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Abstract: Systems Resilience is a large-scale multi-disciplinary research that aims to identify general principles under-
lying the resilience of real world complex systems. Many conceptual frameworks have been proposed and
discussed in the literature since Holling’s seminal paper (1973). Schwind et al. (2013) recently adopted a
computational point of view of Systems Resilience, and modeled a resilient system as a dynamic constraint
optimization problem. However, many real world optimization problems involve multiple criteria that should
be considered separately and optimized simultaneously. Also, it is important to provide an algorithm that can
evaluate the resilience of a dynamic system. In this paper, a framewoByfamic Multi-Objective Con-
straint Optimization Problem (DMO-COP) is introduced and two solution criteria for solving this problem are
provided, namelyesistance andfunctionality, which are properties of interest underlying ttesilience for
DMO-COPs. Also, as an initial step toward developing an efficient algorithm for finding resilient solutions
of aDMO-COP, an algorithm called\ gorithm for Systems Resilience (ASR), which computes every resistant
and functional solution fobMO-COPs, is presented and evaluated with different types of dynamical changes.

1 INTRODUCTION systems to absorb changes of state variables, driving
variables, and parameters, and still persist.” (Holling,
Many researchers of different fields have recognized 1973, page 17). Schwind et al.(2013) adopted a com-
the importance of a new research discipline con- putational point of view ofSystems Resilience, and
cerning theresilience of real world complex sys- modeled a resilient system as a dynamic constraint-
tems (Holling, 1973; Bruneau, 2003; Walker et al., based model (called SR-model), i.e., dynamic con-
2004; Longstaff et al., 2010). The concept of re- straint optimization problem. They captured the no-
silience has appeared in various disciplines, e.g., en-tion of resilience using several factors, e.g., resis-
vironmental science, materials science and sociology.tance, recoverability, functionality and stabilizability.
The goal of resilience research is to provide a set  Capturing and evaluating the resilience of realistic
of general principles for building resilient systems in  dynamic systems often requires to (i) consider several
various domains, such that the systems are resistanpbjectives to optimize simultaneously from the point
from large-scale perturbations caused by unexpectedof view of the resilience factors, and (ii) develop an
events and changes, and keep their functionality in the algorithm for solving this problem. This is the main
long run. Holling (1973) first introduced the concept purpose of this paper.
of resilience as an important characteristic of a well- A Multi-Objective Constraint Optimization Prob-
behaved ecological system, and defined it as the ca-lem (MO-COP) (Junker, 2006; Marinescu, 2010; Rol-
pacity of an ecosystem to respond to a perturbationlon and Larrosa, 2006) is the extension of a mono-
or disturbance by resisting damage. He adopted aobjective COP (Dechter, 2003; Schiex et al., 1995).
verbal, qualitative definition of ecological resilience, Solving a COP consists in finding an assignment of
rather than a mathematical, quantitative one. “Re- values to variables so that the sum of the result-
silience determines the persistence of relationshipsing costs is minimized. A wide variety of Artifi-
within a system and is a measure of the ability of these cial Intelligence problems can be formalized as COPs,
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e.g., resource allocation problem (Cabon et al., 1999),
scheduling (Verfaillie et al., 1996) and combinatorial
auctions (Sandholm, 1999). In an MO-COP, gen-
erally, since trade-offs exist among objectives, there
does not exist an ideal assignment, which minimizes
all objectives simultaneously. Thus, the “optimal” so-
lution of an MO-COP is characterized using the con-
cept ofPareto optimality. An assignment is &areto
optimal solutionif there does not exist another assign-
ment that weakly improves all of the objectives. Solv-
ing an MO-CORP is to find th®areto front which is a

set of cost vectors obtained by all Pareto optimal so-
lutions. Most works on MO-COPs consist in devel-
oping efficient algorithms for solving static problems
(Marinescu, 2010; Perny and Spanjaard, 2008; Rollon
and Larrosa, 2006; Rollon and Larrosa, 2007). How-
ever, due to the dynamic nature of our environment,
many real-world problems change through time.

In this paper, a framework fobynamic Multi-
Objective Constraint Optimization Problem (DMO-
COP) is introduced, which is the extension of MO-
COP and dynamic COP. Also, two solution criteria for
solving this problem are provided, namedgistance
andfunctionality, which are properties of interest un-
derlying the resilience for DMO-COPs. Our model
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Figure 1: Example of mono-objective COP.

criteria, e.g., data management, quality of observation
data and electrical consumption, it can be formalized
as an MO-COP (Okimoto et al., 2014). Additionally,
when we consider some accidents, e.g., sensing er-
ror, breakdown and electricity failure, it can be repre-
sented by the dynamical change of constraint costs.
The rest of the paper is organized as follows. In
the next section, the formalizations of COP and MO-
COP are briefly introduced. The following section
presents our framework for DMO-COP and the com-
putation of resistant and functional solutions. Also, an

is defined by a sequence of MO-COPs representingalgorithm calledASR is presented. Afterwards, some

the changes within a system that is subject to exter-
nal fluctuations. The resistance is the ability to main-

tain some underlining costs under a certain threshold,

empirical results are provided. Just before the con-
cluding section, some related works are discussed.

such that the system satisfies certain hard constraint

and does not suffer from irreversible damages. The
functionality is the ability to maintain a guaranteed
global quality for the configuration trajectory in a se-

2 PRELIMINARIES

quence. These two properties are central inthe char-2 1 COP

acterization of “robust” solution trajectories, which
keep a certain quality level and “absorb” external fluc-
tuations without suffering degradation. Indeed, these
notions are consistent with the initial formulation of
resilience from (Holling, 1973). An algorithm called
Algorithm for Systems Resilience (ASR) for solving a
DMO-CORP is presented. This algorithm is based on
the branch and bound search, which is widely used
for COP and MO-COP algorithms, and it finds all re-
sistant and functional solutions for DMO-COP. In the
experiments, the performancesASR are evaluated
with different types of dynamical changes.

We believe that the computational design of re-

silient systems is a promising area of research, rele-

A Constraint Optimization Problem (COP) (Dechter,
2003; Schiex et al., 1995) consists in finding an as-
signment of values to variables so that the sum of
the resulting costs is minimized. A COP is de-
fined by a set of variableX, a set of constraint re-
lations C, and a set of cost functions. A vari-
able x; takes its value from a finite, discrete do-
mainD;. A constraint relatior(i, j) means there ex-
ists a constraint relation betweeq and Xj.l For

X andx;j, which have a constraint relation, the cost
for an assignmen{(x;,d;), (xj,d;)} is defined by a
cost functionf; j : Dj x Dj — R™. For a value as-
signment to all variableg\, let us denoteR(A) =

vant for many applications like sensor networks. A ¥ (i.§)€C.{(x.ch).(x;.dj ) CA fi j(di,d;), whered; € D; and
sensor network is a resource allocation problem that d; c DJ Then, anioptimal assignmeAt is given

can be formalized as a COP (Cabon et al., 1999).
For example, consider a sensor network in a territory,

1in this paper, we assume that all constraints are binary

where each sensor can sense a certain area in this teffor simplicity like many existing COP papers. Relaxing this

ritory. When we consider this problem with multiple

510

assumption to general cases is relatively straightforward
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as argmigR(A), i.e., A* is an assignment that mini-
mizes the sum of the value of all cost functions, and an
optimal value is given byR(A*). A COP can be rep-
resented using a constraint graph, in which nodes cor-
respond to variables and edges represent constraints.

Example 1(COP) Figure 1 shows a mono-objective
COP with three variableg;, x> andxz. Each vari-
able takes its value assignment from a discrete do-
main{a,b}. The figure shows three cost tables among
three variables. The optimal solution of this problem
is {(x1,a), (X2,a), (x3,a)}, and the optimal value is 6.

2.2 MO-COP

A Multi-Objective Constraint Optimization Problem
(MO-COP) (Junker, 2006; Marinescu, 2010; Rol-
lon and Larrosa, 2006) is defined by a set of vari-
ablesX = {x1,%,...,%}, multi-objective constraints

Cc ={C,C?....C™, ie., a set of sets of con-
straint relations, and multi-objective functiofs=
{FL1.F2 ... )F™, i.e., a set of sets of objective func-
tions. For an objectivéh (1 < h < m), variables

X andx;j, which have a constraint relation, the cost
for an assignmen{(x;,d;), (xj,d;)} is defined by a
cost functionfi*fj :Dj x Dj — R*. For an objective

h and a value assignment to all variablslet us
denote RY(A) = 5 i jecn {x..(,dy pca fig (0 dy)-
Then, the sum of the values of all cost functions
for m objectives is defined by a cost vector, denoted
R(A) = (RY(A),R?(A),...,RM(A)). To find an assign-
ment that minimizes alin objective functions simul-
taneously is ideal. However, in general, since trade-
offs exist among objectives, there does not exist such
an ideal assignment. Therefore, the “optimal” solu-
tion of an MO-COP is characterized by using the con-
cept ofPareto optimality. An assignment is &areto
optimal solutionif there does not exist another assign-
ment that weakly improves all of the objectives. Solv-
ing an MO-CORP is to find th@areto front which is a
set of cost vectors obtained by all Pareto optimal so-
lutions. In an MO-COP, the number of Pareto optimal
solutions is often exponential in the number of vari-
ables, i.e., every possible assignment can be a Paret
optimal solution in the worst case. This problem can
be also represented as a constraint graph.

Definition 1 (Dominance) For an MO-COP and two
cost vectorfk(A) andR(A'), we say thaR(A) domi-
natesR(A'), denoted byR(A) < R(A'), iff R(A) is par-
tially less tharR(A'), i.e., it holds ()R"(A) < R'(A)
for all objectivesh, and (ii) there exists at least one
objectiveh’, such thaR" (A) < RY (A)).

Definition 2 (Pareto optimal solution)For an MO-
COP, an assignmeAtis said to be the Pareto optimal

(0]

ynamic Multi-Objective Constraint Optimization Problems

Table 1: Example of bi-objective COP.

X1 | X2 | cost || X2 | X3 | cost || X1 | X3 | cost
alal| b2 | ajal|@©O1l)] al| all(l0
alb| (1| alb|1)]| al|b| (10
b|a| @03 b|a|@©2]|b|a(@©1l)
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solution, iff there does not exist another assignment
A, such thaR(A') < R(A)
Definition 3 (Pareto Front) Given an MO-COP, the
Pareto front is the set of cost vectors obtained by the
set of Pareto optimal solutions.

Example 2(MO-COP) Table 1 shows a bi-objective
COP, which is an extension of the COP in Figure 1.
Each variable takes its value from a discrete domain
{a,b}. The Pareto optimal solutions of this prob-
lem are{{(x1,a), (x2,a), (X3,&)}, {(x1,a), (X2,b),
(x3,b)}}, and the Pareto front i§(6,3), (10,1)}.

3 DYNAMIC MO-COP

In this section, a framework foDynamic Multi-
Objective Constraint Optimization Problem (DMO-
COP) is introduced and two solution criteria for solv-
ing this problem are provided.esistance and func-
tionality. Furthermore, an algorithm callédgorithm
for Systems Resilience (ASR) is presented.

3.1 Model

A framework of DMO-CORP is defined by a sequence
of MO-COPs as follows:

DMO-COP = (MO-CORy, MO-COR,, ..., MO-COR),

where each indek(0 < i < k) represents a time step.
Solving a DMO-CORP is finding the following se-
quence of Pareto front, denot&f, where eachPF
(0 <'i <K) represents the Pareto front of MO-COP

PF = (PR, PF, ..., PR).

Our focus is laid on aeactive approach, i.e., each
problem MO-COP in a DMO-COP can only be
known at time step (0 <i < k), and we have no
information about the problems for any time step
j wherej > i. For dynamic problems, there exist
two approaches, namely proactive and reactive. In a
proactive approach, all problems in a DMO-COP are
known in advance. Since we know all changes among
problems, one possible goal of this approach is to find

2Similar formalization, i.e., dynamic problem as a se-

guence of static problems, is provided in many previous
works such as (Okimoto et al., 2014; Yeoh et al., 2011).
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Table 2: Cost table of MO-CQP

X1 | X2 | cost || x2 | x3 | cost || x1 | x3 | cost
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Table 3: Cost table of MO-CGP
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an optimal solution for a DMO-COP. On the other

hand, in a reactive approach, since the new problem

typically arises after solving the previous problem, it
requires to solve each problem in a DMO-COP one

by one. Thus, we need to find a sequence of Pareto

front. In the following, the change of the constraint
costs among problems in a DMO-COP is studiéd.

Example 3. Consider a DMO-COP %MO-COR,,
MO-COPR,, MO-COR,)). We use the same exam-
ple represented in Example 2 and use it as the ini-
tial problem of this DMO-COP. The Pareto optimal
solutions of MO-COR are {(x1,a), (x2,a), (x3,a)}
and{(x1,a), (x2,b), (x3,b)}, and the Pareto front is
{(6,3), (10,1)} (see. Example 2). Table 2 shows
the cost table of MO-COP In Table 2, two con-
straints written in boldface are dynamically changed
from the initial problem MO-COg, i.e., the cost
vector of {(x1,a), (x3,b)} and {(x1,b), (x3,b)} are
changed from(1,0) to (5,5) and from (3,2) to
(1,1). The Pareto optimal solutions of MO-C@Rre
{(x1,a), (x2,a), (x3,a)} and{(x1,b), (X2,b),(xs,b)},
and the Pareto front i§(6,3), (15,1)}. Table 3
represents the cost vector of MO-COP In Ta-
ble 3, four constraints written in boldface are addi-
tionally changed from MO-COpi.e., (2,2), (3,0),
(3,3), and (4,4). The Pareto optimal solutions of
MO-COR; are{(x1,b), (x2,b), (x3,a)} and{(x,b),
(x2,b), (x3,b)}, and the Pareto frontig3,3), (6,1)}.
Thus, the solution of this DMO-COP i®F =
{{(6,3),(10,1)},{(6,3),(15,1)},{(3,3),(6,1)} }.

Now, two solution criteria for DMO-COPs are
provided, namely, resistance and functionality. A se-
quence of assignments = (Ag,Aq,...,A;) is called
an assignment trajectory, whereA; is an assignment
of MO-COR (0 <i < j). Let mbe the number of

30ther changes, e.g., the number of variables, objectives

and domain size, can be also considered. In this paper, the
focus is laid on the dynamical change of constraint costs Az

among problems. Similar assumption is also introduced in
previous works (Okimoto et al., 2014; Yeoh et al., 2011).
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objectives andR"(A) be the cost for objectiva ob-
tained by assignmerd (1 < h < m), andl,q be con-
stant vectors.

Definition 4 (Resistance) For an assignment trajec-
tory A and a constant vectdr= (I11,12,...,I™), A is
said to bd-resistant, iff for allh (1 < h <m),

R'(A) <IN (0<i<I|A|-1).

Definition 5 (Functionality) For an assignment tra-
jectory A and a constant vector= (', 0, ...,q™), A

is said to beg-functional, iff for allh (1 < h <m) and
for eachj € {0,...,|A| -1},

S oR(A)
j+1

<q".

Resistance is the ability to maintain some under-
lining costs under a certain threshold, such that the
system satisfies certain hard constraint and does not
suffer fromiirreversible damages, i.e., the ahility for a
system to stay essentially unchanged despite the pres-
ence of disturbances. Functionality is the ability to
maintain a guaranteed global quality for the assign-
ment trajectory. While resistance requires to main-
tain a certain quality level at each problem in a DMO-
COP, functionality requires to maintain this level in
average, when looking over a certain horizon of time.
Thus, functionality evaluates an assignment trajectory
globally. The followings are two examples for them.
We use the same example as in Example 3.

Example 4 (Resistance) The Pareto optimal solu-
tions of the DMO-COP is {(x1,a), (x2,a), (x3,a)}
and {(x1,a), (x2,b), (x3,b)} for MO-COPy, {(x1,a),
(X2,a), (x3,a)} and {(x1,b), (x2,b), (x3,b)} for MO-
COPy, and {(x1,b), (x2,b), (x3,a)} and {(x1,b),
(X2,b), (x3,b)} for MO-COP,. The correspond-
ing Pareto front is PRy = {(6,3),(10,1)}, PF; =
{(6,3),(15,1)}, and PF, = {(3,3),(6,1)}, respec-
tively. Let | = (8,4) be a constant vector.
The assignment trajectory A = (Ag,A1,A2) with
Ao = {(x1,d), (X%2,), (X3,8) }, A1 = {(x1,@), (x,a),
(x3,a)}, and Ay = {(x1,b), (x2,b), (x3,a)} is I-
resistant, since RY(Ag) = 6 < I' (= 8), R*(Ag) =
3<1?2 (=4), R(A) =6<I% R(A) =3< 1
and RY(A7) = 3 < IL,R?(A2) = 3 < 12, Similarly,
A" = (Ao, A1, A,) isalso |-resistant, where Ag and Ay
aresameasin A and A, = {(x1,b), (x2,b), (x3,b)}.

Example 5 (Functionality) Let q= (5,4) be a con-
stant vector. The assignment trajectory A = (A, Aq,
) With Ag = {(x1, @), (x2,8), (x3,a)}, Ar = {(x1,8),
(%2,a), (xa,)}, and Ap = {(x1,b), (x2.b), (¥s.a)}
is g-functional, since (6+6+3)/3=5<q* (=5)
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and (3+3+3)/3=3< ¢ (= 4). However, for
A" = (Ag,A1,A,) where Ag and A; are same as in
A and A, = {(x1,b), (x2,b), (x3,b)}, A’ is not g-
functional, since (6+6+6)/3=6> g (=5).

Algorithm 2: ASRyes.

. INPUT : MO-COR andl

. OUTPUT :RS} /I a set ofi-resistant solutions of MO-CQP

. Root : // the root of MO-COP

. AS« 0// an assignment of variables

1 Cogt + null vector // cost vector obtained #S

: RS} + 0/l a set of pairs<cost vector, set of assignments
/I Launch solving from the root

: RS! + firgt.solve(AS Cost, RS}, 1)

: return RS

OO WNE

3.2 Algorithm

An algorithm, Algorithm for Systems Resilience
(ASR), for solving a DMO-COP is presented. This
algorithm is based on the branch-and-bound search,
which is widely used for COP and MO-COP al-
gorithms, and it finds all resistant and functional
solutions for DMO-COPs. Algorithm 1 shows the 1 'NPUT1<ASIC0$7RS!7| >
pseudo-code oASR. The input is a DMO-COP that g fOUTPL:]T :Hfgi ‘ the variable domaid
is a sequence of MO-COPs and constant veckors j: or £ach valieeg! the variable domairlo

oo ~

Algorithm 3: solve@S,Cost, RS/, I).

. AS<«+ vp
andqg. ASR outputs a set of sequences (atesistant _
I step 3.1: Compute local cost of the choice
1 - for each constraint with an ancestdo
(0 <i <K in the sequenceASR computes a set
of all I-resistant solutions denotelS! by ASRies em'jof%ar‘-cos“'Oca'-COSt*COSt(VlvVZ)
the set of sequenceRS and the cost vectors of I/ step 3.2: Bound checking
11: - dominated < false

4
5:  local_cost + null vector
and g-functional solutions). For eacMO-COPR, 6:
g' V, + value ofain AS
(line 6). ASR uses the®-operator and combines 196; new_cod < Cost +local_cogt
| . .
RS; obtained byASRres (line 10). For example, 151 " for each objectivér (1 < h < m) do

after the combination ofRS = {(6,3),(10,1)} 13: if r"> 1" rh € new_cost then
I ; | 14: AS < (AS\vq)
and RS; {(6,3),(15,1)}, i.e., RS ® RS;, 15 dorid e

there exist four sequenceg{(6,3)},{(6,3)}}, 16 end if

{{(6,3)},{(151)}},  {{(10,1)},{(6,3)}} and 17 endfor

: 18t if new_cost is dominated byRS th
{{(10,1)},{(15,1)}}. For the initial problem, i.e., 7 ' ”Z‘gf?A';\\ZT'”ate WS; then

MO-COPy, RS is equal toRS| whenRS} # 0. Next, 20 dominated « true
ASR checks theg-functionality of each sequence of g% end it then
RS (line 11). Finally, it provides a set of dHresistant ~ 53: continue
andg-functional solutions. Otherwise, it outputs the 24:  endif

empty set (checked in line 7-9 and line 12-14). In s ’{fsﬁ\eg’ig-féﬁ;g;ghﬁmt" optimal solution

casel andq are large enough (i.e., no restriction), all 26: E + all elements oS! dominated bynew_cost
Pareto optimal solutions may becomeesistant and  27: RS! + RS} \E
28: RS! « RS} U{(new_cost,AS)}
Algorithm 1: ASR. 29: continue
30: endif

1: INPUT : DMO-COP = (MO-CORy, MO-COR, ..., // step 3.3.2: Continue solving

MO-COR) and two constant vectols= (1%,12,...,IM), q = 31: RS « next.solve(AS Cogt, RS 1)

(q" %, ....q™) _ 32 AS« (AS\v1)
2: OUTPUT : RS // set of sequences (altresistant andg- 33: end for

functional solutions) 34: return RS
3. RS+ 0
4: 1,q « constant vectors _ ; ; ; ;
5" for each MO-COP(i — 0.....K) do qffurécf'glonl?l Eolutlons mSthe WOSI’St case, anSd the size
6: RS| < ASRes(MO-COR,|) // find all I-resistant solutions of RS finally eCPme$R of X UR 1] X ... X [RSy]. i
7:  ifRS =0then Let us describédSRres. It fln_ds all Pareto opti--
8: return RS 0 mal solutions of each problem in a sequence, which
1%, ?Igg i RS = RS/ combine th ¢ solution with are bounded by the parameterThe pseudo-code of

e ot 1 combine the current soution Wi e aqp i given in Algorithm 2 and 3. We assume that
11:  RSY+« ASRiun(RS,q) // filter RS with g-functionality a variable ordering, i.e., pseudo-tree (Schiex et al.,
12: if RS =0then 1995), is given. The input is adO-COP, (0<i < K)
ﬁ; e RS 0 and a constant vectdrand the output is the entire set
15° RS« RSY of I-resistant solutions (lines 1 and 2 in Algorithm 2).
16: end for ASR starts with an empty set dfresistant solutions
17: retum RS and a null cost vector, and solves the first variable ac-

cording to the variable ordering (lines 3-7). It chooses
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Algorithm 4: ASRsn.

1: INPUT :RS,q

2: OUTPUT :RSY // set of the filtered sequences
3: RS+~ 0

4: for each sequencg € RS (0< j < |RS|—1)do

5.  for eachh (1 <h<m)do
Sl
6 if 2|:|Os-|§’] >q'l/s,j €S then
j
7. return RSY=0
8: end if
9: endfor
10: RS« §
11: end for

12: return RSH

4 SOME EXPERIMENTAL
RESULTS

In this section, the performances ASR are evalu-
ated with different types of dynamical changes. In
the experiments, we generate DMO-COPs that con-
tain three MO-COPs as in Example 3. All the tests
are made with 20 variables, the domain size of each
variable is 2, the number of objectives is 2, and the
cost of each constraint is a random value between
0 and 100. In DMO-COPs, we change a fixed pro-
portion of constraint costs (called the change ratio) at

each dynamic step. For the initial problem, we choose

a value for the variable and updates the cost vectorthe constraint costs from [0:100]. Then, we create
according to the cost tables (step 3.1 in Algorithm 3). the next problem by changing the proportion of con-
At this moment the obtained cost vector has to ensurestraints costs defined by the change ratio. For exam-
the following two properties: (i)" (the cost for ob-  Pple, in case the change ratio is 5%, we choose 5%
jective h) is bounded by the constant vectaand (ii) of all constraints in the current problem and change
the cost vector is not dominated by another cost vec- their constraint costs by selecting the new costs from
tor (i.e., current-resistant solutions) iRS!. If one of - the range [100:200], but do not change the remaining
the two properties is violated\SRes branches on the  constraint costs. Each data pointin a graph represents
next value of the variable. When its domain is com- -the average of 50 problem.instances.

pletely explored, the search branches to the previous Figure 2 and 3 show the average number of solu-
variable and continues the solving (step 3.2 in Algo- tions and its runtime obtained BASR. Thel-ratio is
rithm 3). When all assignments are formed, i.e., no provided byl/(Costmax x #constraints), wherecostmax
variable left to be assigned, a new solution is added to is the maximal cost value (i.e., 200). We vary the the
RS}. All previous dominated solutions are removed change ratio from @5 to 05 and from 03 to 10 for
from RS| and the search continues with the next val- 1-ratio. In this experiment, we set the constant vec-
ues of the variable (step 3.3.1 in Algorithm 3). In tOr t0 g = (Cmax; Gmax), Wheregmax = 3 x (COStmax X
caserl fulfills the two properties, it continues the
solving with the next variable according to the vari-
able ordering (step 3.3.2). The search stops when the
whole search space has been covered by the branch-
and-bound searctASR¢ finally outputs the set df
resistant solutions (which are not dominated by other
solutions)*.

Let us describéASRsyn. Algorithm 4 shows the
pseudo-code of it. The input is a set of sequences
obtained byASR« and a constant parametgrand
output is a set of-resistant andy-functional solu-
tionsRSY (lines 4-11). For each sequer@eof RS, it
checks the-functionality by using the equation given
in Definition 5 (lines 5-9). ASR is a complete al-

solutions

gorithm, i.e., it provides a set of allresistant and 1(s) ’\‘“

g-functional solutions if there exists. Otherwise, it 53 “““““""““""‘ ;g

outputs the empty set (lines 7-9 and 12-14 in Algo- 13RS T\ s

rithm 1). : ““““““\ 0
5

4ASRes checks the dominance among the solutions (in
lines 18, 22 and 26 in Algorithm 3) and provides the set of
Pareto optimal solutions bounded by the paramleter

Figure 3: Runtime.
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Figure 4: The average number of resistant and functionatisols of each problem in DMO-COPs.

#congraints) which is large enough, so that dH change ration is A5, we need a higherratio in or-
resistant solutions becontefunctional. In figure 2,  der to find solutions after the third problem. We then
we can observe that only small change ratio (i.e., from reach a point where the change ratios are too severe
0.05 to Q15) for thel-ratio from Q5 to 10 allows (i.e., 025-05) to find solutions for the third problem.
us to find resistant (and also functional) solutions for We can increase thgratio but we cannot find resis-
DMO-COPs. On the other hand, in case thatio is tant and functional solutions (Figure 4(b)- 4(d)).
small and the change ratio is larg&&R cannot find In summary, these experimental results reveal
any solutions. In figure 3, we observed that the aver- that the performance g&SR is highly influenced by
age runtime increases where the number of resistantchange ratio. ASR can obtain the resistant and func-
(and also functional) solutions becomes large. tional solutions of a DMO-COP, when the dynamical
Figure 4 shows the results for the average num- changes are small (i.e. the change ratio is fro650
ber of obtained resistant and functional solutions of to 0.15). OtherwiseASR outputs empty set quickly.
each problem in DMO-COP, i.e., MO-CQPMO-
COPR, and MO-COB, for varying theg-ratio. In this
experiment, we sdtratio to Q8. The #0ls0 repre-
sents the number of obtained resistant and functional
solutions in MO-COR, #solsl is for MO-COR, and
#s0ls2 shows that for MO-COR The x axis shows  Various algorithms have been developed for MO-
the change ratio and the y axis is the number of so- COPs (Marinescu, 2010; Perny and Spanjaard, 2008;
lutions obtained byASR. For anyg-ratio, we find Rollon and Larrosa, 2006; Rollon and Larrosa, 2007).
solutions for the initial problem (i.e., MO-CQ@Pin Compared to these sophisticate MO-COP algorithms,
DMO-COPs. It is the problem where Pareto opti- ASR solves a DMO-COP and finds a subset of the
mal solutions have the lowest cost vectors. Once this Pareto front, i.e., a set of resistant and functional so-
problem changes (with regard to the change ratio), thelutions. Furthermore, there exist several works on
average cost vector increases and the functionality be-dynamic constraint satisfaction problem (Dechter and
comes harder to obtain. For small changes where theDechter, 1988; Faltings and Gonzalez, 2002). Com-
change ratio is @5, even a lowg-ratio (g = 0.2) al- pared to these works, there exists few works on COPs
lows to find resistant and functional solutions (Fig- with “multiple criteria” in a “dynamic environment”,
ure 4(a)). However, for more drastic changes, e.g., theas far as we know.
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