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Abstract: Estimation of covariance matrices is a common problem in signal processing applications. Commonly applied
techniques based on the cost optimization (e.g. maximum likelihood estimation) result in an unconstrained
estimation in which the positive definite nature of covariance matrices is ignored. Consequently this may result
in accurate estimation of the covariance matrix which may affect overall performance of the system. In this
paper we propose to estimate the covariance matrix using Fr´echet mean which ensures that the estimate also
has positive definite structure. We demonstrate the applicability of the proposed technique on both estimation
and classification accuracy using numerical simulations. In addition we discuss some of the preliminary results
we obtained by applying our techniques to high content cell imaging data set.

1 INTRODUCTION

The covariance matrix, or equivalently, the power
spectral density (PSD) matrix, of the signals from a
multi-sensor system is a feature useful for many pur-
poses in statistical signal processing including detec-
tion, estimation, classification, and signal design. In
a recent paper (Li and Wong, 2013) the importance of
power spectral density matrix in classification of EEG
signals was demonstrated.

In many applications of signal processing, the co-
variance matrix of the observed signal is utilized as
a feature from which information is extracted. Of-
ten, for extraction of information, averaging and in-
terpretation of these matrices are needed. To develop
algorithms for such evaluations, one important fact
has to be born in mind that the structural constraints,
i.e., Hermitian symmetry and positive definiteness,
on such matrices must be maintained (Li and Wong,
2013), (Jeuris et al., 2012). More specifically in high
content cell images many of the features that are com-
monly used in analysis exhibit large degree of ran-
dom variations from class to class (i.e well to well).
In these cases it is expected that covariance structure
may play significant role in correct classification as
their distinguishing properties may be determined by
type of randomness rather than the center of the mass
of the cluster corresponding to particular well of cells
used for screening.

In this paper, the focus of our attention is on the
estimation of the Frechet mean of the covariance ma-
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trices on the manifoldM using the different measures
of Riemannian distances. The necessary frame work
and algorithms to obtain the mean of covariance ma-
trices from group of sample covariance matrices us-
ing Riemannian distances on manifold of positive def-
inite matricesM will be developed and studied in this
chapter. In Section 2 we introduce the Fréchet mean
based on several Riemannian distances. In Section 3
we discuss computational algorithms for calculating
the proposed distance means. In Section 4 we present
numerical results that demonstrate applicability of our
results.

2 FRÉCHET MEAN

The history of defining mean goes back 2500 years
when the ancient Greeks introduced ten types of dif-
ferent means. Among them only three of them survive
and are still being used. These are the arithmetic, the
geometric and the harmonic means.

We use the notion of Fréchet mean to unify the
method of finding the mean of positive definite matri-
ces. The Fréchet mean is given as the point which
minimizes the sum of the squared distances (Bar-
baresco, 2008):

Ŝ = argminS∈M

n

∑
i=1

d2(Si,S) (1)

where{Si}n
i=1 represents the symmetric positive defi-

nite matrices andd(., .) denotes the metric being used
respectively.

In fact if we have a closer look at the definition
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of arithmetic mean of positive measurement{xi}n
i=1,

which is denoted as ¯x = 1
n ∑n

i=1 xi, and using the usual
distance, we can see that it has the variational prop-
erty. This means that it minimizes the sum of the
squared distances to the pointsxk :

x̄ = argminx≥0

n

∑
i=1

|x− xi|2 (2)

with respect to metric

d(x,y) = |x− y| (3)

In fact if we form the quadratic cost function

f (x) =
n

∑
i=1

(x− xi)
2 (4)

By taking the derivative of Eq.(4) with respect to the
variablex and set it equal to zero one can obtain the
x̄ which is the arithmetic mean of positive scalars
{xi}n

i=1.

2.1 Riemannian Metrics

So far we only considered the Euclidean distance
which is valid on the space with zero sectional cur-
vature.

To measure the distance between twoM ×M co-
variance matricesA and B on manifold of positive
definite matricesM , we consider the metrics which
have been developed to measure distance between
two points on the manifold itself. The following
metrics will be considered throughout the remaining
chapters.

The first metric is obtained when we lift the points
A,B to the horizontal subspaceU ⊂H using the fiber
and measure the distance between them(Li and Wong,
2013):

dR1 (A,B) = argmiñU1,Ũ2∈U(M)

∥

∥

∥
A

1
2 Ũ1−B

1
2 Ũ2

∥

∥

∥

2
(5)

whereU(M) denotes the space of unitary matrices of
sizeM×M. Alternatively Eq.(5) can be rewritten as:

√

Tr(A)+Tr(B)−2Tr(A
1
2 BA

1
2 )

1
2 (6)

In general for any positive definite matrixA its square
root is defined asA

1
2 =S

√
LDH ; whereA =SLDH is

the eigenvalue value decomposition of matrixA with
diagonal matrixL consisting of eigenvalues ofA.

In Eq(5), U1 and U2 are the left and right mul-
tiplicative of singular value decomposition ofB

1
2 A

1
2

(Mardia et al., 1979). Let the pointsA,B ∈ M and
let X be a the point on the manifold at which we
construct a tangent plane ( it is usually denoted as

TM X). According to the inner-product〈A,B〉X =
Tr(X−1AX−1B) the log- Riemannian metric is given
as (Moakher, 2005):

dR3(A,B) =
∥

∥

∥
log(A− 1

2 BA− 1
2 )
∥

∥

∥

2
=

√

M

∑
i=1

log2 (Li) (7)

where theLi’s are the eigenvalues of the matrixA−1B
(Absil et al., 2009). (MetricdR3 has been developed
in various ways and has, for a long time, been used in
theoretical physics).

Obtaining the Fréchet mean of set of positive defi-
nite Hermitian matrices{Si}n

i=1 with respect to metric
dR1 results in:

argminS∈M

n

∑
i=1

∥

∥

∥

∥

S
1
2
i Ui −S

1
2 U

∥

∥

∥

∥

2

2
(8)

In the next section we discuss numeri-
cal/analytical methods for calculating corresponding
means.

3 COMPUTATIONAL
ALGORITHMS

Following the approach of (Crosilla and Beinat, 2002)
we first define functiong as

g(A1,A2,A3, ...,An) =
1
n

n

∑
i=1

∑
j≥i

∥

∥AiUi −A jU j
∥

∥

2
2 .

(9)
where in Eq.(9)Ui’s are unitary operators.

The next algorithm simultaneously find the set of
unitary matrices{Ui}n

i=1 in order to minimize function
g(A1,A2, ...,An) in (9) and as a consequent finding
the Fréchet mean with respect to metricdR1.

Algorithm for computing the Fr échet mean of
metric dR1:

Algorithm 1 : Fréchet mean for metricdR1.

1. Initialize the positive threshold valueε. For the set{Si}n
i=1 of

positive definite matrices on manifoldM find the square root

of each element:A i = S
1
2
i ; i = 1,2, ...,n.

2. For eachi = 1,2, ...,n considerÂ i := 1
n−1 ∑n

j 6=i A j and findÛi

which minimizes
∥

∥Â i −A iUi

∥

∥

2; then consider̂A inew := A iÛi

3. At iteration (k + 1) set A i = Â inew; i = 1,2, ...,n and Evaluate
gk+1 using Eq.(9)

4. Repeat step 2 until:
|gk(A1,A2, ...,An)−gk+1(A1,A2, ...,An)| ≤ ε .

5. CalculateĈ = 1
n ∑n

i=1 Â iUi.

6. The resulting Fréchet mean on manifoldM is then obtained as
Ŝ = ĈĈH
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The optimization problem in Eq.(1) with respect
to the metricdR2 and given positive definite hermitian
matrices{Si}n

i=1, is expressed as:

Ŝ = argminS∈M

n

∑
i=1

∥

∥

∥
Si

1
2 −S

1
2

∥

∥

∥

2

2
(10)

The optimization problem (10) has closed form solu-
tion on manifold of positive definite matrices. It can
be obtained through the following lemma:

For the set of positive definite Hermitian matrices

{Si}n
i=1 on manifoldM we considerL i = (Si)

1
2 ; i =

1,2, ...,n . Then we have:

L̂ = argminL
n

∑
i=1

∥

∥

∥
L i −L

1
2

∥

∥

∥

2

2
=

1
n

n

∑
i=1

L i (11)

The Fréchet mean with respect to metricdR3 for
the set of positive definite matrices{Si}n

i=1 in mani-
fold M using Eq.(1) can be formulated as:

Ŝ = argminS∈M

n

∑
i=1

d2
R3(Si,S) (12)

Before going through the algorithm for finding
the optimum solution of Eq.(12) we show that this
optimization problem has a unique solution. It has
been demonstrated that the directional derivative of

the function f (X) = ∑n
i=1

∥

∥

∥

∥

log(A
− 1

2
i XA

− 1
2

i )

∥

∥

∥

∥

2

2
,where

{Ai}n
i=1 ∈ M , is given by:

DY f (X) = 2
n

∑
i=1

〈

X−1 log(XA−1
i ),Y

〉

(13)

At this point we can use gradient descent algo-
rithm to find the minimizer off (X).

4 EVALUATION OF FR ÉCHET
MEAN OF SYMMETRIC
POSITIVE DEFINITE
MATRICES

We have introduced different estimators correspond-
ing to the different distance measures to find the
Fréchet mean of set of symmetric positive definite
matrices{Si}n

i=1 on manifoldM . In order to com-
pare the performance of each estimator we consider a
population ofM×M covariance matrices and find the
mean of them using each estimator. We will consider
different models having the same true means so that a
comparison of the closeness of the different estimates
to this true mean is possible.

4.1 Model Description

To come up with the first model we consider the
known symmetric positive definite matrixS as the
nominal value. Then we apply the Cholesky decom-
position to it. By definition the Cholesky factor of a
symmetric positive definite matrixS is a lower trian-
gular matrixW with positive diagonal elements such
thatS = W W H .
We denote the Cholesky factor ofS in the model with
W and setW =Chol(S ); whereChol represents the
Cholesky factor ofS . We also consider set of ma-

trices{Xi}n
i=1 with the entries

{

xi
jk

}

j,k
drawn from

a normal distribution with zero mean and prescribed
varianceS2. Now to form the new population of co-
variance matrices{Si}n

i=1 with respect to the nominal
covariance matrixS we consider the following model:

Si = (W +Xi)(W +Xi)
H (14)

In order to take to account the signature of ran-
domness in producing samples using model (14) we
use Eq.(15) to measure the discrepancy in several
simulation runs; This approach is known as Monte
Carlo simulation (MacKay, 1998). In this method
for the fixed covariance matrixS one can generate
the population set{Si}n

i=1 for N times. Each time
the Fréchet mean of the population will be evaluated,
ñ = 1,2, ...,N. Finally, the criterion which is known
asRoot Mean Square Error or (RMSE) is formed as
follows :

RMSEdF =

√

1
N

N

∑̃
n=1

dF
2(S , Ŝñ

)

(15)

Where metricdF is defined as :

dF
(

S , Ŝ
)

=
∥

∥S − Ŝ
∥

∥

2 (16)

in which for matrixA, ‖A‖2 =
√

TrAAH .
First we consider the model (14) to demonstrate

the performance of the Fréchet mean of Riemannian
distances. For this reason we consider a Covariance
matrix S3×3. The eigenvalues of the covariance ma-
trix is L = diag[1,0.3573,0.065]. As far as the model
(14) is concerned the Cholesky factor of the covari-
ance matrix is considered. The additive random noise
matrix {Xi}n

i=1 has independent and identically dis-
tributed (i.i.d) entries come from Gaussian distribu-
tion with zero mean:

E
(

xi
j,k

)

= 0 j,k = 1,2,3 , i = 1,2, ..,n (17)

whereE denotes the expected value of the random
variable. The standard deviation of the entries of ran-
dom noise is 0.09 in this experiment.
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The population size of the covariance matrices,
{Si}n

i=1, varies between 10 to 60 in step size 10. In or-
der to take to account the signature of randomness of
the additive Gaussian noise matrixXi’s in model (14),
for each population we perform the Monte-Carlo sim-
ulation 2000 times and obtain the resulting error be-
tweenŜ and the nominal covariance matrix using loss
function,RMSEdF . The results are shown in Figure 1.

(a)

(b)
Figure 1: (a): Error is measured using metricdF .(b): Error
is measured using Loss function.

4.2 Classification Based on the Distance
to the Center of Mass

So far we have mathematically developed the concept
of mean for group of positive definite Hermitian ma-
trices on manifoldM from the distance point of view.
Moreover, we have seen that depending on model
and the criterion of measuring the closeness of each
estimator to the nominal covariance matrix, Fréchet
means of Riemannian distances are better estimators.

The concept of Fréchet mean can be utilized in
distance based detection and classification on mani-
fold M (Pigoli et al., 2014),(Barachant et al., 2010).
For this purpose suppose that we have a set of covari-
ance matrices{Sik}nk

i=1 wherek represents the label
of each class andnk denotes the number of covari-
ance matrices withinkth class. For each classk the

Fréchet mean of the class, depending on type of met-
ric, can be obtained as representative of each class.
For the unknown observation its covariance matrix is
formed and considered as the unknown feature. The
observation is assigned to the class which has mini-
mum distance to the Fréchet mean of the class. This
method can be recapitulated in form of the following
algorithm.

Algorithm 2 : Distance to the center of mass algorithm.

1. Input: the given known classes 1,2,3, , ...,k and set
of covariance matrices{Sik}nk

i=1 within each class.

2. For each classk computeŜik as the Fréchet mean
of {Sik}nk

i=1.

3. For the covariance matrixS of unknown observa-
tion compute

k̂ = argmin
k

d (S,Sk) . (18)

4. The covariance matrixS corresponding to the un-
known observation in step 3 will be assigned to
classk̂.

In order to inspect and evaluate the Algorithm 1
we perform it on the simulated data set. For this
purpose we consider three classesC1 , C2 and C3

consisting of samples{x1(i)}10000
i=1 , {x2(i)}10000

i=1 and
{x3(i)}10000

i=1 drawn from the normal distribution with
zero mean and covariance matricesS1, S2 andS3 re-
spectively. At the same time Gaussian random noise
with mean zero and standard deviationS is added to
the samples of both classes. Then we split each class
to the half for train and test purpose and perform two
fold cross validation .

At training step we consider training setsC1train
, C2train and C3train. From each training set
C jtrain , j = 1,2,3; we form a sequence of

{

Xk, j
}

of observationsk = 1,2, ..,20. Each observation
{

Xk, j
}

has 40 samples which can be shown as
[

x jk(1),x jk(2), ...,x jk(40)
]T .

The Frechét mean of the covariance matrices
{

Sk, j
}

of the observation
{

Xk, j
}

are obtained using
metricsdR1,dR2, dR3 anddF respectively. The method
of distance to the center of mass is performed to clas-
sify the new observationXtest according to its ob-
served covariance matrixStest .

From (Johnson and Wichern, 2002) it has been
known that when we have sample of observations
from a p-variate normal distribution with zero mean
and covariance matrixS then Nx̄S−1x̄T has chi-
square distribution withp degrees of freedom wherēx
is the sample mean vector of size 1× p for the obser-
vationX of sizeN × p; which is taken over columns
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of X andN is the sample size. When the sample size
is fairly large we can replaceS with Ŝ (Anderson,
1954). As a result, a new observationXtest is classi-
fied to classj whenever:

χ2
p(1−α/2)≤ Nx̄test Ŝ

−1
j x̄T

test ≤ χ2
p(α/2) (19)

whereχ2
p(α) is given by:

P
(

χ2
p > χ2

p(α)
)

= α

In Eq.(19) the significant level is set to beα = 0.05.
At the same time we also compare the result of dis-
tance to the center of mass in classification with the
result of Eq.(19).

Table 1: Probability of correct classification within three
classesC1,C2 andC3 in comparison to the resulting classi-
fier using Eq.(19).

Accuracy
Class 1 (%)

Accuracy of
Class 2 (%)

Accuracy
for Class 3 (%)

dR3 0.92 0.86 0.95
dF 0.83 0.39 0.62
dR1 0.91 0.51 0.78
dR2 0.92 0.51 0.82

Eq.(19) 0.80 0.60 0.72

In addition we applied our technique to the clas-
sification of human breast cancer cells undergoing
treatment of different drugs. As explained before our
technique is based on classification in clusters based
on the covariance estimate distances rather than cen-
ter of the class (corresponding to the mean of the data
point cloud). The original data set consisted of 11
different labels corresponding to 11 different treat-
ments. Each label consisted of 382 wells which were
imaged using Perkin Elmar high content imaging sys-
tem. Our preliminary results indicate that our aver-
age classification error is approximately 13% when
the half of the cells are used for training. The pre-
liminary comparison with commonly used clustering
techniques based on the sample average (mean) indi-
cate that our performance is significantly better (5%)
however it may be due to the large training set.

5 CONCLUSIONS

In this paper we proposed a new technique to for es-
timating positive definite matrices in the presence of
uncertainty. Unlike commonly used techniques our
method uses Frechet mean which implicitly accounts
for the positive definite structure of the covariance
matrix which is ignored in commonly used estima-
tors which do not exploit geometric constraint given

by positive definite property. We demonstrate the cal-
culation of the proposed mean using three different
distance measures which may be better choice in dif-
ferent applications. We demonstrated the applicabil-
ity and performance of our techniques on a simulated
data set and established that in the preliminary anal-
ysis the results look promising for high content cell
imaging classification problem.
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