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Abstract: Model checking is well established in system design and business process modelling. Model checking ensures
and automatically proves safety and soundness of models used in day-to-day systems. However, the need for
model checking in activity recognition has not been realised. Models for activity recognition can be built by
prior knowledge. They can encode typical behaviour patterns and allow causal reasoning. As these models are
manually designed they suffer from modelling errors. To address the problem, we discuss different classes of
sensible properties and evaluate three different models for activity recognition. In all cases, modelling errors
and inconsistencies have been found.

1 INTRODUCTION

Activity recognition is an important yet challenging
task with applications in ubiquitous and pervasive
computing, smart environments, and ambient assisted
living. The key problem is to identify actions and ac-
tivities of agents (i. e. humans) as well as interactions
with the environment and other agents. For this pur-
pose, sensors are usually distributed throughout the
environment or the agents by means of dense sensing
(Chen et al., 2012), computer vision (Aggarwal and
Ryoo, 2011), or wearable sensing (Lara and Labrador,
2013). One approach is to build human behaviour
models based on prior knowledge about (causal) ac-
tivity structure, incorporating domain and application
specific knowledge (Hiatt et al., 2011; Krüger et al.,
2013). These generative models, when encoding the
behaviour of the environment and the agents, allow
reasoning about the current activity structure, and at
the same time enable assisting actions when used as
input to a classical planning algorithm.

These models have to be causally correct and rep-
resent all desired details. For instance, if a person has
taken a knife from a counter, the model should always
allow to put the knife down as long as the person is
at the counter or a table. On the one hand, sophis-
ticated models cover many causal dependencies be-
tween fine-grained activities in a detailed state space.
Consider a system assisting an elderly in a kitchen. To
provide adequate assistance, the system must detect
and track activities involving many utensils at differ-
ent places, possibly guiding towards the location of
the utensil appropriate for the current situation. On

the other hand, a model that allows all unrelated phys-
ical interactions quickly becomes too complex, ren-
dering (probabilistic) inference infeasible due to large
state spaces. Therefore, techniques have been devel-
oped to reduce these models on a symbolic level (Yor-
danova et al., 2014), reducing the number of required
actions and states to distinguish. The result is a con-
flict between creating complex models and reducing
and fine-tuning the model. This tuning is error-prone
and increases chances for models to become incon-
sistent. Clearly the model should be free of errors,
otherwise it could lead to undesired or even harmful
actions of the system. Therefore, the need for check-
ing consistency of activity recognition models arises.

This paper presents first results and experiences
on model checking for activity recognition. Model
checking is well established for verifying soundness
and correctness of models (Clarke et al., 1999). It has
been successfully applied in system design and busi-
ness process modelling, among others. To the best of
our knowledge, model checking has not been applied
to activity recognition models before.

In most previous publications activity recognition
models are assumed to exist. Only little work has
been done on the model development process for be-
haviour models for activity recognition (Yordanova
and Kirste, 2014). This paper raises awareness and
discusses the need for model checking. Three activ-
ity recognition models are evaluated, which all have
been designed to work in and have been applied to a
real smart environment (Krüger et al., 2012; Krüger
et al., 2013; Krüger et al., 2014). We present and dis-
cuss common modelling errors and sensible types of
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properties to detect them. Additionally, we discuss
the impact of model checking on activity recognition.

2 BACKGROUND

2.1 Related Work

Due to its wide success, model checking has found
application in AI and many researchers also discov-
ered model checking as a utility for activity recogni-
tion. Magherini et al. (Magherini et al., 2013) inves-
tigate the applicability of temporal logic and model
checking to the problem of plan recognition (assum-
ing actions observations). They present a linear tem-
poral logic reasoning about past events and real-time
constraints on actions. The application scenario is the
recognition of activities of daily living, tracking the
activities and calling assistance on potentially erro-
neous (e. g. dangerous) behaviour. Each activity is
represented as one formula in the temporal logic, and
at least one additional formula for erroneous execu-
tions of the actions. Inference works by finding that
activity (i. e. formula) that is satisfied by the observed
action sequence.

Cimatti et al. (Cimatti et al., 2003) design a plan-
ner in non-deterministic domain, i. e. domains with
actions that have non-deterministic effects. They ap-
ply techniques from symbolic model checking and
represent sets of states (possible outcomes of actions)
as propositional formulae. Based on this model-based
planner (MBP), Gromyko et al. (Gromyko et al.,
2006) synthesise a controller for non-deterministic
discrete event systems. Given required properties in
temporal logic and a system, they generate a con-
troller for this system such that it satisfies the prop-
erties.

In many cases applying model checking tech-
niques, the idea is to compactly represent states and
efficiently generate a search tree. This is often done
using efficient data structure such as Binary Decision
Diagrams (BDDs). In contrast to Magherini et al.,
we do not recognise activities using model checking
techniques. We apply model checking in its origi-
nal sense: proving that the models (used for activity
recognition) fulfil all desired properties.

2.2 State Space Models for Activity
Recognition

This section introduces the types of models used for
activity recognition. In Sect. 3 we then describe how
to apply model checking.

( : a c t i o n p r i n t
: p a r a me te r s ( ? j− j ob )
: p r e c o n d i t i o n ( and

( no t ( p r i n t e d ? j ) )
( no t jammed )
( has paper p r i n t e r ) )

: e f f e c t ( p r i n t e d ? j ) )

( : a c t i o n r e p a i r
: p a r a me te r s ( ? a−a g e n t )
: p r e c o n d i t i o n ( and

( a t p r i n t e r ? a )
( hands− f r e e ? a )
( jammed ) )

: e f f e c t
( no t jammed ) )

Listing 1: Simple PDDL domain definition for the office
scenario (excerpt).

When reasoning about human behaviour, state
space models (Koller and Friedman, 2009) built from
prior knowledge are one option as a flexible foun-
dation for reasoning about human behaviour. They
have recently been used for different activity and in-
tention recognition applications (Hiatt et al., 2011;
Krüger et al., 2013; Ramírez and Geffner, 2010) for
several reasons. First, learning (discriminative or gen-
erative) probabilistic models requires a vast amount
of training data. Acquiring this data involves a lot
of human subjects and is therefore time-consuming
and costly. Second, human behaviour varies consid-
erably even for small domains like food preparation.
It is infeasible to record sufficient training data for all
possible variations. Finally, generative models eas-
ily allow prediction, goal recognition (Ramírez and
Geffner, 2010), and support assistance (Hiatt et al.,
2011; Hoey et al., 2011).

In addition, this general framework allows to eas-
ily model long-term dependencies. For example in a
meeting scenario, a projector only can be turned off
after it has been turned on, no matter how many other
activities have been executed. This framework also
supports latently infinite state spaces, like counting
how many objects are currently taken by some agent.

In our examples we use a syntax based on PDDL
(Fox and Long, 2003) for model specification. PDDL
is used because it is widely adopted for planning (and
can thus be directly applied for assistance problems),
but also previous activity and goal recognition ap-
proaches are based on it (Krüger et al., 2013; Ramírez
and Geffner, 2010). Actions are defined in terms of
preconditions and effects on state predicates. List-
ing 1 shows a simple excerpt from one of our models.
The model also comprises an initial world state and
a goal formula identifying goal states for a given ap-
plication domain. Additionally, the syntax is enriched
with a duration model and observation model. For
activity recognition, the model is then compiled to a
probabilistic model for Bayesian inference, i. e. com-
puting the most likely state given past observations.
Because we want to reason about detailed context and
activities, the model easily becomes complex.
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3 MODEL-CHECKING
APPROACH

We employ the PRISM tool as a state-of-the-art, off-
the-shelf model checker (Kwiatkowska et al., 2011).
We have chosen PRISM because it supports a vari-
ety of models, the property language covers many
features, it can produce counter-examples for certain
properties, and uses BDDs for efficiently storing large
state spaces. A compiler transforms the PDDL speci-
fication into PRISM’s syntax. The compiler instanti-
ates the actions to ground actions (removing any pa-
rameters) and resolves conditional effects (which are
not supported by PRISM) by generating different ac-
tions for each possible combinations of conditional
effects. Although our action models contain dura-
tions, the system itself evolves in discrete steps. Our
focus is only on qualitative aspects of the model, so
the duration models and the observation models can
be simply dropped.

The model checker can verify if a model (i. e. the
sequence of states generated by the model) satisfies
a boolean formula written in temporal logic. These
formulas are often called properties, as they describe
desired behaviour of the model. Any violation of the
properties is considered a modelling error. Temporal
formulae are defined over sequences of states. A for-
mulaφ references atomic state propositions and usu-
ally consist of one or more of the operatorsX φ (φ
must hold in the next state),F φ (φ must hold in at
least one state of the sequence),G φ (φ must hold in
all states of the sequence),E φ (φ must hold in at least
one possible path, e. g. due to non-determinism), orA
φ (φ must hold in all possible paths), among others.

The formula in PRISM can refer to state variables
as well as labels, which are user-defined formulas on
state variables. The compiler automatically generates
a “goal” label from the goal definition of the model,
making it easier to reference goal states. Properties
are usually of the formA φ, as all possible executions
of behaviour models should satisfy the property. An
example in PRISM syntax isA [ F "goal" ], stat-
ing that it is always possible to reach a goal state.

Defining properties is the most important step, as
this encodes all knowledge and intuition that should
hold in the domain. This is particularly important for
behavioural models as presented in Sect. 2.2. These
models are described on a symbolic level (in this case
using PDDL) in terms of theaction’s preconditions
and effects. In contrast to, for example, functional
tests or unit tests in software engineering, the designer
should not focus on properties of single actions. One
might be tempted to compare properties with con-
tracts in programming by contract with imperative

implementations (Meyer, 1992), where functions also
have pre-conditions and post-conditions. Although
the concept is different in testing or verification, from
a designer perspective formulating properties or con-
tracts seems to be a comparable task. Both ensure that
actions or functions are only called in certain contexts
and have a desired outcome.

However, symbolic action descriptions as in
PDDL are declarative, so the gain from impera-
tive functions to declarative properties is not exis-
tent when formulating properties for PDDL domains.
Even worse, the properties are likely to be defined by
the model designer, who will simply re-state the ac-
tions’ preconditions and effects, possibly making the
same high-level conceptual errors. Therefore we ar-
gue it is most useful to describe properties that cover
long-term dependencies, and not simply assertions to
execute specific actions. We identified various types
of properties to be important, which can be grouped
into invariants and long-term causation.

Invariants. are properties that need to be satisfied
at all times. The two most salient properties aredead-
lock freenessand livelock freeness. Deadlocks are
states in which no action can be executed. Dead-
lock freeness can be checked using the formulaA [
G !"deadlock" ] (PRISM automatically provides
a label “deadlock” for deadlock states). Deadlocks
should be avoided in behaviour models. Either dead-
lock states are impossible in the underlying domain,
in which case they should be unreachable, or they are
possible, in which case actions are probably miss-
ing and the inference process cannot recognise sub-
sequent activities. The underlying assumption is that
humans almost always find a solution or continue act-
ing in any case, so that deadlocks do not occur in
the application (of course, domain-specific exceptions
may exist). Resolving the deadlock depends on the
model and the intended behaviour. Any reasonable
model checker can provide a counterexample path to
violated formulas of the formA G φ, thus giving a
sequence to a deadlock.

Livelocks, in our activity recognition case, are
states in which actions are possible, but no goal
state can be reached (checked withA [ F "goal"
]). They indicate a possible problem in the domain or
model, where the overall task is impossible to accom-
plish. Livelocks are more difficult to track, as usually
no counter-examples can be given. One strategy is to
split the goal formula and verify that parts of the goal
can be reached.

Additionally, domain-specific invariants are can-
didates for properties, for example the property that
exactly one of a set of state variables is always true
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(e. g. a user may hold only up to two objects in
his hands). Especially important are those invariants
which are related to multiple actions, where the in-
variants cannot be captured by preconditions and ef-
fects of a single action. An example might be multiple
actions where it is possible that the user holds an ad-
ditional object in hand (e. g. either by taking from a
surface or by disassembling one object). These for-
mulas are often of the formA G φ, thus any violation
can be proven with a counterexample.

Long-term Causations. between actions ensure
properties which can only be implicitly encoded
within multiple actions. This includes typical action
sequences such as turning devices on and off (e. g.
lamps or stoves) with intermediate actions, where turn
on is only allowed for devices previously turned off
and vice versa. Sometimes models includedecisions
of users (e. g. where to sit, when to present) which do
not immediately influence the behaviour, but alter the
progress of the model when the decisions are realised
later. Here properties typically are of the schemeA
[ G (φ ⇒ F ψ) ], meaning only whenφ holds, the
model always behaves in a particular way according
to ψ. In real-world domains,repeatability of certain
actionsare desired, like locomotion or basic inter-
actions with the environment. These properties of-
ten follow the schemeA [ G (F φ) ], stating that
it must always be possible to reach a state whereφ
holds. On the other hand, someactions can only be
executed oncein certain applications, for instance in-
gredients can only be cut once.

Some of these properties, when violated, may not
always indicate a modelling error. Instead, they can
provide useful insight to the problem domain and spot
unexpected effects that may or may not be desirable.
Other violations may point out possible chances for
reducing the model complexity and state space, such
as limiting the model behaviour to the particular ap-
plication domain. It must be noted that unsatisfied
properties, deadlocks, and livelocks not necessarily
influence recognition results negatively. If some be-
haviour not present in the datasets is not modelled,
recognition accuracy usually increases because less
behaviour must be discriminated. Therefore these “er-
rors” may sometimes be intended. Nonetheless, it
must be kept in mind that this hinders re-usability of
the models and can lead to unexpected problems, es-
pecially if they are not documented.

4 EVALUATION OF ACTIVITY
RECOGNITION MODELS

For the evaluation of our activity recognition tool, we
conducted several experiments in our smart environ-
ment and built various behaviour models. During de-
velopment, we identified a number of modelling er-
rors and inconsistencies in the models. Each section
briefly presents the models and properties, and dis-
cusses the modelling errors found. Note that this is an
empirical review of actual modelling errors, none of
these errors has been artificially added to the model.
An overview of the number of actions and states is
shown in Table 1, giving an intuition of each model’s
complexity.

4.1 The Meeting Scenario

Three persons hold a presentation and discuss in a
meeting room. The model’s actions comprise walking
to different locations, sitting on a chair, as well as ac-
tually presenting and discussing. A presentation can
only start when the other persons are seated. To re-
strict the model, it was assumed uncommon to change
seats and walk to different locations, so a person was
only allowed to walk once before and between pre-
sentations.

We checked two domain-specific invariants and
one unrepeatable action property: (1) at most one
person is presenting, (2) when presenting, all oth-
ers are seated, and (3) a person never presents twice.
All properties were satisfied, no livelock was present,
but one deadlock could be found. The deadlock was
caused by the way walking (e. g. to seats) has been
implemented. When the people enter the room they
independently execute the action “walk to seatx”.
The deadlock happens if all persons execute the same
action and go to the same seat, which is possible as the
seat is still empty. When the persons arrive, only one
can sit down, and the others could not move because
walking was allowed only once.

Two options exist to remove the deadlock: reduce
behaviour that leads to the deadlock or add behaviour
to escape it. Reducing behaviour would require the
persons to negotiate where to seat, which seems rather
unnatural and complicates modelling even more. Al-
lowing additional walking fixes the deadlock, but in-
creases the state space to 49,765 states, making it
rather costly.

4.2 The Office Domain

A room contains a printer and a coffee machine that
people want to use concurrently. The model contains
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Table 1: Comparison of model complexity in terms of actions,boolean state variables, and state space size.

Model PDDL actions ground actions state variables states
meeting (3 persons) 10 150 104 31,372
office (3 persons) 9 124 43 1,957,158
kitchen (1 person) 44 99 60 146,552,922

actions for entering and exiting the room and walk-
ing to different locations. Paper and ground coffee
are resources that can be taken (only one at a time if
the hands are free) from different locations and used
to refill the printer or coffee machine. A paper jam
may occur, which must be repaired before printing is
possible.

We checked the following properties with respect
to a single agent: (1) no hands are free if and only if
some object is held, (2) when holding something it is
possible to get the hands free, and (3) it is always pos-
sible to leave the room. These properties are example
of an invariant (covering different state variables), an
intuitive assumption, and of ensuring repeatability of
an action.

The second property was violated, no additional
deadlocks or livelocks have been found. Here, the
agent could get some ground coffee for the coffee ma-
chine, refill the coffee machine, and get some addi-
tional ground coffee. After getting additional ground
coffee, the coffee machine still has resources and the
agent is unable to release the ground coffee from his
hand, allowing him only to walk between different lo-
cations without making any additional progress. A
simple fix is to add an additional “drop” action, al-
lowing to put resources back.

4.3 The Kitchen Task

A single person prepares and eats a carrots soup. This
model comprises detailed actions in the process of
preparing and eating a carrots soup as well as clean-
ing afterwards. The actions respect several causal re-
lations, such as an object can only be taken if at least
one hand is free, and cutting the carrot is only possi-
ble when a knife is in a hand and the carrot is on a
cutting board.

The properties we checked included an invariant
and two long-term causations: (1) there is exactly
one of the propositions true that zero, one, or two
hands are free, (2) when a person is not hungry he
has cooked, and (3) when eating, the person is seated
and at the table. While the first two properties were
true, the last indeed turned out to be false. The model
allowed to eat without seating, it was sufficient to just
stand at the table.

No deadlocks were present in the model, but a
livelock could be found. As a precondition for the

cook action, the spoon had to be in the hand. But in
case the spoon was in the pot before cooking, it was
impossible to remove the spoon, as the respective ac-
tions were too restrictive. In this case two fixes are
possible. Either the actions could be relaxed to allow
the spoon to be removed from the pot. Or the action
could be restricted even more, preventing to put the
spoon in the pot before finishing cooking. While the
first option does not change the size of the state space,
the second slightly decreases its size to 145 million
states.

5 CONCLUSION

Model-based approaches to activity recognition re-
quire sound models. Model checking helps finding
modelling errors and is therefore supposed to im-
prove recognition rates. Improper models can not
only have negative impact on recognition results, they
can possibly lead to wrong, possibly harmful, de-
cisions. We presented a short case study of mod-
elling errors found in activity recognition models. As
a guide for practitioners and model developers, we
identified and discussed important classes of sensible
properties to identify modelling inconsistencies and
errors, and how they may impact activity recognition.

Future work includes a detailed survey of impor-
tant property classes, making it easier to formulate
sensible properties. Currently, we employed an exter-
nal model checking tool. An integrated, continuous
tool support has to developed, which is presumed to
ease model development.
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