 5.1. We
would like to include more complex unit structures
such as the ones depicted in Fig. 9. To that end, we
need to extend the set of direction relations to ex-
press the locations of regions that are not directly con-
nected. The refinement to higher granularity level al-
lows representing any unit structure. We also plan to
formalize the generalization in Isabelle/HOL.

(a) (b) (c)

Figure 9: Unit structures whose qualitative representations
require extending direction relations.

Second, QSR theories, such as direction relations,
rely on composition tables that are relevant for de-
ciding whether QSR constraints are consistent (Renz,
2002; Frank, 1991). In order to construct the com-
position tables, the work presented in (Randell et al.,
1992a) uses OTTER proof system for first-order logic
to assist pen-and-paper proofs. The authors have enu-
merated the challenge of such proofs because of the
number of the entries of a composition table. We plan
to investigate the proof of the correctness of the com-
position tables using proof assistant.

ACKNOWLEDGEMENTS

This work is supported by JSPS KAKENHI Grant
No. 25330274.

REFERENCES

Avigad, J. and Harrison, J. (2014). Formally Verified Math-
ematics.Communications of the ACM, 57(4):66–75.

Bennett, B. (1996). The Application of Qualitative Spatial
Reasoning to GIS. InProceedings of The 1st Inter-
national Conference on GeoComputation, volume I,
pages 44–47.

Chen, T., Schneider, M., Viswanathan, G., and Yuan, W.
(2010). The Objects Interaction Matrix for Modeling
Cardinal Directions in Spatial Databases. InDatabase
Systems for Advanced Applications, volume 5981 of
LNCS, pages 218–232. Springer Berlin Heidelberg.

Clementini, E., Felice, P. D., and Hernándes, D. (1997).
Qualitative Representation of Positional Information.
Artificial Intelligence, 95(2):317 – 356.

Frank, A. U. (1991). Qualitative Spatial Reasoning about
Cardinal Directions. InProceedings of the Inter-
national Symposium on Computer-Assisted Cartogra-
phy, pages 148–167. ACSM-ASPRS.

Konishi, T. and Takahashi, K. (2012). Superposition of
Rectangles with Visibility Requirement: A Qualita-
tive Approach.International Journal On Advances in
Software, 4(4):422–433.

Liu, J. and Daneshmend, L. (2004).Spatial Reasoning and
Planning: Geometry, Mechanisms, and Motion. Ad-
vanced Information Processing. Springer.

Nipkow, T., Paulson, L. C., and Wenzel, M. (2002).
Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, volume 2283 ofLNCS Tutorial. Springer.

Paulson, L. C. (2006). Defining Functions on Equivalence
Classes.ACM Transactions on Computational Logic,
7(4):658–675.

Randell, D. A., Cohn, A. G., and Cui, Z. (1992a). Comput-
ing Transitivity Tables: A Challenge for Automated
Theorem Provers. InProceedings of Automated De-
duction (CADE-11), volume 607 ofLNCS, pages 786–
790. Springer.

Randell, D. A., Cui, Z., and Cohn, A. G. (1992b). A Spatial
Logic based on Regions and Connection. InProceed-
ings of the 3rd International Conference on Knowl-
edge Representation and Reasoning, pages 165–176.

Renz, J. (2002).Qualitative Spatial Reasoning with Topo-
logical Information, volume 2293 ofLNCS. Springer.

Sternagel, C. and Thiemann, R. (2010). Executable
Matrix Operations on Matrices of Arbitrary Di-
mensions. In The Archive of Formal Proofs.
http://afp.sf.net/entries/Matrix.shtml.

Wenzel, M. (1999). Isar - A Generic Interpretative Ap-
proach to Readable Formal Proof Documents. InThe-
orem Proving in Higher Order Logics, volume 1690
of LNCS, pages 167–183. Springer.

Formalizing�the�Qualitative�Superposition�of�Rectangles�in�Proof�Assistant�Isabelle/HOL

539

