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Abstract: We formalize and verify the superposition of rectangles in Isabelle/HOL. The superposition is associated with
the arrangement of rectangular software windows while keeping some regions visible and other hidden. We
adopt a qualitative spatial reasoning approach to represent these rectangles and the relations between their
regions. The properties of the model are formally proved and show some characteristics of superposition
operation. Although, this work is limited to 29 structures of rectangles, the superpositions produce hundreds
of cases that are tedious to tackle in Isabelle/HOL. We also explain our strategy to optimize the proofs.

1 INTRODUCTION tem for first-order logic has been used to assist pen-
and-paper proofs of theorems in RCC (Randell et al.,

Qualitative spatial reasoning (QSR) methods describe 1992a). As far as we know, there is no (full) formal
the objects of the space qualitatively. Such approachPresentation of QSR methods using proof assistant.
provides a low demand in numerical Computation The purpose of this research is to extend the use of
and, furthermore, contains enough expressiveness tdProof assistants to the field of QSR. We focus on win-
teach a program to reason about the spatial objects dow allocation problem. When using software, we
QSR methods target various applications, such as ge-0ften rearrange windows by dragging, resizing, su-
ographical information systems and robotics (Liu and P€rposing, etc. until obtaining better visibility. A su-
Daneshmend, 2004; Bennett, 1996). The importanceperﬂuous information in a window can be hidden and
of QSR methods leads us to address their reliability SUperposed by a relevant information in another win-
and correctness. While various research works focusdow. A systematic method of superposing windows is
on developing QSR methods, little attention is given Proposed in (Konishi and Takahashi, 2012). The win-
to their formal verification. dow parts that should be visible are pre-specified by
On the other hand, proof assistants are increas-the user. The window and its parts_form a rectangu-
ingly used to formalize mathematical models (Avi- lar structure. The problem of arranging softwa_re win-
gad and Harrison, 2014). With the help of proof dows is regarded as the problem of superposing _rect-
assistants, mathematical proofs are formally verified @ngles while keeping some pre-specified parts visible.
where each step is transparent and, thus, the involved! he rectangles are regarded as spatial objects, and the
logical reasoning can be checked. In the case of theSUpPerposition is examined from a QSR point of view.
field of QSR, there are two major approaches: the ~ This paper is based on the method presented
topological knowledge about objects (e.g. RCC calcu- in (Konishi and Takahashi, 2012), and the contribu-
lus (Randell et al., 1992h)), and the positional knowl- tion that we seek is twofold.
edge about objects (e.g. direction relations (Frank, 1. The original qualitative representation of rectan-
1991; Clementini et al., 1997)). Both of RCC and di- gles is simple but not expressive enough. When
rection relations are formalized using first-order logic checking properties about superposition, extra
and relation algebra, which motivate us to use themin  conditions are defined to detect degenerate situ-
automated reasoning by a proof assistant such as Is- ations. Due to the numerous cases of superpo-
abelle/HOL (Nipkow et al., 2002). The only work that sition, the question is whether all the degenerate
tackle the formal verification in QSR of which we are situations are covered. We therefore propose a
aware dates back to early 90s. The OTTER proofsys-  more expressive representation based on matrices
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of direction relations. The matrix representation matching and term rewriting, etc. Furthermore, Is-
is more natural as the correspondence betweenabelle/HOL is a strongly typed system. The expres-
the parts of a rectangular structure and the ele- sion “m:’a list” is a type constraint over a variable
ments of its matrix representation is straightfor- m. The variablem is of type list whose elements are
ward. Furthermore, the extra conditions are not of variable typ€a The type of a functiorf is writ-
required and a single set membership test is suffi- ten “f.; 11 = ... = Th = 111" In this paper, we use
cient. Isabelle/HOL expressionf“x; ... x," to denote the
termf(xa, ..., Xn). Alistis represented by a sequence
of elements between square brackets, g, €1, ...,
en]. The constructor “#” adds an element to a list, i.e.
Vit[ep, €1, ..., en] = [V, €p, €1, ..., &]. Thei-th element
of alistmis given by ‘m! i”. For an equivalence rela-
tionr, the expression” {x} in Isabelle/HOL denotes
the equivalence clasg];.

The formulas that we prove are written using com-
mon mathematical symbols. We explain some of the
proof in Isabelle/HOL using natural language. We
use Isar, which is an extension of Isabelle/HOL, to
The structure of the rest of the paper is as follows. In write structured and human-readable proofs (Wenzel,
Section 2, we summarize the notations that we use.1999). The proofs in the classical Isabelle/HOL proof
In Section 3, we define matrices in Isabelle/HOL. In style intertwines with Isar proofs.

Section 4, we explain the operations over matrices. In

Section 5, we give matrix representation to rectangu-

lar units. In Section 6, we apply matrix superposition 3 FORMALIZATION OF

to compute the superposition of units. In Section 7,

we introduce properties about superposition of units MATRICES
and explain how we proceed in order to prove them.
In Section 8, we conclude with remarks on future di-
rections of research.

2. We formalize our revised method of superposition
in Isabelle/HOL. Proof assistants are interactive
systems. The formal proofs are, consequently, te-
dious to do if the model present hundreds of cases.
We therefore take into consideration the practical-
ity of proving in Isabelle/HOL despite the numer-
ous cases of superposition. Our proof strategy re-
lies on establishing equivalence relations between
the qualitative representations of rectangles and
grouping them into classes.

In Isabelle/HOL, no type is defined for matrix. We
use the types’a vec’ and “’a mat’ provided by the
Matrix_Arith theory (Sternagel and Thiemann, 2010).

type_synonym 'a vec = "a li st
2 NOTATION type_synonym 'a mat = 'a vec list
) _ _ A matrix is implemented as a list of lists, i.e. a
A matrix m of dimensionpxq hasp rows andq it of columns. For example, list4] bl.[c, d].[e, f]]
columns, whergp, g € N. We write for short bxq s of type “a mat, and represents thex3 matrix

matrix m”. The expressiornm(i, j) denotes the ele- P

ment ofm at thei-th column and th¢-th row, where ( b d f )

0<i<gand0<j < p. LetS be the set of matrices,

m be a matrix inS andf:$ — $ be an unary function, 3.1 Dimension

we usem’ to mean the ternf(m) and f" to denote

then(e N) compositions of. We recurrently use the  The following issues arise when working with matri-

notationm’ " for f"(m). ces as list of lists. First, a matrix of type “a mat”
The formalization presented in this paper is done has a dimensiopx g, i.e. the length of the whole list

in the proof assistant Isabelle/HOL (Nipkow et al., is g, and each column list hgselements. To make

2002). The choice of the tool is made principally due sure that we work with mathematically valid matrices,

to the availability of powerful libraries for reasoning we use predicateat::nat-nat="a mat=-bool (Ster-

with equivalence classes (Paulson, 2006) and mathe-nagel and Thiemann, 2010).

matical operations on matrices (Sternagel and Thie-  matp g m2

mann, 2010) on which the proposed qualitative rep-

resentation depends. In the following, we present the

elements of syntax used in this paper. Isabelle/HOL (1)

provides a rich collection of formalized theories, use-  1rqr 4 closer look at the proofs, our Isabelle/HOL

ful proof tactics (e.g. natural and structural induction, theory files are available at http:/ist.ksc.kwanseipc.j

and case splitting), elaborate techniques for pattern ~ktaka/SuperpositionTheory/.

(lengthm= q) A (Vxe setmlengthx= p),
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wherelengthandsetare Isabelle/HOL functions that

defined by parameters such as the center of rotation,

compute the length of a list and the set of elements of angle of rotation, etc. If we picture a matrix as an ob-

a list, respectively.

Second, empty matrix (i.e. []) and matrices with
empty columns (i.e. [[]], [[ LI 1], etc.) are of type
“’a mat. We want to exclude these matrices for the
following reasons. In the case of empty matrix, the
second part of the conjunction in definition (1) causes
vacuous truth that we wish to avoid (i.enat pO[]”
holds for anyp). Moreover, the transpose of a matrix
with empty columns gives rise to the empty matrix,

hence we wish to avoid these cases too. We there-

fore restrict ourselves to a skt of type “a mat set
whose elements satisfy the following condition.

me M £ 3pq::nat mat(Sucp (Sucg m

The theorems that we prove in this work are defined
for matricesm € M. In the premises, we impose the
conditionm € M from which we can deduce the di-
mensionpx g by adding the following Isar line.

from ‘m e M obtain p g
where mat p g mand O < p and 0 < g
by (rule M cases, sinp)

The command by (rule M.cases, simp)” proves
that the dimension of m ip x g and thatp andq are
strictly positive.

3.2 Matrix Equality

The equality is established between two matrices of
the same dimension. In order to assert that two matri-

ces are equal, we either check that all their respective
elements are equal or that their respective column lists
are equal, depending on the proof strategy. Lemmas

about the equality of matrices are provided by the Ma-
trix _Arith theory.

4 OPERATIONS ON MATRICES

We explain two operations on matrices, namely rota-
tion? and superposition.

4.1 Rotation

Before giving a formal definition of rotation, we first

examine what does rotation of a matrix intuitively
mean. An operation of rotation has a spatial con-
notation. It involves a circular movement of objects

2Here, operation of rotation over matrices is not to be
confused with “rotation matrix” used to compute the new
coordinates of a geometrical object that undergoes ratatio
in Euclidean space.
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ject (not only as data-structure), we can perford a
counter-clockwise rotation. For instance, if we rotate

a ¢ f ) by 7 in a counter-clockwise

the matrix(
b d

e f

c d

a b

From a computational point of view, functign=

Ro T represents the rotation operation over matrices.
FunctionsT and R denote the transpose and the re-
verse. For a matrixneM, mP = m™T is obtained by
reversing the columns afi’. In the previous exam-

direction, we obtai

a b
ple, the transpose ié c d
e f

). Then, the result of
e f
reversing the columns of the transposg.is d |.
a b
Functionstransposgreverseand p implementT, R
andp in Isabelle/HOL. We use functiotranspose:
nat= 'a mat=-'a matgiven in the MatrixArith
theory, and we define functionsverseandp (both
of type’a mat=-'a ma) as follows.

reverse m= map revm
p m £ reverse (transpose (mat m) m)

Functionrev reverses a list, and functioeverse
appliesrevto all the column lists. Note that function
transposénas two arguments. The first argument is
a natural number that corresponds to the number of
rows, which is computed by the function catir:mat

Furthermore, we can perform successive rota-
tions of matrixm by computingn®”, wheren € N. In
Isabelle/HOL, we use the notation for function power,
i.e. “p 7'n", to implement successive rotations. We
prove a collection of useful properties about rotation
operation that are stated as inference rules in{gj)
depicted in Fig. 1.

The variables in the rules (2) (7) are universally
quantified, and their types are understood from the
context. Rule (5) expresses the transitivitypdf A
matrix is invariant by a number of rotations multiple
of 4 (c.f. rules (4) and (6)). If matrixn; is obtained
by n rotations of matrixm;, thenm; can be obtained
back by 3x nrotations ofm; (c.f. rule (7)).

Based on rotation, we establish a relatrom rel.

In other words, if a matrixm; is obtained byn rota-
tions of matrixmi, then we write fn1, my) € rot.rel.

rot.rel2{(my, mp)|Yrm mp.3n::nat ®

meMAMmeEMA m=m"}
We furthermore prove that the relationt rel is an
equivalence relation over the Jdt
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meM matpgm evenn meM matpgm -evenn

2 3
matp g m" @) matqpm" 3)
meM meM
e ——L 4) o —_— (5)
meM MmeM meeM my=m"
4xn (6) 3xn (7)
Figure 1: Rules on rotations of matrices.
For instance, calling ‘fhapthread 3 [[a1, &, &], - -]
lemma equiv Mrot_rel [[b1, by, bs], ...]" gives rise to the matrix “[[s @by, s
_ _ ) ) a by, s & bs], ...]". We show that ‘mapthread §is
Relation rot.rel is obviously reflexive overM a superposition with respect §&
sincem = mP™". From property (5), we deduce that _ o
rot.rel is transitive, and from property (7) thedt_rel lemma i s_superposition (map_thread s) s

is symmetric. )
Furthermore, we prove properties about superpo-

4.2 Superposition sition of rotation of matrices shown_in rules (9)
(11). In the left-side of the equation in (9), we com-

The other operation that we consider is superposition PUt€ the superposition of matrices anng rotated

of matrices. Intuitively, we superpose two matrices PY the same number. We can takep” outside as

my and m; by “putting” m, onto m;. The super- s'hown in the right-side of the equation in(9), i.e. we

position requires that both ofi; and my are of the  [IrSt Superposen andm; then rotate the result by

same dimensiopx g. The superposition amounts to More relevant to our formalization is showing how

“putting” elements ofm, onto elements ofn;. syp_erposition behaves when we r(_)ta’[gand my by
Let f andss be two functions of typéa mat='a distinct numbers; and ny, respectively. Depending

mat = 'a matand’a = 'a = 'a, respectively. We on whethemy is less thamy, we distinguish the two

define predicatés_superpositioras follows. cases in (10) and (11). In case < n,, we can take
p™ outside as shown in the right-side of (10). There-

fore, matrixmy is rotated byn, — n;. Rules (10) and
(11) are used as substitution rules to replace the occur-
- rence of left-side of the equality by the right-side of
Vmmp € M.Vpqij:nat _ _ the equality. The two rules are important to optimize
(samedimensionp qmme) —i<q—=j<P— the proofs which we will explain later in Sect. 7.2.
(Fmump)(i, j) = sm(i, j) ma(i, j) Recall that from properties (2) and (3), the dimen-
If  is_superposition f’sholds then we write that  sion of matrixm:®™ depends on whether, is even.
f is a superposition with respect & For instance,  Hencem:®™ andm,?™ are not necessary of the same
addition over matrices is a superposition with respect dimension, and therefore we cannot always perform
to addition operation. superposition. A sufficient condition, but not neces-
sary, is to consider onlpx q square matrices, where
p = q. So far, all the lemmas that we have proved are
for arbitraryp x g matrices, but, as we see in next sec-
tions, only square matrices are used to formalize the
superposition of rectangles.

samedimensionp g mmy = matp g m A matp q m

is_superposition f s

lemma i s_superposition mat_plus plus

The implementation of that we use in this paper
is the functiormapthreaddefined as follows.

fun map_thread::('a ='a ='a)='a mt = The qualitative spat?al reasoning appr(_)ach to t_he

"a mat = 'a mat problem of superposition of software windows is

where map_thread s nl n2 = based on operations of rotation and superposition of

map (A(v1, v2). map (A(al,a2). s al a2) matrices. First, a window is given a qualitative rep-

(zip vl v2)) (zip nl nR) resentation using matrices, which is the subject of the
next section.

Since matrices are implemented as lists, the super-
position “mapthread applies functions to pair-wise
combinations of elements @fi; and m,. Function

s is applied to elements ah; andm; that have the 3The type of functiors is not specified in the statement
same position (i.e. same column and row numbers). of the lemma since it is inferred by Isabelle/HOL.
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meM meM

(mapthread $ mP" mP" = ((mapthread $ my mp)P" ©)
meM meM nm<m matppm matppm (10)
(mapthread $ mP™ myP™ = ((mapthread ¥ m mZP”Z’"l)':’n1
meM myeM np<m matppm matppm .
(mapthread 5 mP™ myP" = ((mapthread § my mpp** "™ "2)° !

Figure 2: Inference rules on matrix superposition.

5 QUALITATIVE
REPRESENTATION OF UNIT

The spatial object that we investigate is the software |:I:|
window modelled as a rectangle, calledit. Some (@) ()
parts of a unit are required to be visible, which are

modelled as white rectangular plates. The parts that

can be hidden are black rectangular plates. The size

of a unit is unfixed, and changes in a fashion similar

to the way software windows are shrunk or expanded.

We explain the qualitative representation of a unit that (c) (d)
reflects its structure, i.e. locations of its black and Figure 3: Examples of units with one black plate ((a)
white plates. and (b)) and with two perpendicular and overlapping black

plates ((c) and (d)).

5.1 Black Plates of unit, namely white and black regions that we de-

notew andb, respectively. We define the datatyqe
LetU be arectangular unit of unfixed lendtand un- as follows.
fixed heighth, i.e. of sizel x h. In this paper, we use
units with at most two black plates, and we consider datatype rg = w | b | g | N

the following two assumptions about the black plates ) ) ) ) )
of a unitu. The regiorN is called undefined region that is rel-

evant for checking the success of superposition which

1. If U has one black plate, then the size opis e explain in Sect. 6. The regiomsandb of a unit
eitherl x voruxh, whereu <l andv<h. Each  j gre determined as follows.

of the units in Fig. 3(a) and 3(b) has one black

plate that stretches along the length/height of the (@) Awhite plate ol is aw region.
unit. (b) If pis the only black plate df}, thenp is also the

ly b regi fU.
2. If U has two black platep; andpy, then they are onybregion o

perpendicular, and at least one of them is of size (¢) If P1 and p are two distinct black plates df,
ux horl xv, whereu< | andv < h. Furthermore, then together they generate 3, 4 d» Begions de-
p1 and p, must be overlapping. The overlapping pending on thellr placements (cf. _F|g. 4). Note that
part forms a rectangular shared area denoted by ~ the areairpz is one of theb regions generated
p1M P2 (e.g. the units in Fig. 3(c) and 3(d)). by p1 andps.
Next, we define the core of a unit. The core region
) . of unitU, denoted byCy, is ab region. IfU has only
5.2 Regions of Unit one black plate, thenpis the coreCy . Otherwise, let
p1 andpy be the two black plates &f, then the core
We work with units that are located on the 2D plane. of U is the shared area betweppnandpy, i.e.Cy =
The 2D plane is the grey region, simply denotecgby  p1M p2. Since a unit has at most two black plates as
From the white and black plates, we compute regions established in the assumptions in the previous section,
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@) (b) (c)

Figure 4: Black plates) regions and the core regions.
then a unit has one and only one core. In our figures,

the cores are highlighted in darker black (cf. Figs. 3
and 6).

5.3 Representation

One common approach to represent positional know-

eledge is the use of matrix representation. In particu-
lar, theobject interaction matriXOIM) (Chen et al.,

2010) encodes the direction relations between spa-

tial objects. In this paper, we use OIM matrix to
represent the positions of the unit regions w.r.t. the
core region. Recall that the co® is a rectangu-

lar black area, thus it has 4 edges and 4 vertices.

Extending the edges @y divides the plane into 9
tiles where the central tile is bounded and 8 are un-
bounded (e.g. the tiling in Fig. 5). The tiles decom-
pose the plane into the 9 regions of direction rela-
tions, i.e.up_left, left, bottomleft, up, center bottom
up_right, right, bottomright. The core region occu-
pies the central bounded tile. The intersection of the
tiles and the rectangular unit determines the direction
relations between the coBy and the 8 regions of the
unit that are connected to the cdre.

The reference of direction system, being the core,

is the center of the matrix representation. The remain-

ing elements of the matrix are the values of the inter-
sections of the unit and the 8 unbound tiles. We use
the following 3x 3 matrix to represent the positions of
the 8 regions that surround the core.

upleft up upright
left core right
bottomleft bottom bottonright

We place a unit in the 2D plane and we substitute
the valueg, b, w for the elements of the above ma-

trix. The obtained matrix is the qualitative represen-
tation of the unit. For instance, the qualitative rep-

w
resentations of the units in Fig.Sa(eg b Z),
g g9 9
g g g w b g w b w
(wa),(bbg)and(bbb),re-
g g 4 g g9 g wow w

spectively.

4Regions that share a point are considered connected.

w b w
b b b
w w w

Figure 5: Tiling of the plane and the OIM matrix of a unit.

In Isabelle/HOL, we provide a segM of all the
3x3'matrices withb core region, and prove thegM
is a subset oM defined in Sect. 3.1.

definition core::rg mat = rg
where core m= m 1! 1

definition rgM ::rg mat set where
rgM={m (mat 3 3 mA(core m= h)}

lemma rgM c M
5.4 Valid Units

There are 29 possible cases of fitting one or two black
plates in a rectangular unit. They are depicted in
Fig. 6. We call thenvalid units Since we deal with
qualitative representation of units where size does not
matter, we observe that some units are obtained by
rotating others.

6 SUPERPOSITION OF UNITS

Superposition of units is a hon-symmetric binary op-
eration. Superposing two unity andU, means that
we putU, onto U; while keeping thew regions of

U, visible. The superposition, that we define in this
paper, operates by putting the c@lg, onto the core
Cy,. The coreLCy, andCy, are not necessarily of
the same size. Operations of shrinking, expanding,
lengthening are performed @h andU, so that their
cores fit. Consequently, the sizes of the units and their
regions change. Such operations may also affect the
amount of visible information. We assume that the
operating system or the software application automat-
ically generates scrollbars for the viewing. For the
simplicity of our examples, we only modify the size
of Uo and its core. The changes in the size do not af-
fect the matrix representation since it is a qualitative
representation.
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(a) ClassB  (b) Class W
= 10O
(c) Class 11

= LI

(d) Class 12

Himimp e
(e) Class L1

= 1 H L
(f) Class L2

- =1 [
(g) Class L3

& =i ) =
(h) Class T1

= e
(i) Class T2

i

() Class PLUS
Figure 6: Valid units grouped into 10 equivalence classes.

The result of superposition is a uklg whose core
is Cy; = Cy, = Cy,. The superposition df; andU,
is computed from the superposition of their respective
matrix representations. In Sect. 4.2, we introduced
superposition of matrices where functishas not yet
been defined. In the following section we discuss an
implementation ok

536

() UnitL1 (b) Unit 11

(c) Resultof 11 on L1
Figure 7: Superposition of unit 11 onto unit L1.

6.1 Functionon

We define a functiomn that computes superposition
of regions.

fun on::rg = rg = rg

where

ongu=u | onug-=u|]

on N_=N] on _ N=N|

onw_ =N]| on w=w]| on b=m»>b

The equationbn x y = 2’ means that regiog is to
be put on regiow, and the result is regian Function
on is defined using Isabelle/HOL function definition
fun. The order of appearance of the equatioms X y
= Z" matters. The pattern matching obh w b’ suc-
ceeds first with the 5th equation and thus gives rise to
N, i.e. the superposition should not be allowed since
aw region is hidden.

The superposition of two matrices; and m; is
achieved by calling (mapthread on) m my”.
Example. We take the two units of type L1 and
I1 in Fig. 7(a) and 7(b) with matrix representations

w b g g w g
m=|b b glandma=| g b g |, respec-
g g9 g g 9 g

tively. We resize 11, then we p@;; ontoC.;. The
computation of “mapthread o m1 my" gives rise

w w g
to

b b
9 9
Fig. 7(c).

The unitin Fig. 7(c) has one moberegion besides
the core. Theb region is adjacent to the core to the
left. In other words, it shares an edge with the core.
We merge it with the core to form orteregion. The
conditions for the merge as well as its impact on the
matrix representation of a unit are discussed in the
next section.

g) which corresponds to the unit in
g
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7 ON PROVING PROPERTIES
ABOUT puton

5 7.1 The Properties

@) (b)

We define properties to answer questions about the
final result of superposing two units. Let; andm;

be matrices imgM, the properties of applyingduton

my my” that we want to check are the following.

Success.Are all thew regions visible?

|| Effectiveness. Does the final result of superposition
has only onéb region?

(©

Figure 8: The result of putting 12 type unit on L1 type unit.  Validity. Is the final result of the superposition a

valid unit?

6.2 Merging Black Regions The superposition proceeds by putting the core of a

unit onto the core of another one. This does not guar-

The merge is necessary only if the following two con- antee that all thev regions are visible. In order to
ditions apply. judge whether a superposition is successful, we com-

1. There is only oné region that is connected to the . Pute the occurrence & in the matrix representation
core by an edge. In other words, there is a unique obtained byputon

b region located either up or left or bottom or right
to the core. Fig. 7(c) illustrates such situation. Be-
sides the core, only left region is black.

. If the above condition holds, then we check Naturally, effectiveness and validity are checked
whether theb region and the core are connected to for successfuputon “puton m ms" is said effective
the same regions. Referring to Fig. 7(c) with ma- if its result has only oné region.

definition successful ::rg mat = bool where
successful m= (occurs N (concat nj))=0

w w g
trix representation » » g |, both b region definition effective::rg mat = bool where
effective m= (occurs b (concat m) =1

9 9 g
and core are connected to the same uppee-
gion, and to the same bottoghregion. In that “puton m my" is valid if its result is one of the

case we can merge the left, up left and bottom 29 units in Fig. 6.

left regions into ongy region. Hence, the matrix o ]
g w g definition valid::rg mat = bool where

representation becomgsg b g |. Intheex- valid m= 3JVi:irg mat. V € U0 A
g g (merot_rel'*{V})

g
ample illustrated by Fig. 8, we put 12 unit on L1
unit. The result of superposition (cf. Fig. 8(c))
g w w
has the matrix representationg » b |. The
g w g
right region is the onlyb region besides the core.
The core is connected tova bottom region while
the right region is connected tagebottom region.
We, therefore, cannot merge the right, up rightan
bottom right regions into ong region.

7.2 Proof Strategy

Given the units in Fig. 6, the number of all the

pairwise combinations is 29 (29— 1) + 29 = 841.

Checking properties of success, effectiveness and va-
g lidity for all possible superpositions involves numer-

ous computations oputon It is crucial to design

an efficient proof strategy to prove a large number of

The final result is merging the superposition (if appli- prgperties.

cable) which is given by functioputon= mergeo Earlier in Sect. 4.2, we explained the results (10)
(mapthread o). and (11) about superposition of rotations of matrices.

Namely, if m; andms are two square matrices of the
same dimension, and given than&pthread ofi is
a superposition with respect to functiom, then we
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Table 1: Computation ofrhapthread ofi for elements of the classe§ and ..

a G my mzp m2p2 m2p3
mq f m1 My f ma mzp f ma mzpz f ma m293
mlp f mlp mo f mlp mzp f mlp m2p2 f mlp m293
mlp2 f m1p2 my f mlp2 mzp f mlp2 m2p2 f mlp2 m2p3
mlp3 f I’T'llp3 my f m193 mzp f mlp3 m2p2 f mlp3 m2p3
Note: Functionf stands for fnapthread of.
Table 2: Results of applying (12) on the entries of Table 1.
a & mo mzp mzpz m293
mq f mi1 msy f ma mzp f ma mzpz f ma m293
mP | (Fmam®P | (Fmamy)P | (fmameP)P | (f mympP)P
mi® | (f ma mof*)P" | (Fmy maP )P | (F ma mp)? | (F ma moP)P°
miP | (Fme )P | (Fmamp® ) | (F ma mpP’)P | (F ma mp)””

have the following.

Note: Functionf stands for fnapthread of.

2

(mapthread o mP™ myP" =

((mapthread o my mpP
((mapthread o my myP

{

Suppose that we want to check properties of al
the possible applications plitonon elements of two
equivalence classa§ and (>. We need to compute

PP it <mp
e - gtherwise
(12)

lemma merge preserves rot_rel

“(mapthread oy m1 my” for all me G andmee &

as shown in Table 1. By applying the result in (12),
the entries of Table 1 are equivalent to those depicted gy,ccessfyl effective and valid can be regarded as
o ] boolean functions. We prove that they respettrel.
The 16 entries in Table 2 can be grouped into |f 5 property PE{successful, effective, valid holds

in Table 2.

equivalence classes using relatiot.rel. Namely, we
have the following 4 equivalence classésri m>],

[f my moP], [f my mzpz] and [f m; m293]. Note that
due to rule (4), the entries mzps)p2 and f my
mng)p3 in Table 2 are equal tof (M1 mzpz)pz and
(fmq mzp)pa, respectively, and therefore elements of

the classesf[m1 mzpz] and [f m1 myP], respectively.
Now to finish computingouton we need to ap-

ply function merge To that end, we introduce (in-
fix) predicate ‘preserves A function g preserves an
equivalence relationif the image of all the elements

in [X]; by g arein [g x];.

Applying mergegives rise to the 4 equivalence

classes ferge(f m1 my)], [merge (f m1 myP)],
[merge(f my mzpz)] and [merge(f m mzpa)].

Next, we use (infix) predicateréspects defined

in the EquivRelations theory (Paulson, 2006).

| function g respects an equivalence relatioif g re-
turns the same value for all the elements of an equiv-
alence class generated hy

g respects £

A

VXy. (X,y)Er—-gx=gy

The properties that we want to check, namely

lemma successf ul
lemma ef fective respects rot_rel
lemma valid respects rot_rel

for one element of a class then it holds for all the re-
maining elements, otherwise it gives False for all the
remaining elements.

respects rot_rel

In order to check properties gfuton applied to

all the 16 pairwise combinations of two equivalence
classeg’; and (&, it is sufficient to check them for 4
puton computations that are theutonsapplied to a

representative of; and all the elements afs.

g preserves 2 Yxy. (x,y)€r — (gx,gy) €r
We prove thamergepreserves relatiorot rel.
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