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Abstract: It is a fundamental concern for multi-robot system research community how to explore unknown 
environments. This paper presents an approach for controlling cooperative multiple robots exploration in an 
unknown environment. The approach we are proposing aims to minimizing the overall exploration cost for 
multiple robots that march in procession. In order to achieve the goal, the file of multiple robots must be 
able to effectively come out of dead-ends while exploring a maze-like environment. The proposed approach 
employs multiple mobile software agents that can migrate from a robot to another robot freely to bring 
certain role and ability to a robot. In particular, the mobile software agent brings the role of leader to an 
arbitrary robot in a file, so that the migrated robot becomes the leader of a subgroup of the robots that can 
march in a file into a part of environment. In order to demonstrate the effectiveness of our approach, we 
have built a simulator, and partially constructed a real multi-robot system. 

1 INTRODUCTION 

In the last two decades, robot systems have made 
rapid progress not only in their behaviours but also 
in the way they are controlled. In particular, a 
control system based on multiple software agents 
can control robots efficiently (Kambayashi and 
Takimoto, 2005).  

On the other hand, we have witnessed the advent 
of multi-robot systems. A multi-robot system 
consists of a large number of homogeneous robots 
that have limited capability but, when combined into 
a group, they can generate more complex behaviours 
(Parker, 2008). In multi-robot systems, robots 
communicate with each other to achieve cooperative 
behaviours. There are three major advantages of 
multi-robot systems over single robot systems 
(Stone and Veloso, 2000) (Yasuda and Ohkura, 
2005). The first is parallelism; a task can be 
achieved by autonomous and asynchronous robots in 
a system. The second is robustness; it is realized 
through redundancy. The system can have more 
robots than required for a certain task. The third is 
scalability; a robot can be added to or removed from 
the system easily. 

For  the  multi-robot   system,  a  control   system 

based on the multiple software agents can control 
robots efficiently. Multi-agent systems introduced 
modularity, reconfigurability and extensibility to 
control systems, which had been traditionally 
monolithic. It has made easier the development of 
control systems on distributed environments such as 
multi-robot systems. 

On the other hand, excessive interactions among 
agents in the multi-agent system may cause 
problems in the multiple robot environments. In 
order to mitigate the problems of excessive 
communication, we have developed mobile agent 
methodologies for distributed environments. In a 
mobile agent system, each agent can actively 
migrate from one site to another site. Since a mobile 
agent can bring the necessary functionalities with it 
and perform its tasks autonomously, it can reduce 
the necessity for interaction with other sites. In the 
minimal case, a mobile agent requires that the 
connection is established only when it performs 
migration (Binder et al., 2001).  

We have designed and implemented multiple 
mobile software agent systems that control several 
multi-robot systems that 1) playing a tag by 
dynamically exchanging roles (Kambayashi and 
Takimoto, 2005), 2) cooperatively assemble 
themselves at energy-wise optimal locations 

222 Kambayashi Y., Shibuya R. and Takimoto M..
Multi-Agent Approach for Controlling Robots Marching in a File - A Simulation.
DOI: 10.5220/0005279002220229
In Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART-2015), pages 222-229
ISBN: 978-989-758-073-4
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



(Kambayashi et al., 2012), 3) serialize themselves 
(Shintani et al., 2011a) (Shintani et al., 2011b), and 
4) search and recollect arbitrary targets without 
redundant movements (Ishiwatari et al., 2014), 5) 
cooperatively transport unknown objects (Shibuya et 
al., 2013) (Takahashi et al., 2014), and 6) 
constructing ad hoc network (Kambayashi et al., 
2014).  

In the multi-robot systems, the multiple mobile 
software agents migrate in a herd of scattered mobile 
robots to collect information about them as well as 
drive minimum number of them based on the 
collected information (Kambayashi et al., 2012). 
Moving software agents instead of physical robots 
greatly save not only energy consumption but also 
total cost for several tasks through effective 
utilization of idle resources (Nagata et al., 2013). 

In this paper, we propose a multi-robot system 
that explores maze-like environments in a file. When 
a file stacked in a dead-end corridor, they must come 
back. In general, when a file of multiple robots face 
to a dead-end, all the members have to go backword 
until the leading robot can turn into a branch of the 
corridor (Figure 1). The longer the file is, the more 
futile movements occurs. If arbitrary robot can be a 
leader, we can let the robot at the most convenient 
position be a commander of the partial file so that 
only partial queue of the robots have to turn and 
follow the leading robot (Figure 2). In order to 
achieve such a coordination, we employ two types of 
mobile software agents. One drives the robot and 
makes it follow the preceding robot, and the other 
also drives the robot and makes it lead the queue of 
robots and explore the corridor. 

 

 

Figure 1: The file has to go back all the way until the 
leading robot can enter the branch. 

 

Figure 2: An arbitrary robot can be the leading robot; the 
order of robots in the file is changed. 

The structure of the balance of this paper is as 
follows. In the second section, we describe the 
background. In the third section, we describe how to 
control multiple robots in a file by the mobile agents. 
The fourth section demonstrates the feasibility of our 
approch through simulatoin, and we conclude our 
discussionsin in the fifth section. 

2 BACKGROUNDS 

Even though many research scientists have carried 
out in the area of exploration for single autonomous 
robot, not much of this type of works has been 
applied to multi-robot systems. Most of these 
research efforts have been taken existing algorithms 
that are developed for single robot exploration and 
have extended them to multiple robots. Just recently, 
research scientists have developed new algorithms 
that are fundamentally distributed. 

Fox et al. took advantage of multiple robots to 
obtain more accurate positions than using single 
robot (Fox et al., 2000). Roumeliotis and Bekey 
demonstrated the ability of Kalman-filter based 
approach that provides a team of mobile robots to 
simultaneously localize by sensing their teammates 
and combining location information from all the 
team members (Roumeliotis and Bekey, 2002). 
Vaughan et al. proposed an algorithm that makes a 
team of robots be able to navigate in an unknown 
environment by using a trail of waypoint markers 
(Vaughan et al, 2002). They demonstrated that their 
approach can handle the problem caused by 
accumulating small errors of odometers, thus it is 
robust against the failure of individual robots. They 
claimed that their multi-robot system almost always 
converges to the best route discovered by any robot 
of the team.  

In order to take advantage of multiple robots to 
explore unknown environments, formation control 
has been one of the most important topics of multi-
robot systems. Fredslund and Mataric address the 
problem of achieving formation control using only 
local sensing and interaction (Fredslund and Mataric, 
2002). Their idea is to make each robot keeps track 
of one particular robot within its view. They 
demonstrated that their approach can provide a 
variety of formations. Even though these researches 
have produced marvelous achievements, none of 
them takes advantage of multiple mobile agents.  

Gonzalez et al. proposed an application of multi-
agent system to multi-robot system (Gonzalez et al., 
2011). They proposed control architecture for 
intentional cooperation that distributes 
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responsibilities by applying a hierarchical 
decomposition of the multi-agent cooperative 
control. By assigning well-defined agents to multiple 
robots, they achieved to make the multi-robot 
system pursue to solve multi-resolution problem. 
Even though their system is based on multi-agent 
model, the agents are static, not movable among 
robots. 

Shintani et al. proposed a multi-agent system 
based multi-robot system (Shintani et al., 2011a) 
(Shintani et al., 2011b). They employed two types of 
mobile software agents that make scattered multiple 
mobile robots form a line. The notable point of their 
idea is that they make pheromone as mobile agents 
to attract and to guide mobile robots into a queue 
while minimizing energy consumption. Our 
approach is dynamically assigning the leading role 
to a robot in a file by migration of a mobile software 
agent with the leading ability. 

3 CONTROLLING ROBOTS IN A 
FILE 

In the traditional applications of multi-agent system 
to a multi-robot system, each agent has fixed role, is 
fastened on a particular robot and drives the robot to 
achieve its own specific role. In our approach, 
however, the characteristic of a robot depends on the 
mobile agent that currently resides on the robot. 
Therefore any robot in a file can be not only a 
follower robot but also a leader robot depending on 
the circumstance around it. 

In order to realise such requirement, we made 
each robot have the following capabilities:  

1. Each robot has a visible identifier, and each 
robot has a visual sensor to follow the 
preceding robot. 

2. Each robot has a communication mechanism 
either wireless LAN or ad hoc communication 
mechanism so that mobile software agents 
migrate from a robot to another robot freely. 

3. Each robot has an ability to sense the 
geographic characteristics of the immediate 
surroundings. Particularly the robots must 
sense the existence of branches of a corridor. 

With these capabilities, a file of robots follows the 
following algorithms in order to explore maze-like 
corridors and get out of dead-end. 

3.1 Movement of a File of Robots 

Figure 3 shows a corridor splitting into two branches. 

Both of the branches are dead-ends. A file of robots 
comes from the top, and enters in the left branch and 
checks the right branch. Upon realising both of them 
are dead-end, it retreats. In the figure, the dotted 
lines depict the corridors, and the solid line depicts 
the file of robots where the diamond shape depicts 
the leading robot and the circle depicts the rear of 
the file.  

Figure 3b shows that the leading robot just 
comes to the dead-end of the left branch. Then the 
most conveniently located robot in the file, i.e. the 
robot at the junction, disengages from the line and 
becomes the new leading robot. The immediately 
preceding robot of the new leader becomes the 
selector (triangle shape), and the former leader 
becomes the end robot. Consequently, the file splits 
into two, and the new leader that was the latter half 
of the file enters the right branch while the stacked 
half lines of robots are left in the left branch and 
waiting as shown in Figure 3c. When the last robot 
of the file just passes the junction, i.e. in front of the 
selector, the selector follows the rear robot. In order 
to do so, the rear and the selector has the same label; 
‘A’ in this case.  

 
(a)  (b)    (c) 

Figure 3: A queue of robots comes to a dead-end and 
explore the other branch. 

If the right branch corridor is long enough to 
contain entire robots, the robots reform a file and 
continue the exploration. But if the corridor is also 
dead-end, the entire robots have to come back. In 
such a situation we have two cases. One is the case 
where the file is longer than the corridor, and the 
other is the case where the file is shorter than the 
corridor. We examine each case in turn. 

First we consider the case where the file is longer 
than the corridor. Figure 4 shows this case. The new 
leading robot comes into the dead-end of the branch 
before the rear robot comes at the junction (Figure 
4a). The file splits itself into two. One of the two 
robots at the junction becomes the new leader and 
the other becomes the selector (Figure 4b). They are 
labelled ‘B’. Since there is no third corridor, the new 
leader exchanges its role with the rear robot (Figure 
4c). Note that the new leader’s label is A while the 
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exchanged end robot’s label is B (Figure 4c). The 
selector B follows the end robot B to form single 
line (Figure 4d), then as the file recedes and when 
the rear robot comes to the junction, the selector A 
follows the end robot A (Figure 4e), so that they 
complete to form the entire file to go out of the 
corridors as shown in Figure 4f. 

Next, we consider the case where the file is 
shorter than the corridor. Figure 5 shows this case. 
As in the first case, when the file comes into the 
dead-end of the left branch, it splits into two and the 
selector A is created at the end of the left line. The 
new leading robot commands the latter half of the 
file and enters into the right branch. At some point, 
the end robot comes to the junction as shown in 
Figure 5a. Then the selector follows the last robot of 
the latter half to form a complete file (Figure 5b). 
When the new leader comes into the dead-end of the 
right corridor, the file split into two lines again, and 
a new leader B and selector B are created (Figure 
5c). The new leader retracts the file, and then the 
selector B follows the end robot B to form the entire 
file again to get out the corridors as shown in Figure 
5d and 5e. 

 
(a) (b)    (c) 

 
(d)         (e)    (f) 

Figure 4: The case of the file is longer than the corridor. 

 
(a)   (b)    (c) 

Figure 5: The case of the file is shorter than the corridor. 

 
(d)          (e) 

Figure 5: The case of the file is shorter than the corridor 
(cont.). 

The difference between these two cases is just 
the difference of the order of reconnecting the 
queues to reform the file. In the first case, the queues 
are connected in the reverse order in their being split, 
while the second case connects in the order in their 
being split. This algorithm of dead-end corridor 
exploration is applicable not only two way branches 
but also many ways branches. The Figure 6 shows 
the four ways cases. 

 
(a) (b) 

Figure 6: The four way branches. The file is longer than 
the route (a), and the file is shorter than the route (b). 

3.2 Control Algorithm using Mobile 
Software Agents 

In this section we describe how the algorithms 
explained in the previous section are implemented 
by the mobile software agents. We have created two 
types of agents: Follower Agent (FA) and Pioneer 
Agent (PA). The former has the role that follows the 
immediately preceding robot as well as the role of 
selector. The latter has the role of leader. As 
mentioned in the algorithms, the leader exchanges 
its role quite often. Therefore the PA is implemented 
as a mobile agent and migrates from a robot to 
another robot. Because PA migrates into a robot on 
which FA already resides, PA has higher priority 
and overrides the role of FA. We describe each of 
them in the following subsections. 

3.2.1 Follower Agent 

FA has two  states;  one  is  just  following  specified 
robot (state A), and the other is waiting until it is 
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notified to connect to the specified robot (state B). 
The base state is A. Upon receiving command from 
PA, FA turns to its state to B. When the connection 
is done, the state turns into A again.  

Figure 7 shows the behaviours of FAs in pseudo 
code when they are in state A and B, respectively. 
detect_robot() is the function that recognizes 
the robot in front of the robot that FA is riding. 
follow_robot specifies the robot FA is supposed 
to follow, and follow_robot_alt specifies the 
selector robot. 

The driving behaviours of a FA are determined 
by the state. FAs cannot change their own states. PA 
has the privilege to write variables in FAs so that PA 
can determine the state of a certain FA. PA also 
specifies to which robot (label) the FA drives to 
follow. As shown in Figure 7, FA cannot even turn 
the driving robot to the reverse direction.  

The important point is that only PA can turn the 
driving robot other way round. Therefore in order to 
turn around and to retract the robot, PA has to 
migrate to the robot. The behaviours of PA are 
described in the next subsection. 

procA () { // behaviour of state A 
r = detect_robot(); 
if (r == follow_robot) 
follow ( follow_robot) 

else 
stop () 
} 

procB () { // behaviour of state B 
stop () 
while ( state == ‘B’) { 
r = detect_robot(); 
if (r == follow_robot  
|| r == follow_robot_alt) { 
if(r is End ){ 
follow_robot = r 
state = ‘A’ 

} 
} 

} 
} 

Figure 7: The behaviours of Follower Agents. 

3.2.2 Pioneer Agent 

PA makes the driving robot explore corridors. 
Therefore PA is always resides on the leading robot. 
When the robot comes to a dead-end, PA has to 
change the directions of the entire file as well as to 
exchange the roles of leading robot with rear robot. 

Figure 8 shows the behaviours of PA in pseudo 
code. current_robot specifies the robot the PA 
currently resides. arrive_branch() is the 
function to detect a junction, arrive_deadend() 

is the function to detect a dead-end, 
turn_around() makes the current robot turn the 
other way round, and migrate_to makes the PA 
migrate to the specified robot designated by an IP 
address. 

The most important behaviour is what PA has to 
do when arrive_deadend() returns true. First, 
it saves the current_robot to tmp, and moves 
back to the robot at the last junction by performing 
the function back_to_branch(). Note that turning 
the robot to the reverse direction is done in this 
migration function calls. Also note that when the PA 
comes to the junction, the two robots are facing each 
other. The PA needs to change the state of the FA on 
the robot it is facing. Thus the PA makes the FA 
selector (state B) by making end_robot and 
current_robot be follow_robot and 
follow_robot_alt (labelling) respectively as 
well as state. Finally it makes the tmp robot be the 
rear robot. 
explore() { 
while (true) { 
if (arrive_deadend()) { 
tmp = current_robot 
back_to_branch() 
prev_r = detect_robot() 
prev_r->FA->follow_robot 

 = current_robot 
prev_r->FA->follow_robot_alt  

= end_robot 
prev_r->FA->state = ‘B’ 
end_robot = tmp; 

} 
go_foward() 
} 

} 
back_to_branch() { 
while (!arrive_branch()){ 
turn_around() 
r = detect_robot() 
FA->follow_robot = r 
migrate_to (r->address ) 

} 
} 

Figure 8: The behaviours of Pioneer Agents. 

4 IMPLEMENTATION BY A 
SIMULATOR 

In order to demonstrate the feasibility of our 
algorithms, we have implemented a simulator for the 
multi-robot system to explore corridors with dead-
ends. In this section, we first describe the mobile 
agent system we employ and then explain the 
simulation of robot movements.  
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4.1 Agent System as a Thread 

In order to implement mobile agents, we employed 
Java threads and made them migrate. We have 
created Agent class that inherits Serializable 
interface so that the object code can be serialised. In 
order to implement the migration, we translate the 
compiled Java bytecodes so that the migrating code 
can save local variables, stack variables, and the 
program counter. Figure 9 shows a Java pseudo code 
example.  
class MovableAgent extends Agent { 
run (){ 
switch (loadPC()){ 
case 1: 
loadLocals(); 
loadStacks(); 
goto L1; 
break ; 

default : 
break ; 

} 
    /* do something */ 

 storeLocals(); 
 storeStacks(); 
 storePC(1); 
 migrate(IP address); 
 throw new MigrateException(); 

 L1: 
/* do something */ 

  } 
} 

Figure 9: Pseudo Java code for mobile agents. 

In order to perform a migration, we make an 
instance of MovableAgent save local and stack 
variables before calling the function migrate(), 
set a label and save the address of the label. In this 
case the label is L1. Right before the label, the 
instance throws an exception and let the run-time 
system know the thread wants to migrate. Upon 
catching the exception, the run-time system 
serialises the instance of MovableAgent and sends 
it to the designated address. Another run-time 
system that receives the serialised object, restores 
the instance, and makes it run as a thread. When the 
thread resumes running, it restore the local and stack 
variables, loads the program counter, and jumps to 
L1 to complete reproduction of environment and 
execution of the thread at the sent site.  

4.2 The Simulator 

We have implemented the Pioneer Agent (PA) and 
Follower Agent (FA) by using the agent system 

described in the previous subsection. This subsection 
reports the result. 

The Figure 10 shows the experiment of the case 
where the file of robots is shorter than the corridors. 
The file of seven robots is ready and starts marching 
(Figure 10a). While each robot has a FA, only the 
leading robot is driven by PA. When the leader finds 
that the right corridor is dead-end, the PA starts 
migrating back the robots one by one and turns them 
around into reverse direction (Figure 10b).  

Once PA comes to the robot at the junction, the 
PA makes it as the new leader (Figure 10c). The 
second file, which consists of the latter three robots, 
enters into the centre corridor, while the other four 
robots in the right corridor are stack in the dead-end 
and waiting (Figure 10d). The second file soon 
comes into the dead-end, the PA moves back to the 
middle of three, and makes it the leader for 
exploration to the left corridor. At this time, the 
former leading robot is left and made waiting, and 
the four robots in the right corridor join to the file 
with the very new leader (Figure 10e). When the 
marching file comes into the dead-end of the left 
corridor, the PA changes the leading robot again, 
and makes the file retreat. Then, we can observe that 
the new file is constructed as the right queue first, 
then the centre robot joins, and finally the left queue 
follows the new file (Figure 10f). 

 
(a)   (b)    (c) 

 
(d)         (e)    (f) 

Figure 10: The case of the file is shorter than the corridors. 

The Figure 11 shows the experiment of the case 
where the file of robots is longer than the corridors. 
At this time, the file consists of fourteen robots. 
Figures 11a through 11d show that the robots 
display the same behaviours as shown in Figures 10a 
through 10d. Upon finding the last corridor (left one) 
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is dead-end, the PA come back to the robot at the 
junction (Figure 11d). Then the PA also finds there 
is no alternative corridors to explore and realises it 
has to make all the robots retreat. The PA further 
migrates back to the last robot and makes it the 
leading robot (the very bottom one) (Figure 11e). 
The PA drives the new leader and makes all the 
robots go downward. At this time, we can observe 
that the new file is constructed as the queue that 
does not enter the dead-end corridors first, then the 
left queue joins next, the centre queue, and finally 
the right queue joins to complete the file. 

 
(a)    (b)    (c) 

 
(d)         (e)    (f) 

Figure 11: The case of the file is longer than the corridors.  

 
(a)    (b)    (c) 

 
(d)         (e)    (f) 

Figure 12: The case of the file is longer than the corridors. 

As the final example, we show the case of 
existence of a goal place instead of dead-end. Figure 
12 shows the case. The upper left rectangle is the 
goal place. Robots are supposed to stop and stay 
when they reach there. We can observe that the file 

of mobile robots behaves just the same as the case 
where the file is shorter than the corridors until the 
leading robot reaches the goal place. Then the PA 
stops working and wait for the rest of the file the 
FAs drive. 

We have confirmed that the algorithms we 
proposed for mobile software agents successfully 
drive a file of robots to explore maze-like corridors 
in both of the cases where the file is shorter than the 
corridors and where the file is longer than the 
corridors. The changes of leading robot by 
migrations of a mobile agent PA successfully guide 
the file of robots. 

5 CONCLUSIONS AND FUTURE 
WORKS 

We have presented a multi-robot system that 
explores maze-like environments in a file. When a 
file stacked in a dead-end corridor, they must come 
back. In order to accomplish smooth retraction, we 
propose mobile software agent approach that 
changes the leader of the file dynamically by 
exchaging the roles by the agents.  

Dynamic exchange of roles is executed by the 
migration of software agents. The software agents 
are implemented as Java threads. In order to 
physically move a Java thread to another computer, 
we not only use Java Serializable interface but also 
translation of compiled byte codes so that the 
transmitted serialised code can be restored with local 
and stack variables as well as program counter. 

In order to demonstrate the feasibility of our 
approach and algorithms, we have implemented a 
simulator. The simulator shows a file of mobile 
robots can explore maze-like corridors in both of the 
cases where the file is shorter than the corridors and 
where the file is longer than the corridors. The 
corridors can branch out in arbitrary numbers. 

Because we could confirm our algorithm work 
well in the simulator, it would the natural step to 
implement the mobile robot system by using real 
robots. Since the results of simulator are simply 
theoretical ones and the setting is too ideal, we 
thought it has no point to execute numerical 
experiments with the simulator. Instead, we are 
constructing a herd of mobile robots to perform the 
real world experiments. The corridors are 
implemented as lines of silver tape commonly used 
for line-trace robots. The setting is just a line-trace 
robot exercise commonly done in any technical 
colleges. We are solving the problems we encounter 
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during the implementation one by one, and are going 
to show a complete multi-robot system that explores 
maze-like environment. The knowledge and 
experience we obtain through this project will 
contribute to the rescue robotics research community. 
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