
Software Architecture Design by Stepwise Model Transformations
A Comparative Case Study

Fabian Gilson and Vincent Englebert
PReCISE Research Center, Faculty of Computer Science, University of Namur, Namur, Belgium

Keywords: Software Architecture, Model Transformation, Design Rationale, Design Decision, Case Study.

Abstract: Software architecture design is a critical task as lots of requirements can be taken into account on which
many decisions can be made. The maintenance and evolution of resulting models often become tricky, even
impracticable when their rationale is lost. In a previous work, we introduced a set of languages used in a
transformation-centric design method meant to tackle this scattering of requirements and to facilitate further
model evolutions. But, we did not provided a formal validation of our proposal yet. The present work depicts
a comparative case study we conducted on a group of students. The participants were asked to develop an
online book store in two phases, the second one simulating an evolution of the system. We evaluated the
functional completeness of the created software as well as the traceability of design decisions and rationale.
The participants were also asked to criticize the design method and language they used in a textual report and
through a questionnaire. Even if the size of the case study is rather limited, it clearly highlighs the advantages
of our approach regarding, among others, its expressiveness and decisions traceability.

1 INTRODUCTION

Software engineering methods offer guidelines and
tool-support to structure the creation process of soft-
ware systems. As the complexity of such systems
increases, the need for iterative methods has been
widely expressed (Bosch and Molin, 1999). In draw-
ing the architecture model of the system-to-be, many
decisions are taken and a large part of the knowl-
edge resides in the reasons that lead to a particular
model (Perry and Wolf, 1992).

Beside, systems must evolve over time in terms
of the functionalities and qualities they fulfill and
regarding technological frameworks. In order to
handle system maintenance and evolution, appropri-
ate documentation and traceability mechanisms are
needed (Parnas and Clements, 1986).

An increasing number of companies are moving
to Agile design methods that offer benefits like time-
overrun reduction and a higher developer productiv-
ity (Dybå and Dingsøyr, 2008). With faster release
frequencies, the amount of design decisions logically
increases. Without an appropriate tracing mecha-
nism, the architectural knowledge is often lost, even
by the practitioners in charge of the impacted models
or code (Tang et al., 2006). However, one of the most
crucial piece of information is the link between a re-
quirement and its implementation in a model or in the

code (Jansen and Bosch, 2005).
We integrated both aspects into an architecture

framework (ISO/IEC/IEEE, 2011). On the one hand,
we use structural models iteratively enriched through
model transformations, and on the other hand, an
ad-hoc requirement modeling language with explicit
traceability mechanisms for design decisions and ra-
tionale. In this comparative case study, we confronted
the Domain Specific Languages (DSL) we formalized
in our framework to the OMG’s SysMLTM model-
ing language (Object Management Group, 2012). We
evaluated the feasibility and advantages of using such
an integrated framework to build a web-based soft-
ware from scratch. Twelve teams of two students
used one or the other set of languages and we identi-
fied that the functional completeness and correctness
were higher under our framework. The decision doc-
umentation rate, i.e. the amount of documented de-
sign decisions, was also evaluated. During the two
phases of the evaluation, we counted an average of
0.96 and 0.94 documented decision under our frame-
work where only 0.35 and 0.32 on the other side.
Aside, we conducted a paper-based survey and an-
alyzed feedback reports to capture the participants’
feelings regarding the languages they used. This sur-
vey highlighted a significant improvement regarding
modeling element expressiveness.

The present paper starts with an overview of some

134 Gilson F. and Englebert V..
Software Architecture Design by Stepwise Model Transformations - A Comparative Case Study.
DOI: 10.5220/0005266101340145
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 134-145
ISBN: 978-989-758-083-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



related work in Section 2. Afterwards, in Section 3,
we give a quick description of the proposed method
and languages. The protocol of the comparative case
study is then presented in Section 4. Next, the teams’
deliverables and feedbacks are detailed in Section 5.
We discuss the outcomes of the case study in Sec-
tion 6 where we evaluate the research method itself
and identify the potential threats to validity. Finally,
the research perspectives and conclusions are pre-
sented in Section 7.

2 RELATED WORK AND
MOTIVATION

Numerous architecture description languages have
been proposed like ACME (Garlan et al., 1997) or
AADL (Society of Automotive Engineers, 2012), but
most of them do not provide decision-making trace-
ability, even if their long-term added-value is widely
recognized (Perry and Wolf, 1992; Malavolta et al.,
2013).

Many decision and rationale recording methods
have been defined, from the precursor Potts and Bruns
model (Potts and Bruns, 1988) to the viewpoint-based
documentation framework (van Heesch et al., 2012).
van Heesch et al. recently conducted a case study on
documentation of architecture design decisions and
highlighted that explicit recordings of these decisions
empower a more systematic exploration of design al-
ternatives (van Heesch et al., 2013). However, all
these techniques require to maintain extra models for
decision and rationale traceability.

Within model-driven approaches, model-to-model
transformation languages play a key role. Hybrid im-
perative and declarative language, like ATL (Jouault
and Kurtev, 2005), usually do not support incremen-
tal model transformations with change propagations.
Triple Graph Grammars offers such a feature, but
makes it difficult to define transformations where op-
erational semantics is needed (Ehrig et al., 2005).
Abstract syntax-based techniques require to learn an-
other language to define transformations, such that
some extra expertise is needed.

In our approach, we believe in a fully integrated
framework where any change in an architecture will
be fully traceable as documented model transforma-
tions, together with their design rationale. Explored
alternatives may also be recorded, again as concrete
transformations. Last, reusable solutions, i.e. archi-
tectural patterns, may be documented as dedicated
transformations too, again using the same formalism.

3 DESIGN METHOD IN SHORT

The design method is supported by three DSL. Those
languages have been presented in dedicated publica-
tions, but we summarize their main principles in the
following sections.

3.1 Requirement Listing

A simple language has been defined to list require-
ments with their design decisions (Gilson and Engle-
bert, 2011b; Gilson and Englebert, 2011a). We fo-
cus only on architecturally-significant requirements
(ASR), i.e, requirements that have “a measurable im-
pact on the software system’s architecture” (Chen
et al., 2013).

A requirement model gathers a list of ASR for a
specific architecture model. Every requirement must
be assigned to an architectural construct in charge
of satisfying it. Listing 1 depicts a simplified ASR
model with one functional requirement that will be
implemented as a transformation.

1 asrmodel clientserver {

2 func SayHello assigned Server {

3 description "The Server shall print ’Hello

World!’ to the console.";

4 realisation implementSayHello;

5 rationale {

6 assessment "Functionality is trivial, a

unique service should make the trick.";

7 strength "Very simple implementation with

unique service without parameters.";

8 }

9 }

10 }

Listing 1: Simplified ASR model.

Decisions can be taken on requirements, such as
refinements, implications, alternative selections or re-
alization through model transformations. Any deci-
sion must be at least justified by an assessment, but
can be further refined by other design rationale like
strengths or constraints for example.

3.2 Architecture Description and
Transformations

A three-stage architecture description language has
been defined to represent the structure of software
systems at different levels of abstraction (Gilson and
Englebert, 2011b). Listing 2 depicts an empty Client-
Server Definition Assemblage Deployment (DAD)
models.

Software�Architecture�Design�by�Stepwise�Model�Transformations�-�A�Comparative�Case�Study

135



1 dadmodel clientserver {

2 definition {

3 componenttype Client { }

4 componenttype Server { }

5 }

6 }

Listing 2: Simplified DAD model.

The set of transformation rules referred as the re-
alization documented in Listing 1, is illustrated in
Listing 3.
1 transformationset implementSayHello concerns

SayHello {
2 create interface Hello { sync void hello(); }
3 alter componenttype Client{ uses Hello as hello;

}
4 alter componenttype Server { implements Hello as

hello; }
5 create connectortype One2One { mode one2one; }
6 create linkagetype from Client.hello to Server.

hello with One2One;
7 }

Listing 3: Simplified transformations set.

Concretely, a binding is created between the
Client and the Server through their facets typed by
the Hello interface.

More modeling elements are available in the DAD
language to express a software architecture from (i)
an abstract definition, (ii) a runnable assemblage
with, among other, particular communication proto-
col constraints, and (iii) a deployment specification
with (user-defined) infrastructure properties.

Listing 4 shows a more complete, though simpli-
fied, overview of all stages of a DAD model.
1 dadmodel dadsample {
2 definition { // building blocks
3 interface Hello { sync void hello (); }
4 componenttype Client { uses Hello as h; }
5 componenttype Server { implements Hello as h; }
6 protocol TCP { layer transport; }
7 connectortype Con { mode one2one; }
8 linkagetype from Client.h to Server.h with Con;
9 nodetype Computer { Ethernet eth; }

10 mediumtype RJ45 { supports TCP; }
11 }
12 assemblage { // concrete instances
13 soi c : Client { Client.h as h on TCP; }
14 soi s : Server { Server.h as h on TCP; }
15 linkage from c.h to s.h with Con;
16 }
17 deployment { // possible deployment
18 node comp[2] : Computer;
19 deploy client on comp[0]; open c.h on comp[0]::

eth;
20 deploy server on comp[1]; open s.h on comp[1]::

eth;
21 plug RJ45 from comp[0]::eth to comp[1]::eth;
22 }
23 }

Listing 4: All DAD model stages.

Note that all stages in a model are optional so that,
for example, reusable building blocks can be specified
separately in dedicated library-models or different as-
semblage or deployment stages for the same definition
can be defined.

3.3 A Transformational Approach

The IODASS design approach is transformation-
centric, i.e., changes made in the architecture
model must be expressed with model transforma-
tions (Gilson and Englebert, 2014). As illustrated
in Listing 3, it provides rules to create, delete and
modify any type of construct. Transformations are
always related to a particular requirement. A soft-
ware architecture is then created in an iterative way
where designers start from a model with a list of ASR
(possibly incomplete), a set of basic constructs and
make successive decisions. Figure 1 depicts the typi-
cal design process, very close to Hofmeister’s general
model (Hofmeister et al., 2007).

Figure 1: IODASS Design process as a UML activity.

An architecture model is iteratively enriched and
documented through model transformations such that
all structural changes are kept for later references.
Furthermore, any decision is directly encoded into the
ASR model and refer, when needed, to a transfor-
mations set, such that structural elements are always
bound to their related requirements.

Editors for all languages have been implemented
as Eclipse plugins with the Xtext1 framework. Trans-

1http://www.eclipse.org/Xtext

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

136



formations are run within Eclipse on the models’ ab-
stract syntax tree and produce a new model each
time. The history of all created models is kept in the
workspace to backtrack to previous versions and ex-
plore implementation alternatives, if necessary.

4 CASE STUDY PROTOCOL

After a couple of tests on toy examples, we de-
cided to evaluate our approach in a comparative case
study. We followed a rigorous process to design
the study and conducted it on a group of master
students (Pfleeger, 1995; Runeson and Höst, 2009;
Wohlin et al., 2012). The study was planned to evalu-
ate (i) the feasibility and benefits of a transformation-
centric approach to build a software system and (ii)
the expressiveness of our modeling languages and
their impacts on model documentation.

In order to evaluate the feasibility of our design
method, we had to compare it to an iterative design
process where engineers may pick one requirement
at a time, refine or implement it and evaluate the re-
sulting model. As identified by Hofmeister et al. in
their general model, this iterative process is very com-
mon as architecture design method (Hofmeister et al.,
2007). Furthermore, it is a somewhat intuitive way of
designing a piece of software. Then for the study it-
self, we required the students from the control group
to follow an iterative design process too.

Regarding the languages themselves, we decided
to compare them to the OMG’s SysML. On top of
structural modeling facilities at variable levels of
abstraction, requirements, traceability and rationale-
related information can be added into SysML models.
It allows to define building blocks in a similar fashion
as in our architectural language, with infrastructure-
related objects too. Also, the participants had no
knowledge of both modeling languages, even if they
all are familiar with UML modeling, such that previ-
ous knowledge in one or the other language would not
have biased the study.

Finally, we also had to take care of the devel-
opment environment, since our languages are imple-
mented inside the Eclipse platform. A couple of
SysML plugins also exist in that platform. Thus the
participants could work in the same environment as
for our framework, which reduces the possible bias
regarding the tool’s takeover.

4.1 Participants’ Properties

The participants were master students of the Fac-
ulty of Computer Science at the University of Namur

and chosen by convenience. They all have a Bach-
elor degree that includes all the prerequisite compe-
tencies for the experiment concerning (UML) soft-
ware modeling or iterative design methods. 24 stu-
dents were involved in the study that was conducted
from mid-March until end of May 2013 as part of a
course in the Software Engineering option of the Mas-
ter’s curriculum. They all had a previous experience
with a mid-scale academic project where they devel-
oped a web-based three-tier information system from
scratch. They all were males between 21 and 25 year
old. However, instead of creating random teams, we
first conducted a preliminary phase to build compara-
ble groups of students for the control and under-study
teams.

4.2 Initial Phase

During this preliminary phase, students had to draw a
UML class diagram from a requirement document de-
scribing a vehicle inspection system. This document
contained an informal description of the system-to-
be, the use case diagrams and corresponding scenar-
ios. It also contained clear instructions regarding the
expected class diagram to produce in terms of level of
details and completeness. These guidances were il-
lustrated by a sample diagram to make everything as
clear as possible. During this preliminary round, all
students received exactly the same remarks in class-
room at the beginning of the lecture and were spread
into a room wide enough to minimize cheating possi-
bilities.

4.3 Build Comparable Groups

At the end of the lecture, we gathered the produced
models and classified them using a judging method
inspired from the work of Jones (Jones, 1983): two in-
house researchers and one external senior researcher,
all familiar with UML modeling, were asked to cate-
gorize the diagrams.

First, they individually drew their own quick-
draft of the class diagram based on the requirement
document. Second, they individually classified the
students’ models regarding their own criteria. The
judges were free to define their own categories as well
as the number of categories. After this classification
round, it appeared that all judges used comparable cri-
teria and built four categories of diagrams that we can
summarize by the following characteristics:

Cat. 1. syntacticly and semantically incorrect

Cat. 2. syntacticly correct, semantically incorrect

Cat. 3. incomplete, correct syntax and semantics

Software�Architecture�Design�by�Stepwise�Model�Transformations�-�A�Comparative�Case�Study

137



Cat. 4. complete, correct syntax and semantics

We calculated the 2-digits truncated arithmetic
mean (denoted tam) of the assigned values by the
judges for each diagram, i.e, Cat.1 diagrams received
a value of 1, Cat.4 a value of 4. Upon this calcula-
tion, we had three categories: low (tam < 2), mid-
range (2 � tam < 3) and high results (tam � 3). The
mid-range category contained too many elements so,
we used external criteria, like their previous results in
modeling lectures, to split the category in two.

In order to let a bit of freedom to the students
to create pair-teams for the remaining of the case
study, we created four hats based on the aforemen-
tioned categories to equalize as much as possible the
modeling competences of the future teams. We fairly
distributed the students between the hats assigned to
SysML (S-Teams) and to our framework (I-Teams).

4.4 Case Study Startup

Prior to give the description of the system to develop
to the students, they followed separately a 2 hours lec-
ture where SysML was presented to the S-Teams, and
our framework to the I-Teams. Both lectures were or-
ganized the same way and given by the same person.
Two screencasts were realized to explain how to in-
stall the plugins in Eclipse and how to create a hel-
loworld model. Both screencasts followed the same
template and illustrated the same concepts.

The remaining of the study was realized by the
participants outside classroom, per teams, except for
one session dedicated to general questions and an-
swers and for the final demonstration of their pro-
totypes. The study was organized in two phases,
the first one dedicated to the realization of a proto-
type from scratch, the second one to modify part of
the system, with a notable impact at the architectural
level. For each phase, the students received a sep-
arate document explaining the system requirements
only for the concerned phase, so that they had no idea
of the nature of the future evolutions. After the first
phase, we had a 15-minutes informal discussion with
all teams individually to answer their questions and
debrief about their deliverables regarding documenta-
tion quality and functional correctness.

4.5 Case Description

We specified a fictitious online library system where
customers can order books from different book stores.
Each time a book is sold, an auction is organized be-
tween all stores to determine the actual selling price.
When the auction is done, the library contacts the par-
cel delivery system to pick up the book at the store

and deliver it to the customer. For this first phase,
the library was leading the overall process. The stu-
dents were given a document with an informal de-
scription of the case study, as well as the list of the
expected functionalities and qualities for all three sub-
systems, specified in ten very detailed requirements.
Some simplifying hypotheses and methodological as-
pects regarding the iterative design method to follow
and the expected deliverables were also specified in
that document.

The first document was very precise and the re-
quired implementation was almost straightforward in
order to let them concentrate on their modeling, docu-
mentation and coding activities. For the second phase,
the participants received another document with new
requirements. They were expressed at a higher ab-
straction level, though still complete and unambigu-
ous, in order to compare the decision traceability
mechanisms of both approaches. They also received
detailed guidelines on how to write their own evalua-
tions of the language(s) they used. The new require-
ments were (i) the auction had to be taken in charge
by the book stores, (ii) the customer could withdraw
its purchase and then receives a credit note, and (iii)
the catalog had to be exposed also as a web service.

At the end of both phases, the teams delivered
a set of documented models representing the overall
system with the design rationale and the description
of the iterative process they actually followed, as re-
quired at the beginning of the study. They also had
to provide a functional prototype. At the end of the
second phase, the teams also submitted an evalua-
tion report on (i) the language expressiveness, (ii) the
documentation and traceability facilities, and (iii) the
maintainability of the models.

4.6 Evaluation Method

We will now present the results of the case study. We
used a Goal-Question-Metric approach to define our
evaluation criteria and metrics (Basili, 1992) detailed
hereafter with the Purpose/Issue/Object/Viewpoint
template (PIOV).
GOAL 1. Evaluate the feasibility of a transforma-

tional architecture design method to design a soft-
ware system

PIOV. Evaluate / the feasibility of iteratively trans-
form a / software architecture model / from the
project manager’s viewpoint

Question 1. Is it effective to implement a software
based on an architecture model created from
stepwise formal model transformations?

Metric 1. Number of top-level functionalities cor-
rectly implemented

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

138



GOAL 2. Evaluate the quality of architecture and re-
quirement models using DAD-ASR languages

PIOV. Evaluate / the functional completeness of a /
software architecture model regarding the ex-
pected model elements / from the architect’s
viewpoint

Question 2. Does the produced architecture models
contain all expected components and interfaces
to fulfill the software’s requirements?

Metric 2. Number of requirements without any re-
sponsible component/part.

Question 3. Are the newly introduced subrequire-
ments correctly documented with their ratio-
nale?

Metric 3. Number of decisions regarding subre-
quirements with a meaningful explanation of
their purposes (rationale).

GOAL 3. Evaluate the traceability of a transforma-
tional method regarding the history of the devel-
opment process (planning-evaluation)

PIOV. Evaluate / the actual implementation order
of the / architecturally significant requirements
/ from the architect’s viewpoints

Question 4. Does all development iterations have
been backlogged for evaluation and traceability
purposes?

Metric 4. Number of iterations reported with corre-
sponding implementation plans.

GOAL 4. Evaluate the feasibility of a transforma-
tional method in maintenance and evolution ac-
tivities of a software system

PIOV. Evaluate / the feasibility of iteratively trans-
form an / existing software architecture model /
from the architect’s viewpoints

Question 5. Is it effective to incorporate new func-
tionalities in a software based on an architec-
ture model modified by stepwise formal model
transformations?

Metric 5. Number of impacted functionalities cor-
rectly implemented

5 CASE STUDY RESULTS

We now detail the results we gathered from the deliv-
erables produced by all teams.

5.1 Functional Correctness and Quality
of Deliverables

At the end of the first phase, we deployed their pro-
totypes, following their readme files to test the four

top-level functional requirements. To this end, we or-
dered a book and checked if the auction started and
completed as expected, as well as if the delivery was
correctly done (happy scenario). We also analyzed
the requirements and structural models, as well as the
project management documentation they produced to
detail their development iterations. Table 1 summa-
rizes the results for all teams. Some columns have
been directly linked to the metrics identified in the
previous section. We also provide the arithmetic mean
values for each groups.

Regarding the test of the functionalities of the
happy scenario, our framework produced slightly bet-
ter results. One more I-Team provided a fully func-
tional prototype than the S-Teams. Two S-Teams’ pro-
totypes did not implement correctly any requirement,
for one I-Team. Moreover, an average of 3 require-
ments were correctly implemented by the I-Teams,
where 2.17 for the S-Teams. Even if the difference
is not significant, we can notice than, except for the
I6-Team, all other five I-Teams implemented at least 3
requirements where three S-Teams completed similar
functional results.

Concerning the number of produced requirements
and their traceability as structural elements, the re-
sults show a better result for the S-Teams, where only
0.66 requirement remained untraced against 3.33 for
I-Teams. However, the amount of sub-requirements
identified within our framework is significantly higher
with an average of 24.16 requirements against 12.5 on
the other side. Half of the S-Teams listed only the ten
requirements found in the case study document and
did not refine any of them. This was also the case
for the I3-Team that did not provide any traceability
information or even design rationale.

Similarly to the amount of produced requirements,
the amount of design rationale is significantly higher
for I-Teams than for S-Teams. To identify the deci-
sions and their rationale, we analyzed the design re-
ports given by the students, where they were asked
to justify the decisions (and alternatives) they made
to build the online library system. An average of
12.83 decisions could be found in the models and
documents produced by the S-Teams, from which 4.5
(0.35) were documented. On the other side, I-Teams
produced an average of 17.5 decisions from which
16.83 were justified (0.96). This result is not really
surprising since ASR models are meant to receive
such pieces of information. But we analyzed the con-
tent of the rationale-dedicated constructs to remove
useless justifications, i.e. empty fields or even incom-
plete or fuzzy justifications that gave no clue on the
reasons why the requirement was actually produced.

The last metric we are interested in concerns the

Software�Architecture�Design�by�Stepwise�Model�Transformations�-�A�Comparative�Case�Study

139



Table 1: Evaluation of the deliverables of phase 1.

Team Happy scenario Impl.(M1) Req. Untr.(M2) Decis. Rat.(M3) Iter.(M4)
S1 Stopped during auction 2 19 1 17 10 4
S2 No possibility to order 0 15 2 11 2 0
S3 Fully functional 4 10 0 10 1 0
S4 Fully functional 4 10 0 11 8 3
S5 Stopped after auction 3 11 1 16 4 0
S6 No possibility to order 0 10 0 12 2 3

MeanS n/a 2.17 12.50 0.66 12.83 4.50 1.66
I1 Fully functional 4 23 1 15 15 1
I2 No book delivery 3 30 1 28 28 5
I3 Fully functional 4 10 10 0 0 0
I4 Stopped after auction 3 14 2 9 8 8
I5 Fully functional 4 41 3 29 29 4
I6 Compilation failure 0 27 3 24 21 5

MeanI n/a 3 24.16 3.33 17.50 16.83 3.83

Table 2: Evaluation of the final prototypes and deliverables.

Team Feedback Auction Credit Impl.(M5) Req. Untr.(M2) Decis. Rat.(M3) Iter.(M4)
S1 Medium Fully Incomplete 5 23 2 19 12 0
S2 None Partially Complete 3 17 1 13 2 0
S3 Medium Fully Incomplete 5 15 0 13 4 0
S4 Basic Fully Complete 5 14 0 24 7 0
S5 Basic Fully None 3 15 1 18 5 0
S6 Basic Partially Complete 4 18 1 16 4 2

MeanS n/a n/a n/a 4.16 17 0.83 17.33 5.66 0.33
I1 Medium Fully Complete 6 27 3 24 24 1
I2 Basic Fully Complete 5 35 1 31 31 3
I3 Medium Fully Complete 6 17 14 3 3 1
I4 Basic Fully None 3 17 3 11 11 2
I5 Basic Fully Complete 5 56 5 51 48 3
I6 Complete Fully Complete 7 38 4 34 28 7

MeanI n/a n/a n/a 5.33 31.66 5 25.66 24.16 2.83

number of iterations needed by the participants to im-
plement the system. As already mentioned, the ini-
tial document also contained explicit methodological
guidances about the iterative process the participants
had to follow. Since all of the students had a pre-
vious experience with a SCRUM-based development
project (Schwaber and Beedle, 2001), they were al-
ready familiar with small iteration steps for software
development. However, we could not retrieve any in-
formation regarding the implementation order of the
functionalities for three S-Teams. On the other hand,
two I-Teams showed similar results (I1 recorded one
iteration and I3 that provided again not a single piece
of information). We can note that the number of it-
erations are quite similar for all teams that actually
reported on that aspect, but one more I-Team docu-
mented their development life cycle.

At the end of the second phase, we evaluated the
functional correctness of their prototypes in a differ-
ent way. Each team had a 10 minutes slot to demon-
strate the full scenario, from the book purchase to the
withdrawal at the delivery. We especially evaluated
(i) the user feedback, (ii) the new auction mechanism,

(iii) the withdrawal with credit note and (iv) the cat-
alog as a web service. Table 2 summarizes the re-
sults of this second phase2. Each new requirement
received a value corresponding to the amount of sub-
requirements that should have been produced at least.

The completeness of the user feedback was eval-
uated in order to check whether the structured way
of writing requirements had an impact on how they
specified end-user functionalities. No clear require-
ment was expressed to this end, but we were curious
to evaluate if our stringent process produced more ex-
haustive lower-order requirements. The ratings are
None=0 (no user feedback at all), Basic=1 (very few
details), Medium=2 (most of the expected details are
shown) and Complete=3 (the summary page contains
all book and customer details).

The new auction mechanism was obviously tested
as it was a major rework at architecture and imple-
mentation levels. This rework was playing the role

2Note that all teams implemented correctly the web ser-
vice, so we do not show it on Table 2. Also, note that the
M4 metrics is reused, but concerns only the iterations of the
second phase, that could have been isolated easily.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

140



of an evolution activity needed to fulfill a new non-
functional requirement that the participants had to
translate into multiple lower-order functional require-
ments. Above the evaluation of modeling and evolu-
tion facilities, this aspect was a major indicator of the
feasibility and effectiveness of our framework. The
auction process is either Partially=1 (responsibility
transfered, but still done synchronously), or Fully=2
implemented (asynchronously with a callback from
the store).

Unlike the change in the auction mechanism, the
withdrawal requirement was almost isolated from the
existing functionalities, i.e., less intrusive at the ar-
chitecture level. The objective was to check whether
adding functionalities to an existing product was
straightforward or not. The credit note values are
None=0, Incomplete=1 (some details are missing)
and Complete=2 (every customer details are present
in the note).

The overall amount of requirements implemented
successfully is very close for both groups, with an av-
erage of one more requirement correctly implemented
by the I-Teams. Qualitatively, we may note that all
six I-Teams implemented correctly the modification
of the Auction mechanism, which was more intrusive
and used as an evaluation criterion for GOAL 4, where
four S-Teams provided the same functional complete-
ness for that requirement. However, even if this result
is promising, the difference is not significant enough
to claim our framework lead to a more efficient sys-
tem design.

The same tendencies as during the first phase are
observed concerning the requirement traceability, de-
sign decisions and rationale. The amount of iden-
tified requirements increased in a comparable man-
ner in both groups, confirming a significantly more
systematic decomposition of requirements under our
framework. The proportion of documented decisions
by meaningful rationale stays at a very high level too
(0.94).

Last, the explanation regarding the iterative pro-
cess dropped significantly for the S-Teams where only
one team actually reported the design steps they fol-
lowed.

5.2 Paper-based Survey

In order to complement the above metrics, we wanted
to gather the participants’ feelings about the case
study and the modeling languages they used with a
paper-based survey. Participants had to answer in-
dividually and anonymously to encourage them to
freely express their opinions. The survey evaluated
(i) the language expressiveness, (ii) the added value

of the language (implicitly regarding UML, as it is
the most common general purpose modeling language
they learn here at the university), (iii) the evolution
capabilities and (iv) the documentation support for
model evolution. Table 3 lists the questions we asked
to the participants.

Table 3: Questionnaire.

1. The languages constructs allow to represent:
1.a. the expected functionalities of the system.
1.b. the technological and communication constraints.
1.c. the physical constraints related to the deployment.
1.d. the non-functional requirements.
2. The modeling language coupled to an agile development method

as the one used during this laboratory offers an added value :
2.a. to manage the complexity of the system-to-be.
2.b. for the traceability of the requirements in terms of functionalities

to implement.
2.c. for the correctness and completeness of the implementation (code)

of the system.
3. The structural constructs impacted by a modification of a require-

ment can be identified quickly.
4. The structural constructs impacted by a modification of a require-

ment can be identified at a glance.
5. The language offers the necessary constructs and mechanisms to

write an accurate documentation.
6. The written documentation allows to efficiently comprehend the

system within the framework of a modification of the system.
7. During the second phase:
7.a. a major work was necessary to re-understand the architectural

concepts of the system.
7.b. the modeling languages eased the structural changes linked to the

new functionalities to implement.

We used a non-graduated scale only indexed by
fully disagree (0) and fully agree (5) marks, inspired
from (Krosnick and Presser, 2010). The participants
could draw a line wherever they estimated it appro-
priate. This technique suits particularly when com-
paring different approaches because answers are ex-
pressed on a continuous interval that can be measured
with a ruler. It also lets more freedom to the respon-
dents and usually avoid them to backtrack to previous
answers because they want to order them within re-
lated questions. Besides, we dissimulated two very
close questions (Q3 and Q7b.) that concern the evo-
lution phase to evaluate more precisely the impact of
our framework on model maintenance and evolution
tasks. Figure 2 shows the average rankings given by
the respondents.

The collected answers show notably better results
with our framework regarding constructs expressive-
ness (Q1), especially for communication facilities.
The ratings for the added value and evolution capa-
bilities are very close, so we cannot say anything on
that. Model evolution seems a bit more complicated
in our approach since the impacted elements can be
identified almost as rapidly than for SysML diagrams

Software�Architecture�Design�by�Stepwise�Model�Transformations�-�A�Comparative�Case�Study

141



Figure 2: Results of the questionnaire-based survey.

(Q3), but requires more effort to be identified (Q4,
Q7).

But, for all questions except Q7a. that was for-
mulated in a dissimulated negative manner and Q4,
the IODASS ratings are upper to 2.5 which is a rather
satisfactory result.

5.3 User Remarks

In their own evaluation reports, the participants ex-
pressed interesting remarks and part of them help to
interpret more accurately the values we observed in
the survey.

All S-Teams pointed the excessive freedom of-
fered by the SysML block construct, even if this flex-
ibility is interesting in some cases. They were often
puzzled on how to concretely refine the semantics of a
block to enhance the model comprehension and when
to stop the BDD-IBD refinement process. This is par-
ticularly visible in the differences expressed in the re-
lated questions in the survey (Q1a. to Q1c.). We can
reasonably think that the participants are more com-
fortable with semantically rich modeling constructs.

The S-Teams were disappointed regarding the de-
sign decisions and rationale traceability mechanism,
partially because of a bug in some Eclipse builds used
by some students. For a part of them, their version
of Obeo Designer3, yet a commercial plugin, was
not displaying requirement satisfy tables correctly4.
However, the rationale construct was working cor-
rectly, but none of the S-Teams used it. We objec-
tively could not include in our survey specific ques-
tions to evaluate the decision tracing mechanism since
it would have been biased in favor of our framework.

Our prototype was not preserving the comments in
the models after a transformation. All I-Teams noted
that it was particularly annoying for comprehension

3http://marketplace.obeonetwork.com
4Even if the version we tested prior to the study

was working correctly, the problem was randomly present
across operating systems and Eclipse builds.

and maintenance purposes since they consider com-
ments as an important piece of information and a first-
class entity for model documentation. Also, many
I-Teams suggested to develop a visual layer for ar-
chitectural models. They reported to have had some
difficulties during the first phase with textual models
because they were not used to such a representation.
They all were experienced with graphical syntaxes,
mainly UML models. These remarks partially explain
the lower score of our framework in Q7b., and to a
wider extend, their difficulties in textual-based model
comprehension.

6 DISCUSSION

We will now summarize the observations we made
and discuss the results regarding our four goals in-
troduced at the beginning of Section 5. We will after-
wards evaluate the protocol itself.

We decided to discuss the results of the study and
survey outside a statistical framework because we did
not have a statistically significant sample since the
amount of software engineers is very large (which re-
quires then a large sample) and we were conducting
the study over students (which limits the generaliza-
tion possibilities). We then preferred to stick to ob-
jective metrics and discuss only over very large dif-
ferences.

6.1 Evaluation of the Approach

As a first goal, we wanted to evaluate the feasibil-
ity of our approach. After both phases, the func-
tional correctness (M1 and M5) was slightly higher
for the I-Teams. The changes in the Auction mecha-
nism was correctly implemented by the six I-Teams,
against four S-Teams. Two more I-Teams also im-
plemented the Credit Note with the expected level of
details. Even if the small amount of involved teams
does not allow us to claim the difference is statisti-
cally significant, we may claim our stringent design
framework does not have a negative impact on the
functional correctness and may probably have some
impact on requirement elicitation.

The second goal concerned the quality of DAD
and ASR models regarding their completeness (M2)
and traceability of design decisions. (M3). The
amount of unrelated requirements is higher in our
framework than in the produced SysML models.
These unrelated requirements were mostly the ones
that were not related to other requirements or for-
mally linked to a model transformation. However,
in an ASR model, a requirement is always assigned

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

142



to a structural element which is equivalent to the sat-
isfy relation in SysML. Since this feature is manda-
tory in ASR models, we looked for other types of for-
mal relations, where the SysML satisfy relationship
was considered as an explicit link and counted accord-
ingly. Strictly speaking, an ASR is always related to a
structural element, but we wanted to evaluate more
complex relationships. which explains these rather
high values of unrelated requirements (0.07) for the
first and 0.15 for the second phase).

About the traceability of design decisions (M3),
the results are significantly higher. In average, 0.96
and 0.94 design decisions were documented, where
the S-Teams documented an average of 0.35 and 0.32
of their decisions. Moreover, the extraction of the de-
cisions and their rationale was a very tough analyz-
ing task to recover them, usually from free text jus-
tifications. The number of recorded decisions is also
a bit higher for the I-Teams which probably indicates
a more structured way of thinking under our frame-
work.

Last, we wanted to evaluate the reporting of the
history of the design process with the number of iter-
ations necessary to draw the architecture model (M4).
Even if we explicitly asked for such details, the num-
ber of S-Teams that provided their development plan
dropped at only one team for the second phase. We
could not find any explicit or implicit explanations in
the final reports from the S-Teams and we can reason-
ably think they did not implement the whole second
phase at once, such that part of the design history is
lost.

6.2 Threats to Validity

We now discuss relevant threats to validity (Cook and
Campbell, 1979; Wohlin et al., 2012).

Internal Validity

First, the selection of the participants was not per-
formed randomly. We used a control group with
a comparable, well recognized, modeling language.
However, the aforementioned bug in the Obeo plugin
may have played a role in the motivation of the S-
Teams which has lead to a lower documentation rate.

We especially took care of acting fairly between
teams, without favoring one or the other. Some stu-
dents may have been too gentle, or harsh regarding
our method. The impact of this good-looking effect is
hardly identifiable and must be kept in mind aside our
conclusions.

The extraction of design decisions and their ratio-
nale from textual reports could have lead to lower val-
ues. Some of the decisions were explicitly stated, but

not all of them. We carefully analyzed multiple times
these reports, but we cannot ensure all decisions were
actually counted. However, with the many report re-
readings, it is fairly unconceivable we missed so many
decisions or rationale that the difference would have
been insignificant. Furthermore, we were particularly
careful regarding that aspect in the conclusions we
drew.

Construct and External Validity

Focusing on students represents a significant threat
to external validity. They all were students from the
university, but with different backgrounds and expe-
riences. They were almost equally coming from the
first and the second year of the Master’s degree. Dur-
ing the preliminary phase, we particularly paid atten-
tion to build comparable groups regarding their for-
mer experiences and modeling skills.

The size of the case study is another threats, even
if the case sounds realistic, and the final prototype was
evaluated by all authors in a client demo-like setup.
However, since it involved various technologies, anal-
ysis and programming skills, we may reasonably con-
sider a valid extrapolation of our results to junior an-
alysts.

Conclusion Validity

Because the amount of participants is rather small, we
intentionally did not use a statistical test, but focused
on metrics where the differences in the results were
very high. Our main goal was to evaluate the feasibil-
ity of the approach, i.e. pieces of software produced
with models written within our framework were as
functional as the ones produced within a compara-
ble iterative method with a recognized modeling lan-
guage.

The other aspect we wanted to evaluate was the
frequency of documented design decisions and the
SysML modeling language offers enough constructs
to record this kind of details, even if the analysis was
mainly a manual extraction from their reports.

7 CONCLUSIONS

The present work detailed a comparative case study
that evaluated the feasibility of a transformation-
centric architecture design method. The study was
conducted on a group of students from the University
of Namur as part of a Software Engineering course.
The participants were separated in two groups and
composed pair-teams to develop a library system in

Software�Architecture�Design�by�Stepwise�Model�Transformations�-�A�Comparative�Case�Study

143



two phases. Half of the teams used SysML models,
the other half used a set of languages we defined in
previous publications. Both teams were required to
follow an Agile method and to document the design
rationale and decisions during the project. We tested
their prototypes after each phase and evaluated the
quality of the produced models. We also conducted a
paper-based survey in order to collect their feedbacks
in a structured way.

At the sight of this study, it appears that our
transformation-centric approach produces software
with a slightly higher rate of functional correctness
and completeness (one more group delivered a fully-
functional prototype). Also, the amount of justi-
fied design decisions was significantly higher (0.94
against 0.32 documented design decisions for the sec-
ond phase). Some participants even took the oppor-
tunity to add more details than the only mandatory
information. However, the study was rather small, so
the scalability of our approach should be definitely
evaluated on a bigger project5.

A critical feature requested by the participants
concerned a graphical editor, combined to the tex-
tual syntax, in order to enhance model visualization.
Combined textual and graphical representations of the
same model, but focusing on different aspects, may
be a very effective tool support and should be investi-
gated.

ACKNOWLEDGEMENTS

The authors thank Nicolas Genon, Quentin Boucher
(PReCISE), and Xavier Le Pallec (LIFL, France) for
their help and advices. The authors are also grateful
to the Master students of the University of Namur for
their kind participation in this case study.

REFERENCES

Basili, V. R. (1992). Software modeling and measurement:
The goal/question/metric paradigm. Technical report,
University of Maryland at College Park, College Park,
MD, USA.

Bosch, J. and Molin, P. (1999). Software architecture
design: Evaluation and transformation. IEEE Int.
Conf. on the Engineering of Computer-Based Systems,
pages 4–10.

Chen, L., Ali Babar, M., and Nuseibeh, B. (2013). Charac-
terizing architecturally significant requirements. Soft-
ware, IEEE, 30(2):38–45.

5The detailed protocol and analysis may be found on
http://info.unamur.be/�fgi

Cook, T. D. and Campbell, D. T. (1979). Quasi-
Experimentation: Design & Analysis Issues for Field
Settings. Houghton Mifflin Company.

Dybå, T. and Dingsøyr, T. (2008). Empirical studies of agile
software development: A systematic review. Informa-
tion and Software Technology, 50(910):833 – 859.

Ehrig, K., Guerra, E., Lara, J. D., Lengyel, L., Prange,
U., Taentzer, G., Varro, D., and Varro-Gyapay, S.
(2005). Model transformation by graph transforma-
tion: A comparative study. In Proc. of Model Trans-
formation in Practice Workshop, MoDELS ’05, pages
71–80.

Garlan, D., Monroe, R. T., and Wile, D. (1997). Acme:
An architecture description interchange language. In
Conference of the Centre for Advanced Studies on
Collaborative research (CASCON 97), pages 169–
183, Toronto, Ontario.

Gilson, F. and Englebert, V. (2011a). Rationale, decisions
and alternatives traceability for architecture design. In
Proc. of the 5th European Conf. on Software Architec-
ture (Comp. Vol.). ACM.

Gilson, F. and Englebert, V. (2011b). Towards handling
architecture design, variability and evolution with
model transformations. In Proc. of the 5th Work-
shop on Variability Modeling of Software-Intensive
Systems, pages 39–48. ACM.

Gilson, F. and Englebert, V. (2014). A domain specific lan-
guage for stepwise design of software architectures.
In Proc. of the 2nd Int’l Conf. on Model-Driven En-
gineering and Software Development, pages 67–78.
SciTePress.

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran,
A., and America, P. (2007). A general model of soft-
ware architecture design derived from five industrial
approaches. J. Sys. Softw., 80(1):106–126.

ISO/IEC/IEEE (2011). Systems and software engi-
neering – architecture description. ISO/IEC/IEEE
42010:2011(E) (Revision of ISO/IEC 42010:2007 and
IEEE Std 1471-2000).

Jansen, A. and Bosch, J. (2005). Software architecture as
a set of architectural design decisions. In Proc. of
the 5th Working Conf. on Software Architecture, pages
109–120, Washington, DC, USA. IEEE Computer So-
ciety.

Jones, S. (1983). Stereotypy in pictograms of abstract con-
cepts. Ergonomics, 26(6):605–611.

Jouault, F. and Kurtev, I. (2005). Transforming models
with ATL. In Model Transformations in Practice
(MTIP) Workshop at ACM/IEEE 8th Int’l Conference
on Model Driven Engineering Languages and Sys-
tems.

Krosnick, J. A. and Presser, S. (2010). Question and ques-
tionnaire design. In Marsdenand, P. V. and Wright,
J. D., editors, Handbook of Survey Research, Second
Edition, pages 263–313. Emerald Group Publishing
Limited.

Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., and
Tang, A. (2013). What industry needs from architec-
tural languages: A survey. IEEE Trans. Softw. Eng.,
39(6):869–891.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

144



Object Management Group (2012). OMG Systems Model-
ing Language (OMG SysMLTM), version 1.3. OMG
document formal/2012-06-01.

Parnas, D. L. and Clements, P. C. (1986). A rational de-
sign process: How and why to fake it. IEEE Trans.
Software Eng., 12:251–257.

Perry, D. E. and Wolf, A. L. (1992). Foundations for the
study of software architecture. SIGSOFT Software En-
gineering Notes, 17(4):40–52.

Pfleeger, S. L. (1995). Experimental design and analysis in
software engineering. Ann. Softw. Eng., 1:219–253.

Potts, C. and Bruns, G. (1988). Recording the reasons for
design decisions. In Proc. of the 10th Int. Conf. on
Software Engineering, pages 418 –427.

Runeson, P. and Höst, M. (2009). Guidelines for conduct-
ing and reporting case study research in software en-
gineering. Empir. Softw. Eng., 14(2):131–164.

Schwaber, K. and Beedle, M. (2001). Agile Software Devel-
opment with Scrum. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition.

Society of Automotive Engineers (2012). Architecture
Analysis & Design Language (AADL). Standard
number AS5506 Revision: B.

Tang, A., Ali Babar, M., Gorton, I., and Han, J. (2006). A
survey of architecture design rationale. J. Syst. Softw.,
79(12):1792 – 1804.

van Heesch, U., Avgeriou, P., and Hilliard, R. (2012). A
documentation framework for architecture decisions.
J. Syst. Softw., 85(4):795 – 820.

van Heesch, U., Avgeriou, P., and Tang, A. (2013). Does de-
cision documentation help junior designers rationalize
their decisions? a comparative multiple-case study. J.
Syst. Softw., 86(6):1545 – 1565.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2012). Experimentation in
Software Engineering. Springer-Verlag.

Software�Architecture�Design�by�Stepwise�Model�Transformations�-�A�Comparative�Case�Study

145


