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Abstract: The paper proposes the concept of building the so-called medial width function - integral shape descriptor of 
figures used in image recognition tasks. Medial width function is determined based on the skeleton of the 
shape and the radial function. An algorithm to compute the medial width function for polygonal figures based 
on the line segment Voronoi diagram is also presented here. Generalized solution to the circular figures 
obtained by rounding corners in a polygonal figure is presented. Computational experiment demonstrates the 
efficiency and effectiveness of the approach to the problem of palm shapes comparing for personal 
identification. 

1 INTRODUCTION 

Features generation for classification of objects of 
variable shape, such as a human figure or an animal 
is to build shape descriptors which remain invariant 
during object deformation.  

A useful tool for object shape classification is a 
skeleton or medial axis of the figure. Skeleton of 
figure is defined as the set of points-centers of the 
circles inscribed in the figure. Skeleton looks like flat 
geometric graph and analysis of this graph gives the 
ability to generate multiple topological and metric 
features of the object's shape. 

Another source for shape features generating is 
the width of the object with respect to medial axis. 
Width of the object is described by the radial 
function, which establishes a correspondence 
between the points of the skeleton and the radii of the 
inscribed circles with centers at these points. Medial 
axis and radial function together form a medial 
representation of figures (Siddiqi, 2008). 

Radial function gives a local description of the 
width of the figures at the points of the skeleton. This 
width is tied to the skeleton and allows us to compare 
objects that have isomorphic skeletons. To use these 
widths for the classification of objects having 
different skeletal structure, we need to construct an 
integral descriptor of the object width. As an example 
of such descriptor pattern spectrum (Maragos, 1989) 
with the disk structuring element can be used. 
Calculation of the pattern spectrum is based on the 

operations of mathematical morphology that are 
associated with the transformation of discrete raster 
images. The limitation of these methods is the high 
computational complexity. For example, in the 
problem of biometric identification by hand geometry 
pattern spectrum shows good results (Ramirez-cortes, 
2008). But because of the slow work allows you to 
work only with images of small size with low 
resolution. The time consumed to compute the pattern 
spectrum precludes its use in processing of video 
sequences and the analysis of complex high-
resolution images.  

We propose an alternative approach that can 
significantly reduce the time required for the 
calculation of the integral shape descriptors based on 
the width of objects. A new descriptor, called the 
medial width, the calculation of which is performed 
by means of efficient algorithms of computational 
geometry is proposed. The approach is based on the 
following principles. 

1. Introduce the concept of the medial width 
of figure at a point on the basis of the medial 
representation. 

2. In the figure, define the region of given 
width as the set of points at which the 
medial width does not exceed a 
predetermined value. 

3. Define the medial width function of figure 
describing the area ofthe region of given 
width as a function of the width parameter. 
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The paper proposes a method for direct calculation of 
the medial width function of polygonal figure 
(polygon with polygonal holes). The method is based 
on Voronoi diagram of line segments formed by the 
boundary of a polygonal figure. On the one hand, 
efficient algorithms for constructing such Voronoi 
diagrams are known (Held, 2011, Karavelas, 2004 , 
Mestetskiy, 2013). On the other hand, figures that 
have non-linear boundary, as well as figures from the 
bitmaps can be easily approximated by polygonal 
figures. 

For a more adequate approximation of such 
shapes, we introduced the circular figures. Circular 
figure is obtained by the process of skeleton pruning, 
leading to "rounding" corners of the polygonal figure 
by circular arcs. The proposed method of direct 
calculation of the medial width function for polygonal 
figures allows us to calculate the same ones for 
circular figures as well. 

Implementation and experimental evaluation of 
the proposed approach is made with respect to the 
problem of personal identification through the hand 
geometry. We compute the medial width function for 
circular figures approximating the shape of palm in 
bitmap. Later we construct a measure of difference of 
palm shapes based on the comparison of these 
functions.   

2 MEDIAL REPRESENTATION 
AND MEDIAL WIDTH OF 
FIGURES  

We consider medial representation of bound closed 
regions in Euclidean plane and name them figures. 
The skeleton of figure is a locus of centers of 
maximum empty circles in this region. The circle is 
considered to be empty if all its internal points are 
internal points of the region and the maximum empty 
circle which is not contained in any other empty circle 
is called inscribed circle. Radial function is defined 
in a point of skeleton and is equal to the radius of 
inscribed circle centered at this point. 

Definition 1.  A spoke is a line segment from the 
skeleton point to any nearest boundary point. 

Spokes have important properties (Mestetskiy, 
2014):  
1) Each point in figure belongs to at least one 

spoke, hence spokes cover the entire figure. 
2) If the point of figure does not belong to the 

skeleton, then it is incident on one spoke only. 

Definition 2. Medial width of figure in an internal 
point is equal to the length of its incidence spoke.    

All spokes of a point of skeleton have the same 
length.  Therefore medial width for points of skeleton 
is equal to the radial function. The incidence spoke of 
the non-skeletal internal point is unique. Hence 
medial width in this point is well defined too.  

Boundary points of the figure may have several 
incident spokes of different length.  But the total area 
of the boundary is 0. Consequently, these points do 
not contribute to the area calculation of the region of 
given width. Therefore, medial width at the boundary 
points can be set arbitrarily, for example, put it equal 
to zero.  

We will use the following notation: ܴଶ – Euclidean plane, ܩ – figure, bound closed region	ܩ ⊂ ܴଶ, ߲ܩ  – boundary of figure ܩ   ,ܩᇱ – internal open region of figure ܩ, ᇱܩ		 = ܩ ∖ ܲ inscribed circle centered in the point – (ܲ)ܥ ,ܩ߲ ∈  .ܩ skeleton of figure – ܵ ,ܩ

We denote ߬(݃), ݃ ∈  medial width of the – ′ܩ
figure at the points ݃, ܩ௭ᇱ = ሼ݃ ∈ ,ᇱܩ ߬(݃) ≤  ሽ – theݖ
region of given width ݖ ≥ 0. 

Definition 3. Medial width function ℱ(ݖ) of figure ܩ 
is an area of given width ݖ ≥ 0   ℱ(ݖ) =  .(௭′ܩ)ߤ
3 POLYGONAL AND CIRCULAR 

FIGURES AND THEIR MEDIAL 
WIDTH 

Polygonal figure is closed bounded region with 
boundary consisting of polygons. Polygonal figures 
can be used as convenient continuous models for 
approximating binary bitmap objects. 

The boundary of the polygonal figure can be 
represented as the set of point-sites (vertices of a 
figure) and segment-sites (sides of boundary 
polygons). Voronoi diagram (VD) of line segments is 
defined for these set of sites. The part of this VD, 
lying inside the figure is termed as VD of polygonal 
figure, which is a geometric graph whose edges are of 
straight line segments and quadratic parabola 
segments.  

Let ܩ is a polygonal figure, ܸ(ܩ)ݎ = 〈ܸ,  is 〈ܧ
VD of  figure ܩ. Here ܸ – the set of vertices, ܧ – set 
of VD edges. Each edge of ܧ is associated with a pair 
of sites to which this edge is the bisector – the 
common boundary of their Voronoi cells. Consider 
the VD subgraph 〈ܸᇱ,  by (ܩ)ݎܸ ᇱ〉, formed fromܧ
cutting of some terminal vertices and edges incident 
to these vertices. If cut vertices and edges of  ܸ(ܩ)ݎ 
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which incident to concave vertices of polygonal 
figure, then the union of the edges of the VD subgraph 〈ܸᇱ, ܵ .ᇱ〉 is the skeleton of figure, i.eܧ = 〈ܸᇱ, ᇱ〉, ܸᇱܧ ⊆ ᇱܧ ,ܸ ⊆  Therefore, the skeleton of a .ܧ
polygonal figure can be considered as a subgraph of 
VD ܵ = 〈ܸᇱ, ᇱ〉, ܸᇱܧ ⊆ ᇱܧ ,ܸ ⊆  .ܧ

Let ܵ be a polygonal skeleton of ܩ. Pruning, a 
process of sequential cutting of some terminal 
vertices and their incident edges helps in the 
construction of subgraphs ଵܵ, ܵଶ, … , ܵ such that ܵ =〈 ܸ, 〉, ܵାଵܧ = 〈 ܸାଵ, ାଵ〉, ܸାଵܧ = ܸ	\	ሼݒሽ, ܧାଵ ݒ ,ሼ݁ሽ	\	ܧ= ∈ ܸ,  ݁ ∈   isݒ , and the vertexܧ
terminal in the subgraph ܵ , and ݁  is its incident edge. 

Definition 4. Subgraphs of VD resulting from 
pruning process are called skeletal subgraphs. 

Definition 5. Union ܩ′ = ⋃ ∈ௌᇲ(ܲ)ܥ  of 
inscribed circles centered on skeletal subgraph ܵ ⊆ܵᇱ, is called a circular figure. 

 

Figure 1: (a) the polygonal figure and the skeleton, (b) the 
skeleton subgraph resulting from pruning, (c) the circular 
figure corresponding skeleton subgraph. 

Polygonal figure ܩ can be represented as the 
union of all the inscribed circles which are centered 
at the skeleton points ܩ = ⋃ ∈ௌ(ܲ)ܥ , i.e., it is a 
particular case of circular figure. The example in 
Fig.1 presents a polygonal figure, its skeleton, 
skeletal subgraph, and circular figure formed by 
circles of this subgraph. 

4 BICIRCLES IN THE 
POLYGONAL AND CIRCULAR 
FIGURES  

An edge ݁ ∈  of the skeletal subgraph is a segment ܧ
of a straight line or a parabola. This segment has two 
endpoints at the graph vertices. The remaining points 
of the edge will be named as internal.  

Definition 6. A bicircle of the edge ݁ ∈  is the ܧ
union of all inscribed circles centered on ݁. The edge 
is called axes of bicircle.  

Definition 7. Proper region of bicircle of edge ݁ 
is the closure of the union of all the spokes incident 
to an interior point of ݁. 

Proper region of bicircle is included to bicircle. 
Boundary of proper region includes two spokes. Two 
circles with centers at the edge endpoints are end 
circles of bicircle. Couple spokes divides end circle 
into two sectors – external and internal. External 
sector includes a part of the border of bicircle whereas 
the internal sector comprises the remainder of the end 
circle (Fig.2). 

 

Figure 2: Bicircles, proper regions, internal and external 
sectors of end circles. 

Let ܤ – a proper region of the bicircle ܤ of edge ݁.  

Definition 8. The subset ܤ௭ ⊆ ௭ܤ   of bicircleܤ = ሼ݃ ∈ ,ܤ ߬(݃) ≤  ሽ, in which the medial widthݖ
does not exceed ݖ ≥ 0, be called the region of width ݖ. 

Denote  ߤ(ܤ௭) – area of ܤ௭.  

Definition 9. Medial width function of bicircle ܤ 
is ℱ(ݖ) =   .(௭ܤ)ߤ

Proper regions of two bicircles may have 
intersection over the boundary spokes only. The area 
of this intersection is zero. On the other hand proper 
regions of bicircles cover the entire polygonal figure 
completely. Therefore, the medial width function of 
the polygonal figure is equal to the sum of the medial 
width functions of bicircles ℱ(ݖ) =ℱ(ݖ)∈ா  (1)

 

Figure 3: (a) Coverage of the polygonal figure by proper 
regions of bicircles, (b) coverage of the circular figure by 
proper regions and border sectors. 
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The circular figure is the union of all bicircles of its 
skeletal graph. But proper regions of these bicircles 
do not cover the entire circular figure. Therefore, the 
remaining portion of the circular figure is covered by 
the external sectors of bicircles (Fig. 3). 

Definition 10. In the circular figure the part of the 
inscribed circle (ݒ)ܥ centered in the skeleton vertex ݒ ∈ ܸ, which is not covered by proper regions of 
bicircles, is called the border sector. 

The inscribed circle (ݒ)ܥ exists for every 
skeleton vertex ݒ ∈ ܸ. Let (ݒ)ߠ is the area of the 
border sector of  (ݒ)ܥ. Denote ௭ܸ ⊆ ܸ the set of 
vertices of the skeleton, which radii of the inscribed 
circles (ݒ)ݎ ≤   .ݖ

Then the medial width function of the circular 
figure is ℱ(ݖ) = ∑ ℱ(ݖ)∈ா + ∑ ௩∈(ݒ)ߠ .  (2) 

The first term is the area of proper regions of 
bicircles, and the second term is the area of the 
external sectors of vertices. 

5 MEDIAL WIDTH OF 
BICIRCLES  

Each edge of the skeleton has two site generators. 
Couple sites “point-segment” forms a parabolic edge 
and the corresponding bicircle is said to be parabolic. 
Couples “point-point” and “segment-segment” form 
linear edges. In these cases graphs of the dependence 
of the inscribed circle radius with the position of the 
circle center on the edge are a straight line (for a pair 
“segment-segment”) or hyperbola (for a pair “point-
point”). For convenience, corresponding bicircle are 
said to be linear and hyperbolic.  

We wish to obtain an explicit formula for the 
calculation of the medial width functions: ℱ(ݖ) – 
for linear bicircle, ℱ(ݖ) – for parabolic bicircle, ℱ௬(ݖ) – for hyperbolic bicircle as a function of the 
width parameter ݖ.  

The formulas for calculating these functions are 
provided below. Detailed formation of these formulas 
performed on the basis of the geometric analysis and 
was described in (Mestetskiy, 2014).  

Denote ݎ, ܴ – radii of bicircle’s end circles, ݎ ≤ ܴ,  ݈ –  distance between end circle centers, ݐ = ඥ݈ଶ	 − (ܴ −  ଶ – length of the bicircle axis(ݎ
projection on the segment-site in linear and  parabolic 
bicircles. 

5.1 Medial Width of a Linear Bicircle 

Medial width function of linear bicircle can be 
computed as   ℱ(ݖ) = ൝ 0 if	ݖ < ଶݖܽݎ + ܾ if		ݎ ≤ ݖ ≤ ܴ)ݐܴ + (ݎ ݖ	݂݅ > ܴ   

where  ܽ = ൝ 0 if	ݎ = ܴݐܴ − ݎ if	ݎ < ܴ	
ܾ = ቊ ݎ2݈ if	ݎ = ܴ	− ௧మோି if	ݎ < ܴ .	

5.2 Medial Width of a Parabolic 
Bicircle 

Parabolic bicircle axis is a segment of a parabola. To 
calculate the medial width of the bicircle, it is 
necessary to determine the position of the vertex of 
the parabola with respect to the axis of the bicircle.  
Position of the vertex of the parabola defined by the 
parameters of the parabolic bicycle.  

Let where ݐ∗ = 2ඥݎ(ܴ −  .(ݎ
The variants of the parabola vertices are: 

(a) if ݐ =  then the vertex of the parabola is the ∗ݐ
endpoint of axis,  

(b) if ݐ >  then the vertex of the parabola is an ∗ݐ
interior point of the axis, 

(c) if ݐ <  then the vertex of the parabola lies ∗ݐ
outside the axis. 

Definition 11. Parabolic bicircle having vertex of 
the parabola coinciding with the endpoint of axis is 
called as root parabolic bicircle. 

Position of the parabola vertex is defined by the 
relation: at ݐ = ݐ ,option (a) ∗ݐ > ݐ ,option (b) ∗ݐ <  ∗ݐ
option (c), where ݐ∗ = 2ඥݎ(ܴ −  .(ݎ

Parabola parameter for parabolic bicircle is   = ௧మଶమ ൫ܴ + ݎ + ඥ(ܴ + ଶ(ݎ − ݈ଶ൯. 
Area of proper region of root parabolic bicircle with 
parameter  and the end circle radius ݖ is  φ(ݖ) = ݖ) + ටଶ( ቀݖ − ଶቁ . 

Medial width function of root parabolic bicircle 
with parameter  and end circle radius ܴ is 
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Φ(ݖ, , ܴ) = ൞ 0 if	ݖ ≤ ଶφ(ݖ) if	 ଶ < ݖ ≤ ܴφ(ܴ) if	ݖ > ܴ . 

Now the medial width function of the parabolic 
bicircle can be calculated through areas of 2 root 
bicircles: 

if the vertex of the parabola lies on the axis, then ℱ(ݖ) = Φ(ݖ, , (ݎ + Φ(ݖ, , ܴ) 
if the vertex of the parabola lies outside the axis, 

then ℱ(ݖ) = Φ(ݖ, , ܴ) − Φ(ݖ, ,  (ݎ
5.3 Medial Width of a Hyperbolic 

Bicircle 

Definition 12. Midpoint of the segment connecting 
the point-sites of hyperbolic bicircle, called the center 
of hyperbolic bicircle.  

The position of the center relative to the axis of 
the hyperbolic bicircle is also important for 
calculating of the medial width function. Depending 
on the values of ݎ, ܴ, ݈ the center lies on the axis of 
the bicircle, or outside the axis. 

(a) if ݈ଶ + ଶݎ = ܴଶ then the center coincides 
with the endpoint of axis,  

(b) if ݈ଶ + ଶݎ > ܴଶ then the center is an interior 
point of the axis, 

(c) if ݈ଶ + ଶݎ < ܴଶ then the center lies outside 
the axis. 

Let ݍ is the distance between point-sites of 
hyperbolic bicircle. We name it as the parameter of 
hyperbolic bicircle.  

The parameter is calculated by the formula  ݍ = ଵ ඥ[(݈ + ଶ(ݎ − ܴଶ] ∙ [ܴଶ − (݈ −  . [ଶ(ݎ
Definition 13. Hyperbolic bicircle is called as the 

root bicircle, if the center of the bicircle coincides 
with the endpoint of axis.  

Area of proper region of root hyperbolic bicircle 
with parameter ݍ and the end circle radius ݖ is  ψ(ݖ) = ଶ ටݖଶ − మସ  . 

Medial width function of root hyperbolic bicircle 
with parameter ݍ and end circle radius ܴ is 

Ψ(ݖ, , ܴ) = ൞ 0 if	ݖ ≤ ଶψ(ݖ) if	 ଶ < ݖ ≤ ܴψ(ܴ) if	ݖ > ܴ . 

Medial width function of the hyperbolic bicircle 
can now be calculated through areas of 2 root 
hyperbolic bicircles: 

if the center of the bicircle lies on the axis ℱ௬(ݖ) = 	Ψ(ݖ, ,ݍ (ݎ + Ψ(ݖ, ,ݍ ܴ) 
if the center of the bicircle lies outside the axis ℱ௬(ݖ) = Ψ(ݖ, ,ݍ ܴ) − Ψ(ݖ, ,ݍ  (ݎ

5.4 Medial Width of End Sectors 

To evaluate the medial width function of the circular 
figure, we must calculate the areas of border sectors 
of vertices, which are not covered by bicircle proper 
regions. 

Suppose that a skeleton vertex ݒ ∈ ܸ, has incident 
edges ݁ ଵ, ݁ଶ, … , ݁, ݇ ≥ 1 and bicircles of these edges 
have a common end circle centered at ݒ. 

The border sector is the intersection of external 
sectors of all incident bicircle, whereas the internal 
sectors in these bicircles do not overlap. Therefore, if 
the angular size of the internal sectors are ߙଵ, ,ଶߙ … , ଵߙ  ,.i.e ,ߨ, then their sum does not exceed 2ߙ + ଶߙ ߙ	+⋯+ ≤    .ߨ2

If a vertex ݒ preserved all incident edges after 
pruning, then ߙଵ + ଶߙ + ߙ	+⋯ =  But, if some .ߨ2
edges have been removed during the pruning, then ߙଵ + ଶߙ ߙ	+⋯+ <  Thus, the angular size of .ߨ2
the border sector of the vertex ݒ is  (ݒ)ߦ = ߨ2 − ଵߙ) + ଶߙ  .(ߙ	+⋯+

If ݎ௩ is the radius of the inscribed circle (ݒ)ܥ 
centered at vertex ݒ, then the area of the border sector 
is (ݒ)ߠ = ଵଶ (ݒ)ߦ ∙  .ଶ(௩ݎ)

Thus, to calculate the area of border sectors (ݒ)ߦ 
for all vertices ݒ ∈ ܸ, there is a need to find the 
angular size of all internal sectors of bicircles. These 
sizes are calculated depending on the type of bicircle 
(linear, parabolic, or hyperbolic). 

In linear bicircle the size of internal arc of small 

end circle is  ߚ = ߨ + 2 ∙ ݊݅ݏܿݎܽ ோି  , and of large 

end circle is = ߨ − 2 ∙ ݊݅ݏܿݎܽ ோି  . 

Internal arc of a large end circle of the parabolic 
bicircle with the parameter  is  ߙ = ݏܿܿݎܽ ቀ1 − ோቁ. 

An internal arc of a small circle is  ߚ = ݏܿܿݎܽ ቀ1 − ቁ in the case where the parabola 
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vertex lies on the axis of the bicircle, and 	ߚ = ߨ2 − ݏܿܿݎܽ ቀ1 − ቁ, if it lies outside axis. 

Internal arc of a large end circle of the hyperbolic 
bicircle with the parameter ݍ has a size ߙ ݊݅ݏܿݎܽ= ቀ ଶோቁ. If the center lies on the axis of the 

bicircle then the internal arc of the small circle has the 

size ߚ = ݊݅ݏܿݎܽ ቀ ଶቁ, and if it lies outside the axis, ߚ = ߨ2 − ݊݅ݏܿݎܽ ቀ ଶቁ.  

Formulas (1), (2) allow us to calculate the value 
of the medial width function ℱ(ݔ) for a fixed value 
of the argument ݔ. As can be seen from the formulas 
obtained, the calculation of the medial width function 
of one bicycle ℱ(ݔ) is ܱ(1). Hence, the 
computational complexity for the sum ∑ ℱ(ݔ)∈ா  is ܱ(|ܧ|), where |ܧ| - is the number of edges in skeletal 
graph of figure. Calculation of the areas of border 
sectors (ݒ)ߠ for all vertices ݒ ∈ ܸ is carried in a 
single pass over the edges of the skeletal graph, i.e. 
has the complexity ܱ(|ܧ|). Calculating the sum ∑ ௩∈ೣ(ݒ)ߠ  adds to this ܱ(|ܸ|). Thus, the calculation 
of ℱ(ݔ) has complexity ܱ(|ܧ| + |ܸ|). Since skeletal 
graph is planar, single complexity of computing ℱ(ݔ) 
can be written as ܱ(݉), where ݉ - is the number of 
vertices in the skeletal graph. 

For feature generation it is necessary to calculate 
the medial width function for the argument ݔ ,ݎ= ,ଵݎ … ,  ே, where ܰ - the dimension of the featureݎ
vector. Thus, the total computational complexity of 
constructing the feature vector based on the medial 
width function will be ܱ(݉ܰ)  in the worst case. 

6 APLICATION TO PALM SHAPE 
COMPARING 

Our example is intended to demonstrate the utility of 
the medial width function and effectiveness of the 
method of its calculation. We consider an application 
for biometric identification by hand geometry. The 
task is to construct a measure of distinction palm 
shapes, presented in the form of binary images. We 
use our method of circular approximation and 
constructing a continuous skeleton of a binary bitmap 
image (Mestetskiy, 2008). It contains the following 
steps. 

1. We model binary bitmap as an integer lattice 
points in the plane. First, we construct a polygonal 
figure approximating a binary raster image. The 
boundary of figure consists of separating polygons of 
the minimum perimeter.  

2. Construct the VD of line segments formed from 
approximating polygonal figure boundaries. Extract 
the internal part of the VD of the figure.  

3. To obtain an approximating circular figure, 
pruning of internal Voronoi diagram is performed. 

4. Calculate the medial width function of circular 
figure using the algorithm discussed in this article.  

 

Figure 4: (a) binary raster image, (b) approximating 
polygonal figure and continuous skeleton, (c) skeleton after 
pruning, (d) medial representation of image. 

Fig.4 illustrates an example for the described 
scheme. Original binary image is the 640×480 bitmap 
(Fig.4a). The resulting polygonal figure is the simple 
polygon with 346 vertices. Skeletal graph (VD) has 
689 edges (Fig. 4b). Simple pruning (regularization 
by parameter 1) leaves 435 edges in the skeletal graph 
(Fig. 4c). 

The resulting sub-graph generates circular figure 
that approximates the original bitmap image with 
accuracy ε in the Hausdorff metric. In our example, ε 
= 1. Further semantic segmentation leaves in the 
skeletal graph only significant part which describes a 
hand (removes wrist). 

The result is a graph with the edges 382. This 
graph gives a circular shape consisting of 382 
bicircles (Fig. 4d), among them are 182 linear, 152 
parabolic and 48 hyperbolic bicircles. 

We consider three measures of palm differences 
based on different features: line of hand geometric 
points, the curvature of the fingers and the medial 
width. 

Line of hand geometric points is a polyline whose 
vertices are the singular points on the boundary 
contour of the palm: 5 tips and 4 valleys points 
(Fig.5). The method of allocation of these points in 
the image is described in (Mestetskiy, 2011). 

Let ଵܶ, ଶܶ, ⋯ , ଽܶ – sequential vertices of the 
polyline, and ߛ = | ܶ ܶାଵ|, ݅ = 1,… ,8 – the length of  
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Figure 5: Line of hand geometric points. 

segments, ߛ = ∑ ଼ୀଵߛ  – total length. Feature vector 

is defined as Γ = ቀఊభఊ , ఊమఊ , … , ఊఴఊ ቁ. Measure of the 

difference of two palms  Γ(ଵ) and  Γ(ଶ) is calculated 
as the Euclidean distance  μଵ(Γ(ଵ), Γ(ଶ))		between 
these vectors. 

Measure the curvature of the fingers is 
constructed as follows (Fig. 6). For each finger, ݅ =1,… ,5 in the continuous skeleton find centers of the 
inscribed circles: the tip ܤ and a base ܣ. The method 
of obtaining these points is described in (Mestetskiy, 
2011). Then, on a skeleton branch ܣܤ find most 
distant points from straight line ܣܤ to the right 
(point ܴ) and to the left (point ܮ). Let ߜ – distance 
from ܴ to ܣܤ, ߝ – distance from ܮ to ܣܤ, and ߟ = | – segment length. Feature vector Δܤܣ| =ቀఋభఎభ , ఌభఎభ , ఋమఎమ , ఌమఎమ , … , ఋఱఎఱ , ఌఱఎఱቁ is a vector of curvature of 

fingers. Measure differences of palms Δ(ଵ) and  Δ(ଶ) 
is calculated as the Euclidean distance μଶ(Δ(ଵ), Δ(ଶ)).  

 

Figure 6: Curvature of the fingers. 

Feature vector of palm width is calculated using the 
normalized of the medial width function of the 
circular figure. Normalization is necessary for 
compare images of different sizes, obtained under 
various shooting conditions. Let the radius of the 
maximum inscribed circle of palm image is ܴ௫. 
Scale the virtual circular figure so that the radius of 
its maximum inscribed circle became ܴ. For this 
set of scaling coefficient ߣ = ܴ ܴ௫⁄ . Then we 
obtain the normalized function of the medial 

widthℱ(ݖ) = ℱ(ఒ௭)ఒమ . In our experiments we  used ܴ = 100. Feature vector describing the medial 
width of the palm has the form Ω = (߱, ߱ଶ,… , ߱), ݉ = ܴ, ߱ = ℱ(݇), ݇ = 0,1, … ,݉.  The 
difference of palms Ω(ଵ) and Ω(ଶ) on the medial width 
is calculated as the Euclidean distance μଷ(Ω(ଵ), Ω(ଶ)).  

General measure of differences for pairs of 
images of palms I(ଵ) = ൫Γ(ଵ), Δ(ଵ), Ω(ଵ)൯ and I(ଶ) =൫Γ(ଶ), Δ(ଶ), Ω(ଶ)൯, combining all three measures, is  μ(ܫ(ଵ), ((ଶ)ܫ = ,ଵμଵ(Γ(ଵ)ܥ Γ(ଶ)) ,ଶμଶ(Δ(ଵ)ܥ+ + Δ(ଶ)) + ,ଷμଷ(Ω(ଵ)ܥ Ω(ଶ)). 

To prove the efficacy of proposed approach, we 
conducted the experiments including 160 binary 640 
× 480 images of palms of 35 people, 4-5 samples for 
each person. Based on a comparison of the distances 
between samples with a threshold occurs 
classification of a pair as their "own" or "alien". The 
threshold is set so that rates FAR and FRR are equal. 
The value obtained Equal Error Rate (EER) is 
considered by us as a quality criterion for the 
construction of the metric. The values of the 
coefficients ܥଵ, ,ଶܥ  ଷ are obtained by minimizingܥ
the EER.  

The table 1 shows the EER values for different 
formations of  μ(ܫ(ଵ),  by combining measures  ((ଶ)ܫ
Hand Geometric Points (HGP), Finger Curvature 
(FC), Palm Width (PW). 

Table 1: Efficiency of the medial width for measuring the 
of palm shape similarities.  

Measure EER 
FC                           (ܥଵ = ଷܥ = 0) 15.9% 
PW                          (ܥଵ = ଶܥ = 0)    11.8% 
HGP                        (ܥଶ = ଷܥ = 0)  8.5% 
HGP & FC              (ܥଷ = 0)          7.7% 
FC & PW                (ܥଵ = 0) 6.7% 
HGP & PW             (ܥଶ = 0) 5.1% 
HGP & FC & PW 4.0% 
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The experiment shows that the medial width (PW) 
substantially improves the classification level in 
comparison with features based on the use of only the 
boundary (HGP) and skeleton (FC). 

The table 2 shows the computation time (in 
millisecond) for the processor Intel® Core™ i5-
3210M CPU @ 2.50GHz.   Operation "Calculation of 
the medial width function" includes the construction 
of approximating polygonal figure, the calculation of 
the medial representation, regularization of the 
skeleton, as well as a direct computation of three 
measures based on medial representation.  

Table 2: Expenses of time for the palm medial width 
calculating.  

Operation Amount Time spent Time per step

Medial width function 160 images 2325 ms 14.53 ms 

Comparisons 12720 3200 ms 0.25 ms 

High computational efficiency of our approach 
enables the use of the medial width for image 
recognition in real-time computer vision systems. 

7 CONCLUSION 

The proposed method opens up new possibilities for 
the application of high-performance computational 
geometry algorithms in the analysis and recognition 
of discrete raster images. Known approaches to the 
calculation of descriptors for the width of the figures 
on the basis of pattern spectrum is not suitable for use 
in real-time computer vision systems, as they have 
high computational complexity. The proposed 
transition to a continuous model based on polygonal 
and circular figures, as well as a highly effective 
method of calculating the medial width function for 
these figures allow us to overcome this short coming. 

Medial width is a universal feature, it does not 
include structural analysis of shapes, therefore, its use 
requires a combination with other features, such as 
the image skeleton. Future work should build such 
combined classification methods. 
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