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Abstract: In this paper the use of Job-Shop Scheduling Problem (JSSP) is addressed as a support for a supply chain 
scheduling considering financial exchange between different supply chain partners. The financial exchange 
is considered as the cash flow exchanges between different upstream and downstream partners. Moreover, 
several suppliers are involved in operations. The problem under study can be viewed as an extension of the 
classical JSSP. Machines are considered as business or logistic units with their own treasury and financial 
exchanges happen between the different partners. The goal then is to propose the best schedule considering 
initial cash flows in treasuries as given data. The problem is formulated as integer linear programming 
model, and then a powerful GRASPxELS algorithm is developed to solve large scale instances of the 
problem. The experiments on instances with financial constraints proved the methods addressed the problem 
efficiently in a short amount of time, which is less than a second in average. 

1 INTRODUCTION  

This paper deals with Supply Chain (SC) scheduling 
taking into account financial constraints. A SC 
composed by individual firms is modeled. In this SC 
forward flow of materials and backward flow of 
cash appear. Cash flows occur over time in two 
forms. Accounts Payable or cash outflows include 
expenditures for the logistic activities, or equipment 
and materials needed to achieve each operation. 
Accounts Receivable or cash inflows are induced by 
progressive payment for completed task or product. 
The supply chain is modelled as a Job-shop where 
each SC member is considered as a machine. The 
main goal is to obtain such a schedule which 
maintains during the schedule horizon a positive 
cash position. Thus, a better synchronization of 
material and financial flows avoiding negative cash 
position leads to integration of SC performance. An 
integer linear programming model is developed 
where payment terms and amounts of all suppliers 
and distributors are known. A GRASPxELS 
algorithm, where the objective is to minimize the 
completion time of all activities taking into account 
the financial constraints, is proposed to solve large 
scale instances. 

The next section provides a brief literature review. 
The section 3 introduces the assumptions used in 
this study. Section 4 presents the integer linear 
programming model. In section 5 a customized 
GRASPxELS is presented; and the results obtained 
thanks to this metaheuristic are compared with the 
ones obtained with the CPLEX solver. Finally, a 
conclusion and future researches are proposed. 

2 RELATED WORK 

Inclusion of cash flow in scheduling problem has 
been studied with different objective value which 
leads to the Resource Investment Problem (RIP) 
(Najafi al., 2006) and the Payment Scheduling 
Problem (PSP) (Ulusoy G. and Cebelli, 2000). 
Depending on the objective, publications encompass 
both net present value (Elmaghraby and Herroelen, 
1990) and extra restrictions as bonus-penalty 
structure (Russell, 1986), or discounted cash-flows 
(Najafi al., 2006). 

The main objective of cash manager is to have 
enough cash to cover day-to-day operating expenses. 
Two types of metrics are generally used to optimize 
financial flow: during a given period, cash position 
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reveals the cash which is available and cash flow, 
the cash generated. (Stadtler, 2005) proposes a study 
of management on supply chain where the time 
horizon relative to the operational schedule 
corresponds to the financial schedule. To increase 
performance, financial considerations must be done 
at every production level, from planning to control, 
in order to avoid bank overdraft. (Bertel et al., 2008) 
proposed a mixed integer linear program to find an 
optimal production plan to maximize average cash 
position under a deterministic multi-factory, multi-
stage, and multi-product system, modelled as a flow 
shop. A Dynamic Simple Policy (DSP) has been 
proposed by (Gormley and Meade, 2007) in order to 
minimise transactions costs at short terms periods of 
a company and in a national or international context 
where financial exchanges are not independently 
distributed upon the global costs of the enterprise. 
(Comelli et al., 2008) used an activity based costing 
(ABC) system to link supply chain physical and cash 
flows, proposing a tactical production planning 
model. (Tsai, 2008) studied the influence of trade 
terms, under a stochastic demand process, on cash 
flow risks and showed that using trade discounts to 
encourage early payment by customers increased 
cash inflow risk despite an improved cash cycle. 
(Grosse-Ruyken et al., 2011) plotted out that the 
Cash Conversion Cycle (CCC) is a good measure of 
performance considering upstream and downstream 
partners in order to avoid the “domino effect” 
resulting in the bankruptcy of a supplier.  

The problems studied are usually considering 
cash position as variables. Very few works propose 
to analyse cash flow and scheduling problem as an 
operational problem of cash management (Kemmoe 
et al., 2011a). Moreover, (Elazouni and Gab-Allah, 
2004) showed that “available scheduling techniques 
produce financially non-realistic schedules”. 
Recently (Kemmoe et al., 2011a) formulated the 
problem so called “Job-shop with financial 
constraint” (JSFC) which is defined as a Job-shop 
problem with simultaneously consideration of 
manufacturing specific resource requirements and 
financial constraints. The inclusion of financial 
considerations permits to consider the proper 
coordination of production units when optimizing 
the supply chain. The main goal is to obtain the 
smallest duration of a given supply chain operational 
planning while respecting the budget limit of each 
production unit. Later (Kemmoe et al., 2012) 
extended the model of (Kemmoe et al., 2011a) to 
take into account the terms of payments and multiple 
suppliers per operation. 

In this paper the linear model proposed by 

(Kemmoe et al., 2012) is improved for small and 
medium size instances and a GRASPxELS 
algorithm for large size instances for JSFC with 
multiple suppliers per operation is developed. 

3 SUPPLY CHAIN ASSUMPTIONS 

3.1 Physical Flow Assumption 

In this study the cash flow of a manufacturer who 
acquires materials from suppliers, transforms them 
into semi-finished or finished goods and sells them 
to distributors, is considered. To better understand 
this relationship a model of a given supply chain is 
presented on Figure 1, where each product (Pi) has 
its own process plan which defines the product route 
through the supply chain. Therefore the product will 
be treated successively by a supplier unit (Si), 
manufacturing units (MUi) and distributor (Di). This 
supply chain can be modeled as a Job-shop 
addressing the proper coordination between material 
lots (jobs) and financial considerations. 

 

Figure 1: Material and financial flows through the SC. 

The Job-shop scheduling problem (JSSP) consists in 
scheduling a set of n jobs that have to be sequenced 
on m machines. Each job involves a set of machine-
operations, which must be processed in a pre-
determined order. Each operation has to be 
processed on a given machine during a processing 
time and no pre-emption is allowed. The JSSP 
consists in finding a schedule with a minimal global 
duration by managing machine disjunctions (see for 
review (Jain and Meeran, 1999)). Using the 
disjunctive graph (Roy and Sussmann, 1964) the 
logistic activities can be modeled by vertices. 
Precedence constraints between operations are 
represented by an arc. Disjunctive constraints 
between two logistic activities which require the 
same logistic unit are modeled by an edge. An arc 
has a total cost equal to the duration of the logistic 
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activity. The corresponding oriented disjunctive 
graph of the SC problem of Figure 1is presented on 
Figure 2. 

 

Figure 2: Oriented disjunctive graph of the SC of Figure 1. 

The physical flow between the manufactures is 
presented at the centre of the previous graph (MU1 
and MU2). Since physical flows are directly 
impacted by cash-flows, the assumptions concerning 
cash in- and outflow are presented on the next sub-
section. 

3.2 Cash Flow Assumption 

The cash outflow assumption supposes that the 
manufacturing units and distributors units always 
pay its suppliers (suppliers or manufacturing units) 
at the maturity of its accounts payable, which has a 
given credit term. The cash inflow assumptions 
suggest that sales/shipments occur at the end of each 
processing time and that there is a given credit term 
offered to customers (manufacturing units or 
distributors). Using these assumptions and the 
hypothesis that each activity has a known duration 
and two suppliers paid with different delays, the 
different events occurring during an activity can be 
represented, using the following notations: 

tα
i, tβ

i

 : delays, respectively for the first () and the 
second () suppliers, to receive financial 
amount for delivering the resource 
necessary to execute the corresponding 
activity i. 

ri : account receivable (financial resource or 
inflow) generated by the operation i. 

si : starting time of activity i. 
δi : delay between the starting time of activity i 

and the time of account receivable ri. 
pi : duration of material flow on activity i. 
cα 

i, cβ
i  : financial resource required to pay the first  

and the second suppliers of the activity i. 

Using these notations a set of basic examples of 
events occurring during an activity is proposed in 
the Figure 3. In the first case presented in the Figure 
3, the supplier represented by α is paid after tα while 

the second supplier represented by β is paid after tβ, 
both inside the activity. When processing time is 
over, an inflow occur with amount ri after a delay δi. 

 

Figure 3: Different cash-flows events. 

In the second case, two suppliers are paid at the 
same time while the operation is processed. The 
inflow occurs at a moment after the end of the 
activity. In the third case the supplier  is paid 
during the activity, while the other () is paid after 
its end. Since the inflow occurs after a given delay, 
it may happen after or before the payment of the 
second supplier as presented on the fifth case. The 
fourth case shows two suppliers paid at the same 
time after the end of the operation. In the fifth case, 
the suppliers are all paid after the end of the 
operation but at different times. Finally, the sixth 
case is a special one where the first supplier is paid 
inside the activity but the inflow happen before the 
payment of the second supplier who is paid after the 
end of the activity. This case can be encountered 
when an enterprise has negotiated with its supplier a 
larger delay. Thanks to the income of money, the 
enterprise may perhaps use this inflow for some 
financial optimization involving bank interests.  

The main objective during the SC scheduling is 
to find a schedule which minimizes the lead time 
while respecting the budget limit of each SC 
member avoiding negative cash position as shown in 
Figure 4. 

 

Figure 4: Schedule of operation i with and without 
negative cash position. 
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In the first part of Figure 4 the supplier payment 
leads to a negative cash position on the treasury 
associated to the MU. In the example proposed, an 
inflow occur after a given period and is important 
enough to have a positive cash position. Thus, in 
order to keep positive cash position when the second 
supplier is paid, the starting time of activity i on MU 
must be increased. This is shown on second part of 
Figure 4. Concerning the cash position, it can be 
seen that the shift did not affect the previous cash 
flows (the first part are identical), they just happen 
later in the Gantt diagram. We end up having the 
following problem. We are given a set of jobs, 
machines and precedence constraints between the 
job operations and then we want to find a scheduling 
such that at each step of the time the cash flow is 
positive and the finish time is minimized. 

4 LINEAR PROGRAMMING 

The model presented in this section has been built to 
obtain exacts solutions avoiding bank overdraft by 
repartition of financial resources among the different 
stakeholders. It relies on a flow added to the 
incumbent Job-shop. 

4.1 Parameters 

Some extra parameters are taken into account and 
added to those presented on the Cash flow 
assumption sub-section:  
M : set of logistic units; 
Ji : Job of the activity i; 
V : set of all activities; 
i,j : indexes representing the different activities 

to schedule, i=1,..,|V|, j=1,..,|V| ;  
μi  : logistic unit required to process activity i, 

μi∈M; 
Tm : initial cash flow for the logistic unit m ∈ M  
F : set of suppliers;  
f : index representing the different suppliers of 

an activity, f=1,..,|F|  (precedently α β);  
H : a large positive number. 

4.2 Variables 

Cmax : completion date of all activities; 
si  : starting time of activity i; 
xi,j : binary variable equal to 1 if activity i is 

realized before activity j and equal to 0 
otherwise; 

yi,j,f : binary variable equal to 1 if there is a non-
null cashflow from activity i to defray the fth 

supplier of activity j and equal to 0 
otherwise; 

φi,j,f : denotes, when two activities i and j are 
performed by the same logistic unit, the 
number of financial units directly 
transferred from supply chain activity i to 
supply chain activity j (φijf ≥0 if k=μi=μj and 
φi,j,f =0 if k≠μi); 

4.3 Linear Formulation 
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The first line (equation 0) refers to the objective of 
the problem: minimizing the completion time of all 
operations. Constraint (1) gives the expression of the 
makespan. Constraint (2) defines the precedence 
between activities occurring on the same logistic 
unit. Constraint (3) ensures that precedence 
constraints are respected between activities of a job. 
Constraint (4) adjusts starting dates of activities 
when an inflow is needed. If no inflow is needed 
(yi,j,f = 0), the activity j starts after the end of 
operation i, if i is processed before j on the logistic 
unit. If yi,j,f = 1, then, the solver refers to (δi-tj,f) as the 
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time needed between operation i and j. Constraint 
(5) avoids to exceed the initial treasury available 
when allocating resources to logistic unit. Constraint 
(6) ensures that the sum of cash flows from logistic 
units and initial treasury is equal to the cash outflow 
needed for the supplier f of activity j. Constraints (7) 
is identical but take into account the case where the 
logistic unit receive an inflow from itself before the 
payment of a supplier. Constraint (8-9) ensures that 
the sum of cash flows from the considered logistic 
unit to the next ones never exceeds the inflow 
resulting from its activity. Constraint (10) stipulates 
that if logistic activity i occurs before activity j 
(xij=1) then a cash flow is possible from i to j. If 
activity i does not come before activity j (xij=0) then 
no flow is allowed between i and j. Constraints (11-
12) ensure that if there is a cash flow from i to j for 
the supplier f then yi,j,f =1. If yi,j,f =0 then no flow is 
possible from i to j. Constraint (13) stipulates that if 
activity i occurs before activity j then no cash flows 
are possible from j to any supplier of i. Constraint 
(14) ensures that no flow is possible between 
different logistic units, overall suppliers. 

5 GRASPXELS APPROACH 

5.1 GRASPxELS Principles 

The GRASPxELS is a multi-start metaheuristic 
based on a GRASP (Greedy Randomized Adaptive 
Search Procedure (Feo et al., 1994)) extended with 
an ELS (Evolutionary Local Search (Wolf and 
Mertz, 2007)). The GRASPxELS, first proposed by 
(Prins, 2009), helped to bring very good results in 
term of quality and speed to several problems. The 
association of both, GRASP and ELS, aims to 
propose a better metaheuristic which will explore a 
wider range of solutions. A template algorithm of 
the GRASPxELS is proposed below: 

Algorithm 1: GRASPxELS.  
Procedure name GRASPELS 
Begin 
1. S*  Ø 
2. for p := 1 to np do 
3.  S   Construction_Phase 
4.  S   Local_Seach_Phase 
5.  if (f(S) < f(S*)) then 
6.  S*  S 
7.  endif 
8.  S≔EvolutionaryLocalSearch_Phase 
9.  if (f(S) < f(S*)) then 
10.  S*  S 
11.  endif 
12. endfor 
13. return S* 
end 
 

As stressed in the Algorithm 1, a GRASPxELS is 
divided into three phases: the construction phase, the 
local search phase and the ELS phase. The different 
specificities corresponding to those different phases 
are presented in the next sub-section. 

5.2 Specificities 

Construction phase: As the main objective is to 
propose a solution with minimal makespan, a 
construction rule based on the duration of the 
activities is chosen. At each construction step an 
activity is randomly chosen from a list of activities 
with small durations.  

Local search phase: We chose to use a local 
search relying on the neighborhood from (Van 
Laarhoven et al., 1992). The algorithm of the local 
search procedure can be found in (Kemmoe et al., 
2011b). 

ELS phase: In the ELS phase, neighborhood of 
local optimum solutions is explored through 
mutations and then ameliorated thanks to the local 
search. The mutation consists in permuting elements 
in the repetition vector used by (Bierwirth, 1995) if 
they belong to different jobs. Principles of the ELS 
are shown in the Figure 5.As it can be seen in this 
Figure, a neighbor could have its makespan 
ameliorated or not depending on its initial quality – 
this is represented with arrows between the 
generation of neighbors and the local search. 

...

...

For j from 1 to nb_ELS
Input solution

Generated 
Neighbours

Neighbours 
after LS

Best found 
neighbour

Best solution 
found

Higher 
quality

Lower 
quality

 

Figure 5: ELS principals. 

Finally, in the next sub-section the evaluation 
function for the Job-shop problem with financial 
constraints is presented, as it is the most important 
algorithm of this study. 

5.3 Evaluation of a Bierwirth Vector 

As mentioned before, a sequence of the operations 
relies on a Bierwirth’s vector. The evaluation 
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function has been split into two parts. The first part 
concerning the evaluation of the vector without cash 
flows is presented in the Algorithm 2. The 
Algorithm 2 returns the makespan and the starting 
dates of the activities. However, no information are 
given about the cash position of the treasuries.  

Algorithm 2: Evaluation. 
Procedure name Evaluation 
Input/output 
 : sequence to evaluate 
Input 
 n: number of operations 
 j: number of jobs 
 m: number of machines 
Variables  
 i: loop index 
 op_M[]: last operation on machine 
 t_Job[]: time we have treated job 
 job: job treated 
 vertex: vertex of the job treated 
 machine: machine for the operation  
 d: end date of conjunctive predecessor 
 dPD: end date of disjunctive predecessor 
 father: predecessor  
  fatherD: disjunctive predecessor 
Begin 
1.  FOR i :=0 to m DO op_M[i] = -1; END 
2.  FOR i :=0 to j DO t_job[i] = 0; END  
3.  FOR i :=0 to n DO 
4.    job := .sequence[i] ;  
5.   vertex := Vertex of job operation;  
6.   machine := machine of vertex; 
7.   d := 0; dPD := 0;  
8.   father := -1; fatherD := -1; 
9.   IF t_Job[job] <> 0 THEN 
10.   //Conjunctive father  
11.     father := vertex – 1 ; 
12.     d:= End[father]; 
13.   END IF 
14.   IF (op_M[machine] <> -1) THEN 
15.   //Disjunctive father  
16.     fatherD := op_M[machine] ;   
17.     dPD:= End[fatherD] ; 
18.   END IF 
19.   IF (dPD > d) THEN  
20.   //father is the disjunctive one   
21.     father := fatherD ; 
22.     d :=dPD ; 
23.   END IF  

24.   save d and father into ; 
25.   Increment t_Job[job]; 
26.   op_M[machine] ≔ vertex; 
27. END 

28. .makespan:=0 
29. FOR i:=0 to m DO 
30.   IF End[op_M[i]]> makespan THEN 

31.      .makespan:= End[op_M[i]] 
32.   END IF 
33. END 
End 

Consequently, another algorithm must deal with the 
cash flows. The inclusion of cash flows can be done 
in several ways. First the Algorithm 1 could 

compute the makespan and a reparation procedure 
would modify the starting dates of activities to 
respect cash position of the treasuries. However this 
is a bad solution because it will imply changing in 
cascade in order to keep the solution consistent, thus 
increasing the computation time uselessly. Hence 
treasury handling must be done inside the evaluation 
function with a call to the Algorithm 3 presented 
below.  

Algorithm 3: cashFlow. 
Procedure name cashFlow 
Input/Output 
 d: theoretic start date of operation 
 tr: treasury of the current machine 
 iT: index for moves in tables 
 pTr: number of negative cash position 
Input 
 mac: current machine  
 del[]: suppliers delays for operation 
 cost[]: suppliers cost for operation  
 waitingP[]: awaiting inflows for tr  
 dInPay[]: dates of inflows for tr  
Variables 
 dPayF: theoretic outflow date for a  
        supplier 
 f: loop index for suppliers 
Begin 
1. FOR f ≔1 to nbF DO  
2.  IF tr ≥ cost[op][f] THEN 
3.   disburse tr[mac] ;    
4.  ELSE 
5.   dPayF	≔ d + del[op][f] ; 
6.   WHILE (dPayF > dInPay[mac][iT] DO 
7.    Disburse tr ;  
8.    Increment i_T ;  
9.   END 
10.   IF tr ≥ cost[op][f] THEN 
11.    Disburse tr; 
12.   ELSE 
13.    IF mac receives payment before 

 payment of suppliers THEN 
14.     collect tr; 
15.    END IF  
16.    WHILE tr < cost[op][f] AND  
17.          i_T <  size(dInP) DO 
18.     collect tr; 
19.     d := dP[mac][i_T] – del[op][f] ;  
20.     I_T +=1 ;     
21.    END  
22.    Disburse tr;  
23.    IF tr < 0 THEN 
24.     Increment pTr;  
25.     exit(FOR) ;    
26.    END IF 
27.   END IF 
28.  END IF 
29. END   
End 

The call to the Algorithm 3 in the evaluation 
function is done between lines 23 and 24 of the 
Algorithm 2. The important part in this algorithm is 
the variable pTr as it stores the number of operations 
that conduce to a negative cash position on the 
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treasury. This variable is used in a Lagrangian 
relaxation-like way, keeping the solutions even if 
they violate the constraint. It allows to explore non-
suited solutions that can lead to better ones while 
exploring their neighborhood as it is not certain that 
a direct path exists between two good solutions 
without considering bad ones. Thus, if a power of 
ten (PTa) directly superior to the worst possible 
solution is considered, a sequence’s (seq) cost will 
be formed as follows: 

Seq.cost = (seq.pTr)PTa+seq.makespan 

Finally, sequences are compared on their 
respective costs and not on their makespan anymore. 
It can be deduced from the previous formula that if 
there is no problem encountered on the treasuries, 
then seq.pTr = 0, and consequently seq.cost = 
seq.makespan which is the wanted value. Results 
obtained are presented in the next sub-section. 

5.4 Computational Evaluation 

The experiment is performed on twenty instances 
built upon the Lawrence’s instances for the Job-shop 
problem. The algorithms have been implemented in 
C++ and have been executed on a 2523.09 MFLOPS 
computer (Linpack Benchmark). The parameters 
used in the GRASPxELS for the number of restart, 

the number of ELS and the number of neighbours 
are respectively 100, 50, 10. For each instance ten 
replications have been made. The results (Table 1) 
are compared with the ones obtained thanks to the 
linear model. On Table 1 the columns S and TT(s) of 
the linear model part refer to the solutions obtain 
with the CPLEX 12 solver. Concerning the 
GRASPxELS part, the column S corresponds to the 
average makespan, TT to the total average execution 
time, TTB to the average time to the best solution, 
DEV to the deviation to the best know solution 
(BKS). The three other columns refer to the best 
found solution (BFS), the time to found BFS and the 
deviation from the BKS.  

The results show the strength of the 
GRASPxELS. Best solutions have been found in 
less than two tenth of a second. The makespan of the 
solutions are at less than 0.33 percent from the LP 
BFS, and the algorithm found the optimal solution 
sixteen times on the twenty instances. The presented 
results show that the use of a metaheuristic is really 
helpful when searching for good solutions rapidly. 
Even if the results are not always the best ones, their 
quality and their low deviation to the best known 
solution enlighten their unavoidability when 
studying large size instances. 
  

Table 1: Results obtained with the GRASPxELS and the CPLEX solver. 

 Linear programming GRASPxELS 
INSTANCE S TT(s) S TT TTB DEV BFS T_BFS DEV_BFS 
la01Financial 666* 176.80 666* 0.04 0.04 0 666* 0 0 
la02Financial 655* 342.26 655* 0.04 0.04 0 655* 0.01 0 
la03Financial 639* 1837.00 650.1 1.35 0.5 1.74 646 0.28 1.1 

la04Financial 615* 280.38 616.7 0.66 0.56 0.28 615* 0.35 0 

la05Financial 593* 417.07 593* 0.02 0.02 0 593* 0 0 
la06Financial 926 86400.00 926 0.01 0.01 0 926 0 0 
la07Financial 890 86400.00 890 0.02 0.02 0 890 0.01 0 
la08Financial 888 86400.00 888 2.51 0.13 0 888 0.02 0 
la09Financial 951 86400.00 951 0.07 0.07 0 951 0.01 0 
la10Financial 958 86400.00 958 0.01 0.01 0 958 0 0 
la11Financial 1222 86400.00 1222 0.03 0.03 0 1222 0.02 0 
la12Financial 1039 86400.00 1039 0.03 0.03 0 1039 0.01 0 
la13Financial 1150 86400.00 1150 0.02 0.02 0 1150 0.01 0 
la14Financial 1292 86400.00 1292 0.01 0.01 0 1292 0.01 0 
la15Financial 1216 86400.00 1207 0.09 0.09 ‐0.74 1207 0.03 ‐0.74 
la16Financial 979* 13172.13 979* 0.04 0.04 0 979* 0.01 0 
la17Financial 784* 274.01 784.6 1.85 0.82 0.08 784* 0.38 0 
la18Financial 853* 198.35 871.9 2.27 0.75 2.22 857 0.06 0.47 
la19Financial 842* 280.42 846.9 1.77 1.03 0.58 842* 0.32 0 
la20Financial 913* 301.01 934.6 2.3 0.66 2.37 927 1.11 1.53 
Average :  0.66 0.24 0.33 0.13 0.12 

*Asterisks denote proven optima using the LP 
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6 CONCLUSIONS 

This study aims to present the relationship between 
physical flows and cash flows through a supply 
chain. The different actors of a supply chain should 
carefully understand the relationship between supply 
chain material activities and cash flows in order to 
make operational decisions which will not 
jeopardize the whole supply chain. While taking 
such decisions, the goal still is to propose the highest 
productivity among the supply chain. The problem is 
modeled as a Job-shop scheduling problem with 
financial consideration as an additional constraint. In 
this study it is proposed to schedule operations or 
activities while handling cash flows on treasuries in 
order to always have a positive cash position. As a 
consequence, the results of our study could also 
affect the costs of bank overdraft that could be 
negotiated. Our case study shows the relevance of 
the proposed approach for a “company supply 
chain”, since cash flow constraint is addressed 
simultaneously with operational planning and 
scheduling. Even if a mixed integer linear program 
is proposed, it is difficult to solve the problem 
exactly since it considers both operation scheduling 
and cash-flow resolution simultaneously. 
Furthermore, our instances were not representative 
of the size of the problems that could be encountered 
in the industry. Therefore a strong metaheuristic has 
been implemented, the GRASPxELS, in order to 
obtain faster results. The provided results are of 
good quality, closed to the best solutions 
encountered thanks to the solver which validate our 
work. This study comes in addition of the past ones 
on the subject of Job-shop’s like scheduling 
problems with extra cash-flow constraints. A 
dynamic Job-shop with random payment delays for 
suppliers could be mentioned as a future study, or 
the use of a flexible Job-shop model with different 
payment costs depending on the chosen logistic units 
for the activities. 
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