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Abstract: This paper uses experimental data to model the human arm at the elbow joint. Direct models have been pub-
lished before; this papers addresses inverse models (i.e. relating the force at the hand with the arm angle).
Models used were integer, fractional commensurable and fractional non-commensurable order transfer func-
tions, as well as neural networks (used as a term of comparison). Results show the superiority of fractional
models, simpler, more exact, and with less parameter uncertainty.

1 INTRODUCTION third order models (Tejado et al., 2013). There are
reasons to expect this type of models here, because

Dynamic models for the human arm are needed to the dynamics of muscles of several animal species
replicate its behaviour by a robot (Taix et al., 2013; (including humans) have been modelled using frac-
Fu and Cavusoglu, 2012). And controlling a robotic tional derivatives (Sommacal et al., 2008; Sommacal
arm so that it will behave as much as possible as a€t al., 2007b; Sommacal et al., 2007a; Djordjevic
human arm is no idle experience. It seems to be a €t al., 2003), and because muscles show viscoelastic
good option for surgical robots (Park et al., 2006). behaviour, that can also be modelled using fractional
Such robots can achieve, if proper|y designed’ per- derivatives (Mainardi, 2010; Magin, 2004) In their
formances with an accuracy that represent a valuableturn, fractional derivatives are expectable here given
assistance even to the most seasoned surgeons. Buthe fractal nature of muscular tissue.

for this to happen, the surgeon has to be comfortable  In this paper, we present inverse (i.e. using now
working with the robot, and that is where the repli- the measured arm angle as model input and the mea-
cation of a human arm comes in. A robot that feels sured force at the hand as output) models for the hu-
more like another person’s hand has shown to be aman arm, using the same data from (Tejado et al.,

better companion than a robot with some other type 2013), comparing fractional and third order (integer)
of behaviour. linear models with neural networks. Neural networks

for this system; experimental data can be reasonablyPerformances (Jang et al., 1997; Nergaard et al,
fitted, and there is furthermore a very reasonable ra- 2003; Haykin, 1999): hence the pertinency of the
tionale argument in favour of this structure, shown in comparison with fractional models, to see if they can
Figure 1. More accurate results can be obtained with Stand the test. Parameter variability is checked and
more complicated identification techniques and struc- Neld as an important indicator of model suitability.
tures (Adewusi et al., 2012; Nagarsheth et al., 2008;  The contents of the paper are as follows: section 2
Mobasser and Hashtrudi-Zaad, 2006: Venture et al., ©xplains how data was obtained, and section 3 which
2006): whether this pays off or whether the simpler Models were used. Then, section 4 presents the re-
linear option is better because it is good enough de- sults, and section 5 offers comments and conclusions.
pends, of course, on the intended use.

In a previous paper we presented fractional order
linear models for the human arm, obtained fromex- 2 EXPERIMENTAL DATA
perimental data with the measured force at the hand
as model input and the measured arm angle as out-As mentioned above, the experimental data is that of
put, and compared them with the above mentioned (Tejado et al., 2013); further details can be got in that
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model of the hand
model of the arm (spring-damper; mass
(mass—spring—damper) assumed neglectable)

A

force applied
by motor

position measured

by motor encoder
position analogous (analogous with
with elbow angle motor angle)

Figure 1: Third order translation analog to elbow dynamics.

paper.

Nine female and nine male volunteers, with ages
ranging from 25 to 66, without any known musculo-
skeletal injuries of the higher limbs, kneeled or sat
holding a horizontal robotic arm and tried to keep it /
steady, while it moved randomly. The robotic arm | -\ sensor  laser
was moved by a Kollmorgen direct drive DO61M- gg j pointer
23-1310 motor, able to produce3sN-m continuous
torque and 1® N-m peak torque, in current con-
trol mode. The rotation range was limited #60.9 o
rad for safety reasons. The measured angle was obFigure 2: Robotic arm used to obtaln experlmental data of
tained from an encoder with a resolution of, 635 human arm dynamics (Tejado et al., 2013).
pulses/revolution. At the end of the aluminium hori-
zontal robotic arm there was a handle for the volun-
teers to grab, a JR3 12-degree-of-freedom DSP-basedUt
force sensor, and a laser pointer which should be kept
inside a target. Data was recorded with a 2 kHz sam-

/

motor

tioned sensor was practically identical to the force in-

pling frequency. 3 TYPESOFMODELS
Experiments (shown in Figure 2), which lasted
40 s to avoid fatigue, could be of three types: This section describes which models were used to find
i measuredS
o Type | — Oscillations in both directions around {ransfer functiorGarminversds) = ==, where
the zero-point; is the measured arm angByeasurediS the measured
_ . L force at the hand, arglis the Laplace transform vari-
e Type Il — Oscillations only in the positive side of able

the zero-point (flexion of the elbow);

e Type lll — Oscillations only in the negative side 3.1 Third-order Integer Linear Models
of the zero-point (extension of the elbow).

The oscillations were random to avoid anticipatory re- These have already been mentioned in section 1, and
flexes, which would interfere with the modelling of the reasoning behind their choice in Figure 1. The
the arm dynamics. So the forces generated by theidentification methods were the same described below
motor were a sum of sinusoids with frequencies in the for fractional transfer functions, restricting different
[0.12,15) Hz range (chosen because the bandwidth for ation orders to natural numbers.

the human arm is approximated to 10 Hz), limited to

not exceed 4 N. Eight voluntaries of either sex per- 3.2 Fractional Linear Models

formed two experiment of type |, one experiment for

type Il, and one experiment for type Il (68 data sets If initial conditions are zero, fractional derivatives,
in total). The two other voluntaries performed 16 ad- denoted by,Df, a € R, have Laplace transforms
ditional experiments: six of type I, seven of type Il, given by.Z[,DZ f(t)] = s"F(s). Consequently, from
and seven of type lIl. The force measured by the men- a differential equation with fractional derivatives,
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fractional transfer functions arise. Those in which all previous layen — 1:

orders share a least common multiple (the commensu- N

rability order) are called commensurate. Commensu- bt ”’lw R @)
rate transfer functions with a commensurability order Yni = Dbni i; n-Lifn=Li

of 1 are integer transfer functions. Interested readers ] o ]

can find ample information on fractional derivatives Her®xn-1, is theith input of the neuron coming from
in several books and papers, among which (Valério the previous layemn_1 is a weight associated with
and Sa da Costa, 2013; Valério and Sa da Costa, 2011that input,Nn_1 is the number of such inputs, and

Podlubny, 1999; Miller and Ross, 1993; Samko et al., by, is a bias. Obviously, layer number 0 (which does

1993; Magin, 2004). not exist) corresponds to the neurall network'; inputs

To identify a fractional transfer function from the themselves. The neuron's outpw; is determined
by its transfer functiorf,j, usually known as activa-

measured data, rather than using a method to do this : L :
. : : _“tion function. Activation functions may be transfer
directly from a time response (Malti et al., 2008;

Valério and Sa da Costa, 2013), a frequency responsefunctlons, but if the neural network already includes

was estimated first (using Welch's method on the fil- a dynamic elsewhere activation functions will proba-

tered output), and then Levy’s method was applied, as bly be static; the ?Xg?nﬂb(.)hc tangent sigmoid function
this leads to less noisy results. Levy’s method fits to Xni = fni(Yni) = ;=7 18 commonly used. Neural
frequency respong®(jwp), p=1,...,f, acommen-  networks employed below use the activation function

surable fractional model with a frequency response y(X) = X in the output layer; in other words, their out-

given by put is a biased linear combination of all the inputs.
For more details on neural network architecture, see
(= S obk(i0p) @ N(jwp) ) the references in section 1. 10N
T 10 s adjop)k  D(jwp) Training a neural network is an optimization pro-

cess in which weightsw,j and bias factord,; are
iteratively updated in order to minimize the mean
square error between the model output signals and
D the output data. Numbers of delagsandn are to
‘G(joo) — %‘ , which leads to a nonlinear prob- be identified along with the weights and bias of the
lem). Commensurable orders of fractional models Neural network. For the system at stake NNARX,
were found sweeping tha € [0,2] range (outside models were t.ra|ned using the Levenberg-Marquardt
which no transfer function is stable) with a 0.1 step, backpropagation algorithm, chosen for speed and ac-
and keeping thet for which results are better, using curacy. Itis, actually, a local minimization meth_od:
a heuristic which is better described below in section therefore it is not guaranteed that a global optimal
4 after performance indexes are introduced. For more Set of networks parameters is achieved. Because of
details on identification procedures of transfer func- this and the_fact that the allgorlthm initialization ha; a
tions for this plant, see (Tejado et al., 2013). Levy's random basis, the probability of two networks having

method for fractional transfer functions is covered in €qual final weights and biases is very low, even when
(Valério et al., 2008). trained with the same data. The data, after being re-

sampled at 500 Hz (the robot’s communication fre-
quency), was then actually split into three parts: 60%
3.3 Neural Networks for training, 20% for validation, and 20% for testing.
The best results were consistently obtained for neu-
. ral networks with 4 input delays, 2 output delays and
The (artificial) neural network (NN) models used be- , single neuron in the hidden layer: this was thus the
low have a particular architecture—neural network ¢qnfiguration chosen. Indeed, architectures with more
auto-regressive with exogenous inputs (NNARX) than one neuron in the hidden layer were tested, show-

models—represented in Figure 3. Notice how the g insignificantly better or weaker overall results, de-
model dynamics appear through the delay operatorending on the number of input and output delays. As

z * to make use of past values of both the input and 14 the number of input and output delays, it was de-
the output of the system. Maximum input and out- (ormined as discussed below in section 4. That is why
put delays, respectively andn, determine the mem- oy networks with a single neuron in the hidden layer
ory that the model has of the input and output signals. 5" considered below. (Mandic and Chambers, 2001;

Neurons are arranged in layers; as input, each neurony;arquardt, 1963) further elaborate on neural network
i in layern receives a signaf,; that is a linear com- training.

bination of every output signal of the neurons in the

minimising (G(jw)D(jw) — N(jw))? (which is eas-
ier than the more obvious alternative of minimising
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E(k)

Figure 3: Neural network auto-regressive with exogenopsts(NNARX) model, with one input and one output, one hidden
layer,n = 2 output delays anth= 4 input delays.

4 PERFORMANCE ASSESSMENT 1. Initialize P = 12 lists with a length. = 1;

. _ 2. Select the bedt models according to each perfor-
Results were assessed with the following four perfor-

; mance index;
mance indexes: : :

L m— 3. Model by model, check for its presence in any

Mean Squared ErroMSE — 2= (yi =93) 3) of the P lists with lengthL and compute a his-
y N togram that shows the number of presences of ev-

= i—1Yi =Y model in all the lists;
Mean Absolute DeviatioMAD = W 4) endfandetin ? ISt ] ]
_ o . 4. If one modelis found to be present in every single
Maximum DeviationMD = max]y; —yj| = (5) list, that is the best choice and the heuristic stops;
. ., o2(y-9) 5. Otherwise, increment the value oy 1 and re-
Variance Accounted FOYAF =1 — 702()0 (6) peat from step 2.

The meaning of the variables for frequency and time It may happen that more than one model comes to
responses is shown in Table 1. With three series to appear at alP lists at the same time. In that case, ei-
compare (gain, phase, time response) and four in-ther may be selected as convenient. With this heuris-
dexes, there are in all 12 values to assess a model'sic a good value for the commensurability order may
performance. be got, but a @ step may be a little too rough, so
Recall that in (Tejado et al., 2013) we have shown a second stage search was performed. In this stage,
that fractional models are better than integer order the best model was found sweeping the commensu-
models, inasmuch they achieve a performance whichrable order, with a @1 step, in a range defined by a
is similar or even slightly better, with one parame- neighborhood, with a.Q radius, centred on the best
ter less, and with clearly less parameter uncertainty. commensurability value (or values) obtained on the
Since identified integer direct models have 2 zeros first stage. From this sweeping process, another set of
and 3 poles, inverse models with 3 poles and 3 ze- models arise and are, consequently, compared, again,
ros were considered, as they ought to be causal. Inusing the same heuristic. Therefore, this second stage
the case of fractional order models, the same princi- is essentially a refined search around the best solution
ple as above was applied: since fractional order direct (or solutions) of the first stage.
models have 1 zero and 2 poles, causal inverse mod- In the case of NNARX models, training algo-
els with 2 zeros and 2 poles were considered. But this rithms are rather blind when it comes to the best val-
time there is the commensurability factor. So, in a ues ofmandn. Models with an unrealistically large
first stage, the best commensurable order was found(and unnecessary) number of input and output delays
sweeping this factor in thf9.1,1.9] range with a L may still provide good results. So we might assume,
step, keeping the model’s dynamical structure (2 ze- initially, an unrealistically large number of input and
ros and 2 poles). The output of this process is a set of output delays and analyze the corresponding weights,
19 models to compare using the 12 aforementioned comparing them to decideiifiandn should be decre-
performance indexes. The following heuristic, es- mented, until none of the weights is lower than a cer-
sentially a multi-criteria optimisation algorithm, was tain threshold value. But in this case it is possible to
used to choose the commensurate order: use prior knowledge of the system to be identified,
assume a maximum value for the number of input
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Table 1: Variables in equations (3)—(6).

Variables Frequency response Time
Gain Phase response

y Gain curve estimated from measured data forl aPhase curve estimated from measured data fgr &ime series of measured input data
certain frequency vector certain frequency vector

y Gain curve estimated from measured input and Phase curve estimated from measured input gndlime series of inverse model output
identified inverse model for the same frequengy identified inverse model for the same frequengy
vector ofy vector ofy

N Length of the frequency vector length, that must be the samgdndy Length of the time series

Table 2: Performance comparison between identified invarsgels of the human arm (best values in bold).

Frequency response Time response
Model Magnitude (dB) PhaseY)
MSE | MAS MD VAF MSE MAS MD VAF MSE | MAS | MD VAF
Int. | 15.410 | 2.903 | 11.994 | 92.545 | 1007274 | 28486 | 69.760 | 74.125| 0.272| 0.371 | 1.819 | 41.508
All Frac.| 21632 | 3.455 | 14.352 | 88903 | 628689 | 18.032 | 58.400 | 86.449 | 0.266 | 0.354 | 1.658 | 47.888
NN | 23028 | 3.807 | 18378 | 90.812 | 559.089 | 16.279 | 101135 | 87.496 | 1.616 | 1.096 | 2.335 | 57.827
Int. | 12.294 | 2.587 | 11.398 | 92.703 | 764852 | 24454 | 62375 | 82033 | 0.421 | 0.490 | 2.440 | 51.515
Typel | Frac.| 18769 | 3.274 | 12.803 | 89.150 | 404.851 | 14.437 | 42.690 | 90.971 | 0.423 | 0.477 | 2.284 | 55.144
NN | 25354 | 4.094 | 14.948 | 90.574 | 467.089 | 16.026 | 76.924 | 88.489 | 0.286 | 0.415 | 2.001 | 63.803
Int. | 15.315 | 2.842 | 12.230 | 93.656 | 1146667 | 30.209 | 69.054 | 68563 | 0.143 | 0.280 | 1.408 | 39.239
Typell | Frac.| 23264 | 3.483 | 17.098 | 88926 | 624.472 | 17.813 | 59.324 | 85.727 | 0.136 | 0.269 | 1.267 | 45.956
NN | 22443 | 3.908 | 14.337 | 93456 | 920851 | 17.971 | 157.716 | 81.771| 0.086 | 0.227 | 1.086 | 57.492
Int. | 16.032 | 3.089 | 10.971 | 93.165 | 1318925 | 31.813| 80.725 | 65.715| 0.126 | 0.271 | 1.363 | 31.355
Type lll-| Frac. | 21.802 | 3.507 | 14.387 | 89.999 | 687.664 | 19.075| 67.334 | 84.818 | 0.096 | 0.239 | 1.143 | 45.007
NN | 24498 | 4129 | 12.308 | 93.450 | 647.907 | 17.872 | 128764 | 84.132 | 0.098 | 0.250 | 1.041 | 54.529

and output delays and try every dynamical structural 25 —

combination within that maximum number of delays; 20 :‘:f;gse“r’;fm‘

from this process, results a set of models that should 15¢ Fractional Model |
— NMARX Model

be compared, keeping the best one. It was shown "

that linear inverse models are of 2nd or 3rd order, so
a maximum of 6 input and output delays was con-
sidered, to give some margin for possible additional 08
nonlinear dynamics to be identified in measured data.
With this maximum value, one gets a set of 36 neural Y
networks to compare and a heuristic similar to the one %3 331 32 13 334 16 :\e 37 3 29 3
described above for fractional plants was employed. fimele]

The only difference here is that, as mentioned previ- Figure 4: Part of the responses of the several models, com-
ously, very complex networks can have slightly better pared with experimental data.

results, but at the cost of a lower computational ef-
ficiency. Therefore, to the 12 values of performance

|nd(jex$hs men|t|one?habove, _t(\j/\_/o r?ore were Iaddted: K averaging the results, we obtain the following results:
andn tnemselves, thus providing fora neural networ integer models, 0.6224; fractional models, 0.6847;

which is a compromise between model performance NNARX models, 0.3770. It can be seen that frac-

and model complexity. tional models achieve their performance being linear,
continuous (and thus fit for every sampling time) and
using one parameter less than integer models. They
5 COMMENTSAND are thus the simplest possible model.
So again we find a dynamic behaviour which we
CONCLUSIONS can conclude is best described by fractional transfer
functions, just as was seen in (Tejado et al., 2013) for
Performance results in Table 2 show that integer mod- direct models. Figure 4 shows some seconds of the re-
els often get better results in what the gain of the sponses obtained with the different models, compared
transfer function is concerned, but not the phase, or with experimental data.
above all the time response; NN models, even though  Future work consists in using these models to
nonlinear, do not consistently perform better, and, make a KUKA LWR 4+ 7—-degree of freedom light

Force [N]

when they do, only slightly. Normalising all perfor-
mance indexes between 0 (worst) and 1 (best), and
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weight robot behave like a human arm, and check this Nagarsheth, H., Savsani, P., and Patel, M. (2008). Modeling

behaviour against the experimental data collected. and dynamics of human arm. Froceedings of the
2008 IEEE International Conference on Automation

Science and Engineering (CASE'0Bages 924-928.
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