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Abstract: This paper presents a discrete model of a sensor path planning problem, with a long-term planning horizon.
The goal is to minimize the covariance of the reconstructed structures while meeting constraints on the length
of the traversed path of the sensor. The sensor is restricted to move on a graph representing a discrete set
of configurations, and additional constraints can be incorporated by altering the graph connectivity. This
combinatorial problem is formulated as an integer semi-definite program, the relaxation of which provides
both a lower bound on the objective cost and input to a proposed genetic algorithm for solving the original
problem. An evaluation on synthetic data indicates good performance.

1 INTRODUCTION

As an experimental design problem,camera network
designhas been studied extensively in the photogram-
metry literature. The goal is to obtain the most accu-
rate reconstruction of a scene or object given a limited
number of observations, and the task is to find the op-
timal set of camera poses or sensor configurations. In
robotics, thenext best viewproblem is similarly con-
cerned with finding the next sensor position to most
improve a sequential reconstruction of the environ-
ment. Both problems are hard due to the non-convex,
multi-modal costs arising (cf. (Fraser, 1984)), but also
to the sometimes high computational burden of eval-
uating the cost function. Recent research has mostly
focused on the latter problem of accurately and effi-
ciently evaluating the expected information gain of a
potential sensor configuration (Low and Lastra, 2006;
Vasquez-Gomez et al., 2013; Foix et al., 2012) and
on achieving coverage of the scene (Blaer and Allen,
2007), while other works tackle minimizing the re-
sulting cost functions to find one or a series of opti-
mal sensor configurations. As the name implies, next
best view planning usually employs a myopic plan-
ning horizon of only one step ahead, mainly due to
these difficulties. Camera network optimization, on
the other hand, can be seen as a long horizon plan-
ning problem, but without constraints on the order in
which observations are made.

Problems of this type have mainly been addressed
using stochastic optimization algorithms or by solv-
ing a relaxed, easier version. For example, in (Dunn

et al., 2006) the camera network problem is solved
using a genetic optimization algorithm searching the
high-dimensional parameter space of camera place-
ments. In (Wenhardt et al., 2006) the authors recon-
struct objects using a camera mounted on a robotic
arm. The object geometry is estimated using a
Kalman filter, and the next imaging location is deter-
mined by searching a discrete parameter space and
evaluating the expected information gain in the fil-
ter at each position. A different approach is taken in
(Trummer et al., 2010) where the next imaging loca-
tion is decided based only on the single currently least
well-determined feature, allowing a simple closed
form solution. In (Dunn et al., 2009) the path of a
robot moving in the plane is planned based on the
expected reconstruction accuracy of an observed ob-
ject. An approximation of the geometry is given and
the expected information gain from observing the ob-
ject from a particular vantage point is determined on
a discrete grid of camera locations. Each grid cell
is assigned a cost proportional to the inverse of the
information gain, and a minimum cost path is found
between the starting point and the global minimum
grid cell. This does not take into account the fact that
an observation may be more or less valuable depend-
ing on what other observations are available, and thus
does not optimize the desired objective. In (Haner and
Heyden, 2011) a continuous optimization approach is
used to solve the similar problem of finding the best
reconstruction while also reaching a predefined desti-
nation as quickly as possible, and while taking all fu-
ture observations into account, this method can only
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guarantee locally optimal solutions using gradient de-
scent. In this paper, we formulate discrete analogs
of the problem formulation of (Haner and Heyden,
2011) and cast them as integer semi-definite programs
(SDPs). The relaxations to continuous SDPs may be
used in a branch-and-bound scheme to find optimal
solutions, or as input to a stochastic optimization al-
gorithm proposed below in Section 4.

Related discrete approaches include (Englot and
Hover, 2010) where a shortest path linear program
formulation similar to this work is used, but only con-
siders view coverage and not uncertainty. (Hollinger
et al., 2012) uses a two-stage approach where good
views are selected based on uncertainty, and then con-
nected by solving a traveling salesman problem.

In (Singh et al., 2009; Golovin and Krause, 2010)
approximation algorithms for the constrained path
problem using greedy strategies are shown to provide
solutions within a constant factor of the optimum,
given that the underlying cost function is submodu-
lar. Unfortunately, the maximum eigenvalue metric
used in this paper is not submodular and such guaran-
tees cannot be given; however, an optimality gap can
always be computed.

2 PROBLEM DESCRIPTION

Assume that the goal of a moving sensor is to reach
a predefined target destination, while simultaneously
reconstructing its surroundings as accurately as pos-
sible, based on observations taken along the path to
the destination. There is a trade-off between reach-
ing the destination quickly, and reducing the recon-
struction uncertainty; for a bearing-only sensor such
as a camera, a longer path can accommodate more ob-
servations with greater parallax, thus improving tri-
angulation accuracy. Given a trade-off preference,
or a bound on the path length, an optimal path can
be found by solving a discrete optimization problem.
The space between and around the start and destina-
tion positions is discretized into a finite number of
possible sensor positions, and these positions consti-
tute the nodes of a graph. The edges of the graph
encode a neighborhood connectivity, i.e. the possible
motions between the fixed positions. Thus a path in
the graph corresponds to a physical path. With each
node is also associated an information matrix encod-
ing how much information about the environment we
can expect to gain, if performing a measurement at
that node’s location.

The problem formulations in this paper are agnos-
tic to the graph geometry and topology, and to how
the information matrices are generated. Thus there

are no restrictions such as continuity or smoothness
on the function used to evaluate the information con-
tent of a proposed sensor configuration, but which
are typically required by continuous optimization ap-
proaches. Furthermore, the information of each view
can be computed in parallel to leverage modern multi-
core processors and GPU:s.

3 PROBLEM FORMULATION

Define a directed graphG = (V,E) and a set of pos-
itive semi-definite information matrices{Ii ∈ Sn

+ | i =
0, . . . , |V|}. For a given trade-off parameterλ, define
the optimization problem

min.
p∈P

length(p)+
1
λ

F
(

(

I0+∑
i∈p

Ii
)−1

)

(P1)

whereP is the set of all simple paths inG from the
source node to the destination node.I0 is the ini-
tially available information matrix of the environment
structure, andIi the expected information to be gained
at nodei. The inverse of the information matrix is
the covariance matrix of the reconstructed structure,
so the second term measures the variance using the
scalarizing functionF. This function is typically the
trace or maximum eigenvalue, corresponding toA-
andE-optimality in the experiment design literature
(Montgomery, 2000). For these choices ofF , we note
that the second term is always decreasing as a func-
tion of the number of nodes on the path1. We now
make two observations: ifλ is large enough, the prob-
lem is equivalent to finding the shortest path through
the graph, and may be solved efficiently using stan-
dard algorithms. Ifλ is sufficiently small, it is op-
timal to include all (non-zero) information matrices
in the sum, while still minimizing the distance trav-
eled, thus the problem is equivalent to the traveling
salesman problem (TSP). Since TSP is known to be
NP-hard, an efficient exact algorithm for the general
case is out of reach. Also, the recognition version of
TSP (“Is there a tour of length less than L?”) is NP-
complete, so we should not expect even to be able to
verify if a given solution is optimal. This is true even
for graphs with nodes of degree at most four, e.g. pla-
nar grids (Papadimitriou and Steiglitz, 1998).

In the above formulation (P1) the parameterλ is
used to control the trade-off between a short path and
a more accurate reconstruction of the surroundings.
It is however not obvious how to select this parame-
ter, or even its suitable range, without some trial-and-
error. In fact, another problem formulation may be

1This follows from the Courant-Fischer theorem.
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more natural: given a time or distance budget, what
is the best reconstruction obtainable? In other words,
given an upper bound on the length of the path trav-
eled, minimize the reconstruction error, i.e.

min. F
(

(

I0+∑
i∈p

Ii
)−1

)

s.t. length(p)≤ L .

(P2)

Note that with this formulation, as the allowed path
length grows we no longer approach TSP. Instead, for
L large enough, any Hamiltonian path on the graph
will be optimal, and for the types of graphs consid-
ered here, these are usually easily generated. Unfor-
tunately, the problem still appears difficult for length
limits of practical interest. There are several other
variations on the problem formulation, for example
one could minimize the path length under the con-
straint that the covariance is reduced by a certain
amount. However, all of them appear equally hard
to solve.

Below, we derive convex relaxations of (P1) and
(P2) and show how these can be used to solve the
original problems in a branch-and-bound scheme, or
more practically as guides for more local optimiza-
tion methods. The convex relaxation and optimiza-
tion methods presented are easily adapted to alterna-
tive problem formulations.

3.1 Shortest Path as a Linear Program

The problem of finding the shortest path between two
nodes in a graph with positive edge weights is often
solved using Dijkstra’s algorithm. It can be shown
that this algorithm is equivalent to applying a primal-
dual solver to the following linear program (Papadim-
itriou and Steiglitz, 1998):
min. ∑

(i, j)∈E

ci j xi j

s.t. ∑
j : (i, j)∈E

xi j = ∑
j : (i, j)∈E

x ji , i ∈ {1, . . . , |V| \ s, t}

∑
j : (s, j)∈E

xs j = 1, ∑
j : ( j ,t)∈E

x jt = 1

0≤ xi j ≤ 1.
(LP)

Herexi j is a variable indicating if the edge between
nodei and j is part of the path or not, andci j the asso-
ciated non-negative edge weight. The constraints ex-
press flow conservation, so that the number of edges
incident on a node equal the number exiting, ex-
cept for the source (s) and terminal (t) nodes which
have one outgoing and one incident edge respectively.
These constraints can be summarized intoAGx = b
whereAG is the|V|-by-|E| edge incidence matrixof

G with entries

ai j =











−1 if edge j leaves nodei
+1 if edge j enters nodei

0 otherwise

, (1)

andx are the edge indicator variables suitably stacked.
It is easily shown that (LP) must have an integer opti-
mal solution. Note that this formulation does not ex-
plicitly forbid solutions consisting of a path between
the source and terminal, plus any number of closed
loops; these are only eliminated by virtue of not be-
ing optimal.

3.2 View Planning as a Semidefinite
Program

We adapt the shortest path problem formulation above
to the planning problem (P1). For convenience, intro-
duce binary variablesαi for each node of the graph,
indicating whether that node is on the path or not. We
form the relaxed optimization problem

min. ∑
(i, j)∈E

ci j xi j +
1
λ

F
(

(

I0+
|V|

∑
i=1

αi Ii
)−1

)

s.t. AGx= b

αi = ∑
j : ( j ,i)∈E

x ji , i 6= s

αs = 1, 0≤ αi ≤ 1,

(P3)

whereα andx are not required to be binary. The cost
functions used in next best view planning are gen-
erally non-smooth and multi-modal, and difficult to
optimize. However, due to the discretization, the ar-
gument to the second term of the objective above is
affine in α. Both the trace-of-inverse and maximum
eigenvalue-of-inverse functions are convex, and using
the epigraph trick the second term may be formulated
as a convex semidefinite constraint (see e.g. (Boyd
and Vandenberghe, 2004)). As one would expect, this
semidefinite program no longer has all the desirable
properties of the linear program; integrality ofx or α
is no longer guaranteed, and a solution with disjoint
loops may in fact be optimal.

The corresponding convex relaxation of (P2) is
the same as (P3), except that the first term of the
objective is transformed into a linear inequality:

min. F
(

(

I0+
|V|

∑
i=1

αi Ii
)−1

)

s.t.AGx= b

∑
(i, j)∈E

ci j xi j ≤ L

αi = ∑
j : ( j,i)∈E

x ji , i 6= s

αs = 1, 0≤ αi ≤ 1.

(P4)
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SelectingL is more intuitive than choosingλ; one
must only be careful not to produce an infeasible
problem by selectingL too low, but the lower limit
is readily obtained using a standard shortest path al-
gorithm.

It is possible to find an optimal integer solution
to (P3) or (P4) using a standard branch-and-bound
search, but this is also known to beNP-hard and
may take a large number of iterations, each involv-
ing solving a potentially quite large SDP. If a solu-
tion is found, it may also contain unwanted disjoint
loops. While it is easy to include linear constraints
forbidding anyparticular loop in the SDP, since there
are exponentially many possible loops in the graph,
adding constraints against them all at the outset is in-
feasible. But, they can be added on an as-needed ba-
sis; if loops are present in the solution, add constraints
against them and solve again until no loops remain.
As it turns out, 2-cycles are quite common in the so-
lutions, and as their number is typically linear in the
number of nodes, it is feasible to remove them at the
outset which may lead to faster convergence to a loop-
free solution.

Obviously, the above procedure may be very time
consuming or completely intractable for all but the
smallest problem instances. However, we also noted
above that depending on the trade-off parameterλ,
the original problem (P1) should vary in difficulty
between simple shortest path (typicallyO(|E| log|V|)
for Dijkstra’s) up to exponential complexity. Em-
pirically, it turns out that many instances are in fact
“easy”, in that very few steps of branch-and-bound
are required and few or no loops are included in the
solution. Yet, many other instances are indeed diffi-
cult and not amenable to this approach.

4 APPROXIMATE SOLUTION

Despite the problems of tractability in finding optimal
solutions described above, it can be noted that the re-
laxed SDP formulations (P3) and (P4) provide lower
bounds on the optimal objective values of (P1) and
(P2). This may be used to verify the performance of
approximation algorithms. Also, if the problem in-
stance at hand is “easy enough”, the relaxed solution
x∗ may be quite close to a valid integer, loop-free so-
lution. In these cases it is possible to construct a valid
solution to (P1) using a simple shortest path search
on the graphG with edge weightsci j = 1− x∗i j . This
solution may be good enough, or can serve as initial-
ization for local or stochastic optimization algorithms.
For the formulation (P2) a slightly different approach
is needed, which will not be explored here.

4.1 A Simplified Formulation

Given the hardness of (P1) and (P2), it is natural to
seek a simplified problem formulation which might
admit faster solution algorithms. Part of the difficulty
is the nonlinearity of the interaction between the in-
formation matrices when taking the inverse to obtain
the covariance; the value of any particular contribu-
tion to the information depends on all the others. For-
going this interaction, instead of minimizing the co-
variance, one can maximize the trace of the informa-
tion matrix, yielding the problem

min.
p∈P

length(p)−
1
λ

trace
(

I0+∑
i∈p

Ii
)

. (P5)

Since the trace is linear, this results in a shortest
path problem onG with modified weights (subtract
trace(Ii)/λ from each edge incident on nodei). As
long as this does not result in any negative cycles,
this may be efficiently solved using e.g. the Bellman-
Ford algorithm, or even Dijkstra’s if all weights are
non-negative. If negative cycles are present, the prob-
lem again becomes much more difficult. In the ex-
treme where all edge weights are negative, the prob-
lem is equivalent to the longest simple path problem
on −G, which is known to beNP-hard (Schrijver,
2004). Unfortunately, for many scenarios and reason-
able choices ofλ negative cycles will be present, and
in these cases (P5) can be formulated as (LP) but with
binary constraints onx. While this ILP may be signif-
icantly faster to solve than (P3), the complexity is the
same and no-loop constraints must also be introduced
incrementally. However, in some scenarios it may be
reasonable to restrict the graphG to be acyclic, and
then the shortest path problem can always be solved
in linear time. A general graph may be reduced to a
directed acyclic graph by ordering the nodes by de-
creasing distance to the target node, and only keeping
edges reducing the distance, thus forcing the sensor
to move monotonically towards the destination. This
will of course not work for purely exploratory scenar-
ios where the start and end points may be near.

Even with this significantly simplified formulation
sacrificing the interdependence of measurements, the
problem is still not easy in general. We therefore in-
troduce a stochastic genetic algorithm applicable to
all problem formulations.

4.2 A Genetic Algorithm

Genetic algorithms (GA) are a class of evolutionary
optimization algorithms which emulate the process of
natural selection. A population of candidate solutions
is maintained, and in every iteration of the algorithm,
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a new population is generated by mutation and cross-
ings of individuals of the previous generation. The
chance of an individual producing offspring in the
next generation is proportional to that individual’s fit-
ness, calculated from the corresponding value of the
function being minimized. Genetic algorithms have
been found to be quite efficient in providing good so-
lutions to many combinatorial optimization problems,
including TSP (Choi et al., 2003; Schmitt and Amini,
1998) and path planning (Davoodi et al., 2013), which
motivates the use here.

To use a genetic algorithm, one must choose a rep-
resentation for a candidate solution, and define unary
mutation and binary crossover operators. In this work,
each individual is described simply as a sequence of
vertices constituting the path. The GA framework
used is completely standard; for brevity we describe
only the important steps below.

Initialization The first step is to generate candidate
solutions, in this case paths inG from the source to
the terminal node. Unless we have some a priori in-
formation on the characteristics of the optimal solu-
tion, these should be spread out uniformly across the
space of all feasible paths. Unfortunately, truly uni-
form sampling of simple paths on a general graph ap-
pears to be a difficult problem. Reasonably random
paths, however, may be obtained using random order
depth-first search (DFS),loop-erased random walk
(Lawler, 2012), or for undirected graphs by comput-
ing the minimum cost spanning tree with randomized
edge weights, and extracting the unique path in the
tree. If candidate solutions have been obtained using
any of the heuristic methods based on the SDP relax-
ation, these can be included in the initial population
and will then be refined.

Mutation Operators A mutation operator should
introduce “noise” or randomness into an existing path,
while preserving its main features. In practice, sev-
eral mutation operators are often employed, exploit-
ing problem-specific heuristics. To modify a path, just
randomly replacing vertices is not possible, since not
every sequence of vertices is a valid path in the graph
G. Instead, our first operator selects two random cut
points along the path, and replaces the path in be-
tween with a random one generated using either ran-
domized DFS or loop-erased random walk. A second
operator instead replaces the section with the short-
est path between the cut points. This is motivated by
the fact that optimal paths are often quite regular, so
it makes sense to smooth out kinks. Both these oper-
ators are comparatively slow, so we also use a much
faster but more local operator which simply selects a

random vertex on the path, and replaces it with one
picked from the intersection of nodes reachable from
the preceding node with those with outgoing edges
incident on the next node on the path.

Crossover Operator The crossover operator takes
two existing paths as input and produces a mixed path,
containing parts of both, assuming they cross at some
point. This is accomplished by selecting a random
simple path on the graph obtained fromG consisting
only of the edges on the two paths.

Local refinement To speed up convergence to a lo-
cally optimal solution, paths may be optimized by
systematically applying the fast local mutation oper-
ator described above in a deterministic fashion. Each
node on the path, visited in random order, is re-
placed with the neighbor which minimizes the objec-
tive function.

With the formulation (P2), we run the risk of gen-
erating infeasible paths in the course of the genetic
algorithm. A simple solution is to reject any infeasi-
ble path obtained and repeat the mutation or crossover
operation until a feasible realization is produced. It is
easy to verify that if the inputs are feasible, the oper-
ators defined above will eventually produce feasible
output. However, depending on how closeL is to the
lower bound of feasibility, this may take an unreason-
able amount of time. The very simplest solution is to
transform the length constraint to a hard penalty term
in the objective, e.g.

min. F
(

(

I0+∑
i∈p

Ii
)−1

)

+B{p : length(p)≤L} (2)

where BS is the barrier function for the setS s.t.
B(x) = 0 if x∈ Sand∞ otherwise.

5 STRATIFIED SOLUTION
STRATEGY

The genetic algorithm will quickly find good solu-
tions if the search space is not too large. For large
grids with many hundreds of nodes and large neigh-
borhood connectivities, the algorithm risks getting
stuck in local optima, often producing implausible-
looking paths. We therefore propose to reduce the
search space by substituting a smaller graph, based on
the solution of the SDP relaxation of the problem, to
obtain a good initialization which can then be refined
on the full graph.
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5.1 Reducing the Graph

The idea is to keep only a subset of theN most impor-
tant nodes, as indicated by the fractional SDP solu-
tion α∗. Interpreting these values as probabilities, we
drawN nodes without replacement, selecting nodes in
proportion to theirα∗-value. The reduction in the co-
variance achieved using only these nodes is computed
and maximized through repeated random sampling of
the subset.

Once a subset has been chosen, a new fully con-
nected graph is formed, where edges between the
nodes represent the shortest path between them in the
original graph. This allows the mapping of paths on
the reduced graph to the full graph where they can
be evaluated. The genetic algorithm can now be run
without modification on the reduced graph, where the
parameterN can be chosen to trade fidelity for con-
vergence speed.

6 EXPERIMENTS

Due to the general formulation of the basic problem,
many different scenarios can be accommodated by
adapting the graphG and edge weightsci j , which
do not need to fulfill geometric constraints such as
the triangle inequality. For example, each node can
represent a camera position and an orientation, and
the connectivity between poses can be defined so as
to constrain angular velocity on the path. Purely ex-
ploratory behavior can be achieved by selecting start
and/or destination nodes as “super-nodes” connected
to every other node with zero weight, thus effectively
permitting arbitrary start and destination points. Typi-
cally, we know less about the scene further away from
the starting point, so the predictions of what will be
seen, or what obstacles lay ahead, may be incorrect.
Therefore one should plan with caution; by weight-
ing the information matrices based on distance to the
starting node, such behavior can be incorporated.

In the synthetic experiments below, each node
(except super-nodes) has an associated camera pose
defining position and orientation. The environment
structure is represented by 3D points, each consid-
ered independently estimated such that the initial
information matrixI0 is block diagonal (in fact we
let it be the identity matrix so that the uncertainty
is on the order of the scene scale). To compute the
information gained from acquiring an image at a
certain pose, the standard pinhole camera model is
used, so that the relation ˆx= f (P,X) between a world
pointX and its projection ˆx is given by

Figure 1: Cameras looking at a point cloud are placed on an
8-connected unit grid. Top left, the greenness and thickness
of edges is proportional tox∗i j , the corresponding variable
of the solution to the relaxed SDP (P3), using the maxi-
mum eigenvalue scalarizing function andλ = 2. Due to the
symmetry of the problem, both a left and right path seem
to be given equal consideration. The lower bound obtained
is 61.1. Top right, the same problem with the path (green)
found by the genetic algorithm among possible positions
(blue), with a cost of 67.3. The third plot shows the same
problem but withλ = 40 and final cost 32.6, as compared
to the lower bound of 23.0. Depending on problem charac-
teristics, bounds may be more or less tight.

f (P,X) =

(

P1X+P13

P3X+P33
,
P2X+P23

P3X+P33

)⊤

(3)

wherePi is the i:th row of the camera matrix. Given
a pointX̄, the corresponding block ofIi is computed
asJ⊤Σ−1J, whereJ = d f

dX

∣

∣

(Pi ,X̄)
is the projection Ja-

cobian andΣ the assumed measurement error covari-
ance on the image plane. However, ifX̄ is out of the
camera’s field of view or too far away, the block is set
to zero. In Fig. 1–5 different experiments are shown2;
the details of the setup and results are in the figure
captions. Note that in these experiments, the online
nature of the problem is not demonstrated; in real use,
as the sensor moves and new information becomes
available, the structure and uncertainties need to be
updated and the path re-planned. By seeding the op-
timizer at each stage with the previous solution, rapid
convergence is possible.

6.1 Practical Considerations

The choice of scalarizing functionF can have a large
impact on the solution time of the SDP, depending on

2Many of the plots in the PDF version of this paper are embed-
ded 3D models which may be viewed on-screen in recent versions
of Adobe Reader.
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Figure 2: The same situation as in Fig. 1, now solving prob-
lem (P2) withL = 30. Top left, the solution obtained by
solving the analog of the simpler problem (P5), giving a
cost of 92.3 compared to the SDP lower bound of 67.7. Top
right, the red nodes indicate the reduced graph obtained by
sampling the SDP solution withN = 20, and applying the
GA gives a path with cost 88.7. In the bottom plot, the GA
run on the full graph with cost 86.36. The simplified formu-
lation is qualitatively different from the others and focuses
on getting as close to the structure as possible while ne-
glecting the parallax effects. It is therefore not a suitable
approximation in many situations.

Figure 3: In this example, two nodes each are placed in
every point of an 8-connected unit grid. The two nodes rep-
resent a camera looking at either of two objects/obstacles.
Top left, the solution to the relaxed SDP (P4), using the
trace scalarizing function andL = 22. Nodes of the original
square grid whose combined shortest distance to the start
and destination nodes is greater thanL have been removed,
since they cannot be part of a feasible solution. As in Fig. 1,
there appears to be two competing paths, with edge values
x∗i j ≈ 1/2. Top right, the path obtained from the simplified
formulation (P5), which works reasonably for this problem
instance. In the bottom plot, the solution obtained using the
proposed genetic algorithm. The corresponding objective
values are 192.1, 271.8 and 262.1. The gap between the
final objective and the lower bound given by the SDP is rel-
atively large, but the path obtained directly from the SDP
solution is still quite reasonable.

the dimension of the information matrices. To mini-
mize the trace of the covariance matrix, one variable
per eigenvalue is required, while the maximum eigen-
value cost only needs one. On the other hand, eval-
uating the trace cost function is typically faster. Fur-
thermore, the maximum eigenvalue is vulnerable to
outliers e.g. features which are not seen in any or too
few views. If such features are not removed in a pre-
processing step, the cost function can never decrease
below the initial uncertainty.

The algorithms were implemented in Matlab with
core functions in MEX C++. SDPs were set up us-
ing YALMIP (Löfberg, 2004) and solved using the
MOSEK interior-point optimizer (Dahl, 2012). For
the experiment in Fig. 4, solving the SDP with the
trace cost took 8.7 s as opposed to 4.2 s for the max-
imum eigenvalue, while the genetic algorithm (on the
full problem) runs at about 10 iterations per second on
the same Core 2 Duo 3.0 GHz computer, with a pop-
ulation of 60 individuals. With parallel processing of
individuals, speed can likely be increased manyfold.

Figure 4: In this experiment, we simulate an omnidirec-
tional camera by adding the information matrices of four
cameras at each location. Each cluster thus corresponds to
only one node of the graph. Top left, the SDP (P4) with
L = 43 gives a lower bound at 4.11. Top right, the solution
using the stratified approach, with cost 5.47. In the last plot,
the graph has been reduced to a DAG such that the observer
must move towards the target at every step. This limits the
search space making branch-and-bound tractable, the opti-
mal solution with cost 17.98 is shown next to the solution
of the simplified problem (P5) (pale green) with cost 30.81.
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Figure 5: Exploratory scenario with fixed start and free end
point. The point cloud of the monument has been reduced
to a few hundred representative points (by random sam-
pling) to constrain the information matrix dimension. In
the middle left plot, the SDP solution giving lower bound
1.76 along with the “filled in” path found as the shortest
path on the graph with weights 1−x∗ (see Section 4), hav-
ing cost 3.18. Middle right, the GA solution on the reduced
graph obtained by sampling the SDP solution, with nodes
marked with black squares, shown in light green with cost
2.78. The dark green path is the result of the GA on the
full graph, seeded with the reduced solution, with cost 2.57.
Achieving similar cost using random initialization takes sig-
nificantly longer; the bottom graph shows the progression of
the objective value (Φ) over iterations of the proposed ge-
netic algorithms. The orange dashed curves show the max-
imum, minimum and median over 20 runs of the GA on
the full graph with random initialization. The green curves
show the same for the stratified approach, first running 250
iterations on the reduced graph, then switching to refine-
ment on the full graph. It is clear that the stratified scheme
converges much faster.

7 CONCLUSIONS

While the general problems considered in this paper
are demonstrably hard, satisfactory solutions can be
found sometimes directly from the SDP relaxation,
and often by the proposed genetic algorithm. In many
scenarios, the SDP solution gives hints as to what a
good path might look like, while in others it consists
of seemingly random, disconnected edges only. In
those cases the lower bound obtained is usually not

Figure 6: Top: stratified algorithm run on castle dataset, re-
duced to one hundred representative points using random
sampling. Bottom right: same scenario as on the left, but
here the information matrix at each node has been down-
weighted by the distance from the start node, to signify re-
duced confidence in future measurements. The pale purple
lines indicate the SDP solution, the green path the GA solu-
tion.

very tight and it is difficult to draw any conclusions
about the optimality of any path. This is of course to
be expected given the hardness of the problem. Nev-
ertheless, the SDP solution can always be used to seed
the GA optimizer in the proposed three-stage strati-
fied algorithm.

The linearized approximation (P5) sometimes
gives reasonable solutions, as in Fig. 3, but most
often does not show any proper long-term planning
behavior, as in Fig. 2. On a directed acyclic graph
(Fig. 4 right) it does have the advantage of being
extremely fast compared to the other methods.

For computational tractability, structure points
must be considered independent, and real point cloud
data need to be subsampled. How to best subsample
while preserving data characteristics has not yet
been considered. As the graph size and connectivity
increases, computational complexity also rises and
the quality of solutions attainable in reasonable time
drops. This limits the resolution of the discretization,
particularly in the orientation space, which means
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local, continuous refinement may be a desirable
second step. This we leave to future work.

Full source code to replicate the exper-
iments in this paper are available at http://
github.com/sebhaner/nbvdiscrete.
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