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Conventional person detection algorithms lack of robustness, especially when the person is partially occluded.

We propose thereby a robust head-shoulder detector in 2-D images using deformable part-based models. This
detector can be used in a variety of applications such as people counting and person dwell time measurements.
In experiments, we compare the head-shoulder detector with the full body detector quantitatively and analyze
the robustness of the detector in realistic scenarios. In the results, we show that the model learned with our
method outperforms other methods proposed in related work on an ambient assisted living application.

1 INTRODUCTION

Person detection finds application in a variety of fields
such as public security, automotive as well as in the
business sector. It furthermore plays a crucial role in
the upcoming application field of Ambient Assisted
Living (AAL). The notion of AAL is to assist elderly
people during their daily life with the help of innova-
tive technology.

In our study, we have designed an AAL system
that applies optical sensors. One essential part of this
system is a machine learning-based person detection
algorithm. This paper focuses on the detection of per-
sons within a complex living environment. In this
context, a number of challenges have to be addressed.

Firstly, a person detection algorithm is required to
cope with varying illumination conditions and large
distances between persons and sensors. Secondly, in
contrast to many other studies, a wide-angle camera is
mounted on the ceiling of a room, so that a large area
of the scene can be covered. As a result, the person’s
lower part is occluded by the torso, especially when
the person is standing very close to the camera. In
typical AAL scenarios, such as sitting at a table, the
legs are also not visible either. However, the person
models used in state-of-the-art algorithms are trained
with samples of the full body from frontal view. Con-
sequently, these models show inadequate results and
are therefore not suitable for the presented applica-
tion.

For this reason a head-shoulder model for that spe-
cial camera set-up has been trained in the presented
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study. As there are no appropriate public datasets
available, we recorded a variety of sequences under
different lighting and distance conditions. The per-
formance of the head-shoulder model was analyzed
using samples of our own dataset and samples from
a public dataset. We have chosen two state-of-the-
art algorithms that proved to work effectively with
full body models in front-view scenarios and modi-
fied them by adapting the head-shoulder model.

2 RELATED WORK

In recent years the number of people detection al-
gorithms has been steadily increasing. In the past,
pedestrian detection was pursued by many researchers
in the context of Driver Assistance Systems. Dollar et
al. presented an overview about state-of-the-art algo-
rithms for pedestrian detection (Dollar et al., 2012).
They especially focussed on sliding window tech-
niques, which give promising results for low and
medium resolution images in which segmentation and
key point based approaches proved to be unsuitable.
One of the first sliding window approaches applied
a support vector machine that was trained with Haar
Wavelets (Papageorgiou and Poggio, 2000). Building
upon this concept the approach of Viola and Jones in-
troduced integral images for fast feature calculation
(Viola and Jones, 2001). They used AdaBoost as
training method and a cascade structure for an effi-
cient detection with a reduced number of false posi-
tives. This method serves as a basis for several mod-
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ern detectors.

The development of advanced, highly-descriptive
feature types was essential with regard to the accu-
racy of detection algorithms. Especially gradient-
based features like Scale-Invariant Feature Transform
(SIFT) (Lowe, 2004) and Histogram of Oriented Gra-
dients (HOG) (Dalal and Triggs, 2005) played an im-
portant role in this context. Nowadays HOG features
are the most frequently used descriptors for person
detection. A considerable amount of studies, such as
(Zhu et al., 2006) and (Shashua et al., 2004), focused
on enhancing the detection results. Other studies in-
vestigated features that are based on shape (Gavrila,
2007), (Sabzmeydani and Mori, 2007) and motion in-
formation (Viola et al., 2003),(Wojek et al., 2009).

Further developments combined several different
features in order to get more powerful descriptors.
Since HOG is rated as one of the most effective sin-
gle feature, several studies investigated combinations
with HOG and other features. Wojek and Schiele
combined HOG, Haar-like features and shape features
(Wojek and Schiele, 2008). This approach was later
extended by color self similarity and motion informa-
tion (Walk et al., 2010).

Dollar et al. proposed another method (Dollar
et al., 2009a), which takes up the idea of Viola and
Jones (Viola and Jones, 2001). They modified the
original approach by searching for Haar-like features
in different channels, such as the LUV color chan-
nel as well as gray-scale, gradient magnitude and ori-
entation images. In one of their following works,
they extended this approach to a multi-scale detec-
tion (Dollar et al., 2010). In this way processing time
was reduced because features can be computed from
a nearby scale. Another promising approach are part-
based models. In contrast to the previously described
approaches, the part-based models are constructed in
such a way that not only the person as a whole model
is considered, but different parts of the person are de-
scribed and used for classification. By constructing
these part models, variances caused by rotation and
occlusion can be reduced. One of the algorithms pro-
viding the best results so far is the deformable part-
based models approach (DPM). It is a discrimina-
tive part-based approach, whereby unknown part po-
sitions are described as latent variables (Felzenszwalb
et al., 2008), (Felzenszwalb et al., 2010). As they uti-
lized a SVM for classification, this classifier is called
Latent SVM. This approach was later extended by
Park et al. to a multi-resolution model (Park et al.,
2010). Another approach that dealt with partial oc-
clusion was based on an Edgelet detector, which is a
kind of shape detector combined with AdaBoost (Wu
and Nevatia, 2005).

Beside algorithms processing single, monocular
images, there is furthermore a variety of 3-D based
approaches. Kirchner et al. segment a person’s point
cloud into horizontal slices (Kirchner et al., 2012).
The span of each slice is accumulated in a feature
vector that is used for training a SVM. Richter et al.
localize persons in 3-D world coordinates by firstly
generating foreground hypotheses on the world z-map
and then projecting 3-D points onto a virtual overhead
view (Richter et al., 2014). In this study, the authors
make the assumption that foreground objects of a cer-
tain size are most probable persons. However, it could
be sensible to validate the detected persons by means
of a 2-D based person detection algorithm.

The latest 2-D person detection algorithms utilize
models that are composed of the full body. Since
the camera is monitoring the scene at a certain an-
gle with respect to the ceiling in many AAL appli-
cations (side and top view if the person is standing
near the camera), the full body model is not suitable.
In general, head-shoulder detection is more reliable
than the full-body detection even in highly occluded
cases (Tu et al., 2013). Therefore a new, more effi-
cient model has to be trained. As the shoulder part
is always visible in this camera set-up, it is rational
to train a model with samples showing the person’s
shoulder part. There already exist several approaches
for head-shoulder detection. Li et al. proposed a
method which detects the head-shoulder part by com-
bining a Viola-Jones type classifier and a local HOG
feature-based AdaBoost classifier (Li et al., 2009).
They furthermore showed how to track head-shoulder
parts by a particle filter approach. An attention-based
foreground segmentation was combined with a multi-
view cascade to detect head-shoulder parts for video
surveillance (Tu et al., 2013). Wang et al. introduced
a new edge feature called En-Contour (Wang et al.,
2013). However, these mentioned methods have not
been studied and tested in AAL scenarios.

At present there is no public head-shoulder
database available that can be used for training.
Commonly-known datasets such as INRIA (Dalal and
Triggs, 2005), PASCAL (Everingham et al., 2010),
Caltech (Dollar et al., 2009b), ETH (Ess et al., 2007)
and Daimler (Enzweiler and Gavrila, 2009) only pro-
vide sequences where the camera is installed at ap-
proximately the same height as the recorded persons.
Therefore the whole body is always visible and the
optical axis is almost perpendicular to the person’s
main axis. For this reason we recorded an own dataset
for both training and testing purposes.
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3 METHODS

Deformable part-based models (Felzenszwalb et al.,
2010) can overcome major challenges arising in ob-
ject detection. Effects such as deformation, occlusion
and viewpoint changes can be managed to a certain
extent. However, in many cases in AAL scenarios
the described effects reach such a degree that persons
cannot be detected any more when applying the com-
monly used full body models. Examples of such sce-
narios are illustrated in Fig. 1.
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Figure 1: Person detection when using the full body model:
Persons standing very close or almost below the camera,
occluded by objects such as a table, or with the back turned
to the camera cannot be reliably detected. There often occur
false positives or false negatives in such cases.

Nevertheless it can be observed that in all those
images the head-shoulder part is always visible. For
this reason, we propose to use this very part to build a
new model for the DPM classifier. By using this La-
tent SVM based approach, a dynamical assignment
of part models to overall models is possible. Since
we propose to use the DPM approach with consider-
ing detection of the head-shoulder of a person, this
method is explained in this section.

The model is characterized by a lower-resolution
root filter, several spatially flexible, higher-resolution
part filters and a spatial model for the locations of ev-
ery part with respect to the root. The generated model
is shown in Fig. 2.

Figure 2: Illustration of a head-shoulder model. The left
image shows the lower-resolution root filter, the image in
the middle demonstrates higher-resolution part filters and
the right image the spatial model.

When a person shall be localized, a feature pyra-
mid is created in the first step by down-scaling the
image. After the calculation of HOG features at every
scale, the filters are applied in order to get the filter re-
sponse for every single part model. The part models
are then combined at one scale and the results of ev-
ery scale are finally fused in order to compute a final
score for the root locations. Fig. 3 shows the result
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of the example image (see second image in Fig. 1),
where the locations of the found parts and the root are
marked by blue and red rectangles respectively.

Figure 3: Exemplary detection of the DPM algorithm using
the proposed head-shoulder model. When using the head-
shoulder model, the person sitting at the table can be de-
tected.

4 DATA PROCESSING CHAIN

In order to get a powerful person model, several steps
starting from data acquisition to model evaluation
were performed.

4.1 Data Acquisition

For training purposes, a CCD Camera (Allied
GC1350) with 1.3 MP and a wide lens were used to
cover the whole room. In some scenarios, the camera
is mounted at the ceiling with a tilt angle of about 20°
and a height of 2 m from the floor. In other scenarios,
the camera is held at a certain height in front of the
persons. Generally it is important to build a model
in such a way that it shows good performance under
different conditions. Therefore the exposure time as
well as the gain of the camera were set to different
values in order to obtain images recorded under vary-
ing lighting conditions.

Altogether, 11920 images (9013 positive and 2907
negative) were collected whereas 13 male and female
persons of different age groups participated in the
recordings. All persons wore different clothing to get
variations in our dataset. In the scenarios, the actors
were sitting, standing and lying.

The negative images were randomly collected
from the Internet. In these images no persons are
present.
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4.2 Data Annotation and Database

For data annotation, files in PASCAL style (Evering-
ham et al., 2010) were generated from our data col-
lection. In order to annotate an object in an image,
we specified bounding boxes and labelling conditions
such as segmented, truncated, occluded, or difficult.
Multiple objects from multiple classes may be present
in the same image. However, in our dataset, only one
object was allowed in the same image.

Therefore, positive images each contain exactly
one single person. Every person’s head-shoulder part
was specified by manually fitting a bounding box to
this region in the image. As this process was very
time consuming, a labelling tool was developed to in-
crease the annotation speed. It enabled the drawing of
the bounding rectangles in the images intuitively.

The annotated data was split into training and test-
ing data sets. For a sensible evaluation, these two
datasets were independent from each other.

4.3 Training

A few models were trained to detect both full body
and head-shoulder using the DPM and ACF detector.
Both training and testing were performed in Mat-
lab code. The Matlab Toolbox "Piotr’s Image and
Video Matlab Toolbox™ (Dollar, 2013) and an ob-
ject detection system using deformable part mod-
els (DPMs) and latent SVM (voc-releaseb) (Girshick
etal., 2012) (Felzenszwalb et al., 2010) are utilized.

5 EXPERIMENTAL SETUP AND
RESULTS

For evaluation, a number of experiments were per-
formed. Firstly, two algorithms were compared while
considering the head-shoulder and the full body mod-
els. Secondly, we analyzed the performance of the
head-shoulder detector in our approach by tuning sev-
eral parameters. Finally, the performance of the pro-
posed detector was evaluated by a public dataset. Ta-
ble 1 gives an overview about the experiments.

Precision-recall curves were used to compare the
two considered algorithms. False positive rate (FPR)
as well as true positive rate (TPR) were determined
at different threshold values. If the overlap ratio be-
tween the detected and the labelled rectangle was
higher than a certain value the sample is counted as
true positive else it is a false positive.

Table 1: Experimental overview.

Experiments Content
Experiment 1 DPM vs. ACF detector
full body

(our dataset)

DPM vs. ACF detector
head-shoulder
(our dataset)

Experiment 2

Experiment 3 | head-shoulder vs. full body (DPM)
human pose (sitting, standing)
partial occlusion

(our dataset)

Experiment 4 head-shoulder (DPM)
distance (near, mid, far)
lighting (bright, dark)

(our dataset)

Experiment 5 head-shoulder (DPM)
number of images used for training

(our dataset)

Experiment 6 head-shoulder (DPM)

(public dataset)
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Figure 4: The performance of the full body DPM model
(trained using the Pascal dataset, cascade PCA 5, the over-
lap area > 10%).

0

51 Experiment1

In the first experiment, we compared the full body
DPM and ACF detector deploying a set of test data
shown in Table 3.

However, these two detectors have been trained:
The DPM was trained with the Pascal person dataset
while ACF detector was trained with the Inria dataset.
The performances of the full body DPM and ACF de-
tector on the testing data are shown in Fig. 4 and Fig.
5 respectively.
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Figure 5: The performance of the full body ACF detector
(trained using the Inria dataset, the overlap area > 10%).
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5.2 Experiment 2

In this experiment, we trained the models for detect-
ing the head-shoulder part using our own dataset de-
signed in Sect 4. The purpose is to analyze the per-
formance of two different algorithms using the same
training and testing data for the head-shoulder. De-
ploying the testing data shown in Table 3, the perfor-
mances of the models are shown in Fig. 6 and Fig.
7.

Deploying the ACF detector, different parame-
ters’ values are assigned to train several ACF detector
models.

5.3 Experiment 3

In this experiment, the full body model was compared
against the head-shoulder model. Both have been
trained with the DPM approach. The test data used
in this experiment consists of 1601 images with three
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Figure 6: The performance of head-shoulder DPM model
(trained using around 9000 positive images, cascade PCA
5, the overlap area > 50%).
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different persons wearing different clothing. They
performed actions of sitting (on a chair, armchair and
bed), standing or walking. In this scenario, the per-
sons were often partially occluded and not always
fully visible. The TPR and FPR results are shown
in Table 2.

Table 2: Comparison of the full body and the head-shoulder
model.

Model TPR | FPR
Full body 48% | 1%
Head-shoulder | 93% | 2%

5.4 Experiment 4

For this experimental setup, we considered two pa-
rameters: distance and lighting conditions. There are
three distance values (near, mid and far), which de-
scribe the distance between a person and the camera.
The lighting can be either dark or bright, see Fig. 8.

Table 3: Number of images for the different configurations.

Lighting, Distance | Number of Images
Dark-near 309
Dark-mid 306

Dark-far 338
Bright-near 301
Bright-mid 360
Bright-far 305

Consequently, this results in six different param-
eter configurations, see Table 3. The number of im-
ages used in every configuration is almost equally dis-
tributed.

In Fig. 6, the precision and recall curves illustrate
the performance results including average precision
(AP).
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Figure 7: The performance of head-shoulder ACF detector
(trained using around 9000 positive images, the overlap area
> 50%).
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S

Figure 8: The left and right images are the samples in the
test group of dark-mid and bright-near respectively.

5.5 Experiment5

In this experiment, 9000 positive images were
used. Furthermore, another DPM head-shoulder was
trained using 1000 positive images for the purpose
of comparing the effect of using different number of
training data. Fig. fig:exp2-1 and Fig. 9 presents the
performance of these models respectively on the test
data shown in Table 3.
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Figure 9: The performance of head-shoulder DPM model
(trained using around 1000 positive images, cascade PCA
5, the overlap area > 50%).

5.6 Experiment6

In the last experiment, we evaluated the performance
of head-shoulder DPM model on a public dataset. In
that way, we tested whether our trained models are
still effective in other AAL scenarios as well. There-
fore, the test data set from GER’HOME laboratory
(Zouba et al., 2007) was employed. The result is
shown in Table 4.

Table 4: Test on public data set.

Images Model TPR | FPR
GER’HOME Full body 76% | 12%
GER’HOME | Head-shoulder | 93% | 2 %

6 DISCUSSION

6.1 DPM vs. ACF Detector

In the first and second experiments (see the compari-
sion of Fig. 4, 5 as well as see Fig. 6, 7), the results
show that the DPM models are better than ACF de-
tector for both full body and head-shoulder models.

With regard to the experiments comparing the re-
sults of dark far views with bright far views in Fig. 5
and Fig. 7, one can say that the ACF detector fails
to detect a person in bright images. It might be due to
the different training dataset that was used to train that
model. In the ACF detector approach, the distance
factor does not play any role for the performance of
the model.

6.2 Head-shoulder vs. Full Body

The results in Table 2 show that the TPR of the head-
shoulder model is two times higher than the TPR of
the full body model.. When.an appropriate thresh-
old is applied to the detection scores, the DPM head-
shoulder works maore robustly than the DPM full body
model.

The head-shoulder model gives very good results
in the following scenarios: parts of the person are oc-
cluded while the person is sitting, the person is stand-
ing behind other objects and the person is standing
very close to the camera. In these cases, the full
body model shows poor performance. Furthermore,
the full body model often fails to detect the person
while standing up, sitting down and bending to pick
up an object from on the floor.

Moreover, the head-shoulder model is tested on
public datasets and it is proven that the head-shoulder
detection has higher detection rates than the full body
model (see Table 2 and 4). By means of these experi-
ments it could be demonstrated that the head-shoulder
model is more efficient in AAL scenarios than the full
body model.

6.3 Distance

In Sect. 5.4, the distance factor in the model perfor-
mance was evaluated. Distance refers to the persons’
positions with respect to the camera. One purpose of
the study is to design a person detection model which
is independent from the distance.

In Fig. 6 and Fig. 9, the results show that the
distance factor has no influence on the head-shoulder
model. For instance, even if the person is near, the
head-shoulder is still visible and the head-shoulder
silhouette is not affected by the perspective distortion.
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However, the distance factor has effects on the
full body detection. In our observation, the full body
model has good precision and higher recall when the
person is far, which means that the person’s full body
is in the view. When the person is near, the full body
model has a very low recall due to top view, huge per-
spective distortion and occlusion of the lower body.

6.4 Lighting

In Fig. 6 and Fig. 9, the precision-recall curve shows
that the DPM head-shoulder model performs better
under brighter light conditions. In Fig. 4, the recall
value reaches 0:8 when the images have a high con-
trast and the person is far from the camera. However,
this value reaches can only 6:2 in the low contrast im-
ages. To sum up, we can say that generally, good il-
lumination condition yields a better result without de-
pending on the distance of the person to the camera.

Nonetheless, we believe that the performance rel-
atively depends on the training dataset. If we would
have trained a model using more number of low-
contrast images, the result might be reversal.

6.5 Number of Training Samples

Two head-shoulder models are trained using a differ-
ent number of positives. In Sect. 5.5, one part of the
experiment is to compare these models. The model
with a lower number of positive images (see Fig. 9)
has higher precision rates but less recall compared to
the model trained with more number of positive im-
ages (see Fig. 6). Thus, training a model with more
positive images generalizes the parameters. There-
fore, more false detection alarms occur when lower-
ing the precision rates (see Fig. 9).

7 CONCLUSIONS

Person detection plays an important role in many ap-
plications. For AAL applications, we analyzed the
performance of state-of-the art person detection algo-
rithms using full body models. It was proven that they
lack robustness especially when parts of the person
are occluded, e. g. because the person is standing very
close to a tilted camera mounted at the ceiling or if the
person is turned with the back to the camera while sit-
ting. We therefore introduced a head-shoulder model,
because this part is visible in most cases.

For training and testing purposes, we collected our
own data set and annotated it. The performance was
analyzed for the DPM and the ACF detector. Further-
more, we compared the efficiency of the head shoul-
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der model and the full body model. The results show
that the head-shoulder model is more robust than the
full body model in AAL scenarios. Another find-
ing was that the DPM outperforms the ACF detector.
We proved on a public dataset that the head-shoulder
DPM model is very efficient as well. In addition to
that, the detector was successfully tested under differ-
ent distance and lighting conditions.

In future, the DPM head-shoulder model has to be
enhanced with further training samples showing other
view points of persons, e.g. lying in the bed. Natu-
rally, this approach could also find usage in a wide
range of other application fields, like security, con-
sumer market or public facilities.
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