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Abstract: In this paper, we classify nucleotide sequences and their positions of influenza A viruses by using-both
cleotide sequence kernedsid phylogenetic tree kerneldn the nucleotide sequence kernel, we regard a nu-
cleotide sequence as a vector, a multiset and a string. In the phylogenetic tree kernel, welabeled
phylogenetic trembtained by replacing the labels of leaves that are indices of nucleotide sequences in the
reconstructed phylogenetic tree from a set of nucleotide sequences with the nucleotides at a fixed position and
trimmed phylogenetic treesbtained by trimming the branches in the relabeled phylogenetic tree with same
leaves as possible. Then, we observe which of kernels are effective the classification of nucleotide sequences
as analyzing pandemic occurrences and regions and the classification of positions in nucleotide sequences as
analyzing positions in packaging signals.

1 INTRODUCTION quences, we classify nucleotide sequences of pan-
demic viruses from ones of non-pandemic viruses,

In this paper, we classify nucleotide sequences andcalled pandemic classificatignand nucleotide se-

their positions of influenza A viruses by usimy- ~ quences at one region from ones at other regions,
cleotide sequence kernedsd phylogenetic tree ker- ~ called regional analysis for influenza A (H1N1)
nelsthrough LIBSVM (Chang and Lin, 2013). viruses as similar as (Hamada et al., 2013; Makino
In the nucleotide sequence kerne|sy we ugdee et al., 2012b, Shimada et al., 2013) As the target of
kernel a multiset kerne{Gartner, 2008) and spec- classification of positions in nucleotide sequences, we

trum string kernel(Leslie et al., 2002) by regarding Classify positions in packaging signals from ones not
a nucleotide sequence as a vector, a multiset and an packaging signals, callgzhckaging signal analysis
string, respectively. for influenza A (I—_|3N2) viruses as similar as (Makino
On the other hand, in the phylogenetic tree ker- €tal., 2012a; Shimada et al., 2012). _
nels, we prepareelabeled phylogenetic treesb- Hence, we observe that both th_e nucleotide se-
tained by replacing the labels of leaves that are indicesduence kernels and the phylogenetic tree kernels are
of nucleotide sequences in the reconstructed phy|oge_effec_t|ve to the pandemic classification. Also the nu-
netic tree from a set of nucleotide sequences with the cléotide sequence kernels and the leaf-path kernel are
nucleotides at a fixed position, aimmed phyloge- ~ €ffective to the packaging signal analysis. Further-
netic treesobtained by trimming the branches in the More, the phylogenetic tree kernels but none of nu-
relabeled phylogenetic tree with same leaves as pOS_cleoud_e sequence kernels are effective to the regional
sible. Then, we use aagreement subtree mapping analysis.
kernel(Hamada et al., 2013) andeaf-path kerneto
classify relabeled or trimmed phylogenetic trees.

As the target of classification of nucleotide se- 2 NUCLEOTIDE SEQUENCE

*This work is partially supported by Grant-in-Aid KERNELS

for Scientific Research 24240021, 24300060, 25540137, . .

26280085, 26280090 and 26370281 from the Ministry of Let Z be {A,C,G,T} with an alphabetical ordex.

Education, Culture, Sports, Science and Technology, Japan.Throughout of this paper, we assume that a nucleotide
TCurrent Affilication: Mazda Motor Corporation. sequence is a sequence®and every sequence in a

342 Hamada I., Shimada T., Nakata D., Hirata K. and Kuboyama T..
Classifying Nucleotide Sequences and their Positions of Influenza A Viruses through Several Kernels.
DOI: 10.5220/0005251103420347
In Proceedings of the International Conference on Pattern Recognition Applications and Methods (ICPRAM-2015), pages 342-347
ISBN: 978-989-758-076-5
Copyright ¢ 2015 SCITEPRESS (Science and Technology Publications, Lda.)



Classifying Nucleotide Sequences and their Positions of Influenza A Viruses through Several Kernels

set of nucleotide sequences has the same length.

v,w €V, we denote @athbetweerv andw by p(v,w).

First, we regard a nucleotide sequence as a vectorAlso we denote the number of edges in a pafh w)

onZX. Forxy e Z, we definedi(x,y) =1if x=y; 0
otherwise. Also we defin&(x,y) =1if x=y; 1/2if
(x,y) = (A,T),(T,A),(C,G),(G,C) (that is, base pairs
are weighted); O otherwise. Then, we defineaive
kernel K (j = 1,2) for two vectorsX = (xg,...,%n)
andY = (y1,...,¥n) (%,Yi € ) onZ as follows.

Kj(X,Y) = %Zléj(xi,yi).

Next, we regard a nucleotide sequence asudi-
set We callX C Z x N amultiseton 2. For a multiset
X, let'x (x) denote am such that(x,n) € X. Then,
we define anultiset product kernel K and amultiset
intersection kernel K for two multisetsX andY onX
as follows.

Ke(X,Y) = § I'x(a) - Ty(a),
K~A(X)Y) = %min{rx(a),l'y(a)}.

Finally, we regard a nucleotide sequence as a
string onZ. For a stringX € Z* and a substringe ~*
of X, letT'x(s) be the number of occurrences ®in
X. Also, fork € N, let=¥ be {s€ =* | |s| = k}. Then,
we define aspectrum string kernel Xfor two strings
X andY on X as follows.

K&(X,Y) = > Tx(s)-Tx(s).

se3k

3 PHYLOGENETIC TREE
KERNELS

A treeis a connected graph without cycles. For a tree
T = (V,E), we denote/ by V(T) andv e V(T) by
v e T. Arooted treeis a tree with one nodechosen
as itsroot.

For each node in a rooted tree with the roat
let UP, (v) be the unique path fromto v. Theparent
of v(# r), which we denote byar(v), is its adjacent
node onUP; (v) and theancestorsof v(# r) are the
nodes orUP; (v) — {v}. We say thati is achild of v
if vis the parent ofi, andu is adescendantf vif vis
an ancestor od.

In this paper, we use the ancestor ordersnd<,
thatis,u<vif visanancestoraiandu<vifu<v
or u=v. We say thatv is theleast common ancestor
of uandv, denoted byiLlv, if u<w, v<w, and there
exists now such thatv < w, u<w andv<w'.

Two nodes with the common parent are cakids
lings. A leaf is a node having no children. We denote
the set of leaves of a rooted trédy Iv(T). For nodes

by ne(v,w). It is obvious thane(v,v) = 0.

Arooted tree isinorderedf an order between sib-
lings is ignored. A rooted tree igaf-labeledif just
leaves are labeled by some symbols drawn feoamd
full binary if every internal node has just two chil-
dren. We denote the label of a leain Z by I (v). We
call a rooted unordered leaf-labeled full binary tree
a phylogenetic tree As a reconstruction of a phylo-
genetic tree from a set of nucleotide sequences, we
adopt aneighbor joining methodcf., (Durbin et al.,
1998; Sung, 2009)) based on the Hamming distance
between nucleotide sequences.

Let Sbe a set of nucleotide sequences with length
n and T a phylogenetic tree reconstructed frd®n
Then, we can obtain phylogenetic trees by relabel-
ing an index ofS assigned to the leaves ih with
the i-th nucleotide inS (1 <'i < n), which we call
a relabeled phylogenetic treat the positioni. Fur-
thermore, we call the phylogenetic tree obtained by
applying thelabel-based closest-neighbor trimming
method(Makino et al., 2012b; Makino et al., 2012a)
to the relabeled phylogenetic tree at the posititre
trimmed phylogenetic tregt the position.

In the remainder of this section, we introduce an
agreement subtree mapping kernel and a leaf-path
kernel as phylogenetic tree kernels.

Let T; andT, be phylogenetic trees. Then, we say
thatM C V(T1) x V(T») is amappingbetweenT; and
T, if M satisfies the following conditions.

1. V(vi,w1),(v2,W2) €M (vl =Vp < W1 = Wz).

2. VY(vi,w1), (v2,w2) € M (vl <vy = W < Wz).

Let T; andT, be phylogenetic trees ad a map-
ping betwee; andT,. Also letM" beM N (Iv(Ty) x
Iv(T2)). Then, we say tha¥l is anagreement subtree
mapping(Hamada et al., 2013) M satisfies the fol-
lowing conditions.

1. V(v,w) € M(ve v(T1) < we Iv(Tz)).

2. Y(v,w) € MV (| (V) = |(w)).
3. V(Vj_,W]_), (V2,W2) S Mlv((Vll_lVZ,W]_lJWz) S M).

4. Y(v,w) € M —M" 3(vy,wy), (V2,w2) € MV
((v:vll_lvz)/\(W:wll_lwz)).

Definition 1. Let T; and T, be phylogenetic trees.

Then, anagreement subtree mapping kernglthe

number of all of the agreement subtree mappings be-
tweenT; andT, and denote it bKam (T1, T2).
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For example, consider the tré&dllustrated in Fig- phylogenetic trees obtained from positive examples
ure 1 (left). Then, Figure 1 (right) illustrates all of is same as one from negative examples, which is the
the agreement subtree mappings betw&eand T. length of nucleotide sequences. On the other hand,
Hence, it holds thakam (T, T) = 6. the number of leaves in a relabeled phylogenetic tree

obtained from positive examples is different from one

/\/\ /\J /\ /\ ,,,,, /\ from negative examples, which is the number of nu-
® @ \ - ' ‘

cleotide sequences.
T NN Do S 4.1 Pandemic classification

Figure 1: The tred (left) and all of the agreement subtree
mappings betweef andT (right). In pandemic classification, we use 3670 nu-
cleotide sequences at 2008 and 2009 provided from
For a phylogenetic tre€ andv,w € Iv(T), we de- NCBI (Bao et al., 2008). The length of nucleotide se-
note the frequency of a pagifv,w) such that(v) = a, quences is 895, the number of nucleotide sequences
I(w) =bandnev,w) =k by fr(a,b,k). in non-pandemic viruses occurring at 2008 is 326 and

Definition 2. Let T; and T, be phylogenetic trees la-  9N€ inb?ande_r”nic virusesr(])ccurrinlg at 2039 irs1 3344.
beled by>. Then, theleaf-path kernel Ke(T1,Ty) Table 1 illustrates e F-value and the AUC
betweenT; andT; is defined as follows, wher& = of 5-fold Cross valldatlon_ clqssﬁylng nucleotld_e se-
2. maxddedT:).deq T-)}. quences in non-pandemlc viruses from ones in pan-
{den(Ta), den(T2)} demic viruses by using all the kernels through LIB-

A .
SVM (Chang and Lin, 2013).
KLP(Tl,Tz) = 22 Z Z le(a, b, k) . fT2 (a, b7 k) ( 9 )
ac2be> axbk=0
Table 1: The classification of nucleotide sequences in non-

~ For example, consider the treds and Tz in pandemic viruses from ones in pandemic viruses.
Figure 2 (upper). Then, we obtaify, (a,b,k) and
fr,(a,b,k) as Figure 2 (lower). Hence, it holds that [KiKe K. Ko KIKZKSKAKE Kiy Kip Kip

Kip(Ty, T2) = 16.
(T, T2) F-value‘ 1109990999 1 1 1 1 109110915 1

- AUC [1 109990999 1 1 1 1 1 0.9510.866 1
abk f, f,
(<>\. TAAO 3 2 In order to avoid the bias of the number of exam-
® ©© ® ® ;
AA2 1 0 ples, Table 2 illustrates the F-value and the AUC of 5-
T AA4 2 1 fold cross validation after randomly selecting 200 nu-
./<>\. AC2 1 2 cleotide sequences from 2008 and 2009, respectively.
AC4 2 2
ve_ww cco 1 2 Table 2: The classification of randomly selected 400 nu-
T2 cca 0 1

cleotide sequences in non-pandemic viruses from ones in

Figure 2: TreesT; and T, (left) and fr,(a,b,k) and pandemic viruses.

fr,(a,b, k) (right).

—

|K1 Kz Ke Ko KIKEKEKIKE Ky Kiy KipKlp

We denote an agreement subtree mapping kernel  Fvalug 1 1 09950997 1 1 1 1 109750975 1 1
(resp, a leaf-path kernel) for trimmed and relabeled AUCj 11099809951 1 1 1 109920998 1 1
phylogenetic trees bic},, andK},, (resp, K{ and
K{p), where we us&y,, justin Table 2.

Table 1 and 2 shows that, in the pandemic classi-
fication, all of the nucleotide sequence and the phylo-
genetic tree kernels succeed to classify well.

4 CLASSIFICATION OF 4.2 Regional Analysis
NUCLEOTIDE SEQUENCES

In regional analysis as an extension of the experimen-
In the classification of nucleotide sequences, we di- tal result of (Hamada et al., 2013), we divide 3670
vide a set of nucleotide sequences into positive and nucleotide sequences at 2008 and 2009 into seven re-
negative examples. Then, in the phylogenetic tree ker-gions as Africa (AF), Asia (AS), Europe (EU), Mid-
nels, we use two different phylogenetic trees recon- dle East (ME), North America (NA), Oceania (OC)
structed from positive and negative examples, respec-and South America (SA). Table 3 illustrates the num-
tively. Hence, the number of relabeled and trimmed ber of nucleotide sequences (#NS) and the number
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of phylogenetic trees (#PT) obtained by removing the F-value ofk¢ is larger than the F-value dﬁg. Then,
positions with the same nucleotide in seven regions. even if we give the value df larger than 5}(5 may
not give better performance in regional analysis.
Table 3: The number of nucleotide sequences (#NS) andthe  Next, in order to avoid the bias of the number of
number of phylogenetic trees (#PT) in seven regions. examples, we apply regional analysis for every pair of
regions. Table 5 illustrates the F-value and the AUC
of 5-fold cross validation classifying nucleotide se-

AF AS EU ME NA OC SA total

#NS 61 949 965 71 1403 47 174 3670 guences in one region as positive examples from nu-
% 166 2586 26.29 1.93 38.23 128 4.74 cleotide sequences in another region as negative ex-
#PT 289 593 487 311 538 290 344 2852 amples by using the_ phylogenetic tree keméﬂ\ﬁﬂ,

% 10.13 20.79 17.08 10.90 18.86 10.17 12.06 K{p andK/p, respectively.

Table 4 illustrates the F-value and the AUC of 5-
fold cross validation classifying nucleotide sequences
in one region given at the first line from nucleotide
sequences in the other regions by using all the kernels. AS EU ME NA OC SA

Table 5: The classification of nucleotide sequences in one
region from ones in another region.

- _ _ AF K., Fvalue 0967 1 0.940 0.989 0.949 0.994
Table 4: The classification of nucleotide sequences in one AUC 0.991 1 0.940 0.989 0.949 0.994
region given at the first line from ones in the other regions. Kip  Fvalue 0944 1 00914 0.975 0.956 0.993
AUC 0985 1 0925 0.995 0.967 0.999
AF AS EU ME NA OC SA Klp Fvalue, AUC 1 1 1 1 1 1
K, Fvalue 0 0029 0 0 0 0 0 AS Ki,  F-value 0.963 0.982 0.914 0.987 0.885
AUC " 0.622°0:690 0.657 0.63670.662 0.743 0.645 aUe PE2ANAEIF0. 21 N N S
Klp  F-value 0.996 0.975 0.865 0.984 0.910
Ky F-value 0 0012 0 0 0 0 O AUC 0.999 0.984 0.921 0.994 0.936
AUC 0.628 0.689 0.650 0.559 0.662 0.745 0.646 Kip F-value, AUC 1 1 1 1 1
K. F-value 0 0 0 0 0 0 0 EU Khy F-value 0.998 0.944 0.998 0.989
AUC 0.437 0.501 0.541 0.437 0.544 0.549 0.470 AUC 1 0971 1 0.999
Ko F-val 0 01270094 0 0257 0 O - L0960 1 0993
n mvalie ' : : AUC 1 0988 1 0999
AUC 0.445 0.550 0.616 0.499 0.593 0.637 0.562 Ki, Fovalue, AUC 1 1 1 1
1 Ea
Ks Fvalue 0 0 0 0 0 0 0 ME Ki, F-value 0.980 0.756 0.998
AUC 0.516 0.519 0.498 0.537 0.542 0.516 0.463 AUC 0.997 0.771 0.999
K§ Fvalue 0 0022 0 O 0478 0 0 Klp ~ Fvalue 0.977 0.920 0.998
AUC  0.495 0.612 0.596 0.452 0.666 0.531 0.660 AUC 0.991 0.934 0.999
K{p F-value, AUC 1 1 1
K¢ Fvalue 0 0.3880.351 O 0480 0 0.127 ;
AUC 0.713 0.708 0.708 0.550 0.720 0.624 0.825 NA Kay  Fvalue 0.996 0.937
AUC 0.999 0.969
K& F-value 0.382 0.534 0.507 0 0.546 0.155 0.375 Kl, F-value 0.992 0.932
AUC 0.713 0.708 0.708 0.550 0.720 0.624 0.825 AUC 0.997 0.954
Klp F-value, AUC 101
KS F-value 0.361 0.600 0.544 0.152 0.593 0.282 0.361 Lp Ve
AUC 0.793 0.786 0.759 0.653 0.763 0.763 0.934 oC Ki,  F-value 1
AUC 1
t %
Kiv F-value 0.911 0.766 0.929 0.031 0.830 0.300 0.753 K Fvalue 0.998
AUC 0.947 0.898 0.978 0.814 0.955 0.933 0.919 AUC 1
Kip F-value 0.873 0.802 0.962 0.853 0.637 0.881 0.837 Kip F-value, AUC 1

AUC 0,988 0.918 0.995 0.975 0.805 0.983 0.975

Note that Table 3 shows that the difference be-
tween the number of phylogenetic trees in AF and OC
is 1, one in OC and ME is 21, and one in ME and SA

Table 4 shows that, in regional analysis, while the is 33. Even such regionkj,,, K{, andK{ succeed
nucleotide sequence kernels fail to classify, the phy- to classify except foKj, for the regions of ME and
logenetic tree kernels succeed to classify well, except OC. In particular, forKy,, andK{y the F-value and
K!, for the regions of ME and OC. the AUC in Table 5 are larger than ones in Table 4.

In particular, for the spectrum string ke, the ~ Furthermorek{, succeeds to classify completely all
larger valuek tends to give the better performance ex- €gions with the F-value and the AUC of 1.
cept the regions of AF and SA; in their regions, the

Kp Fvalue 1 1 1 0998 1 1 1
AUC 1 1 1 0996 1 1 1
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5 CLASSIFICATION OF Table 6: The positions in packaging signals of RNA seg-
POSITIONS IN NUCLEOTIDE ments (Hutchinson et al., 2010).
SEQUENCES RNA length NCBI © )
PB2 2341 35-114, 2209-2304 174 2167

In the classification of positions in nucleotide se-

quences, we divide positions infmsitive positions PB1 2341 38-163,2197-2299 227 2114
in target positions andegative positionsot in tar- PA 2233 38-124,691-731, 742-767, 220 2013
get positions for a set of nucleotide sequences. Then, 2094-2156, 2169-2176

in the phylogenetic tree kernels, we use two differ- HA 1778 38-125, 1659-1671 99 1679
ent p.hylogenetlc trees recon;tructed_ from a set of nu- NP 1565 46165, 14821526 163 1402
cleotide sequences at positive positions and one at

negative positions, respectively. Hence, the number NA 1413 35-185,1211-1413 352 1061
of leaves in a relabeled phylogenetic tree obtained MP 1027 ¢ - -
from positive positions is same as one from nega- M0 2655 20 870

tive positions, which is the number of nucleotide se-
guences. On the other hand, the number of relabeled
and trimmed phylogenetic trees obtained from posi- Table 7: The classification of positive positions from nega-
tive positions is different from one from negative po- tive positions.

sitions, which is the length of nucleotide sequences.

PB2 PB1 PA HA NP NA NS

51 Packaging Slgna| Ky, K2, Ky, F-value 1 1 1 1 1 1 1

K REIK T AUCT™ N BT o | e 71 1 D I
The negative-sense RNA genome of the influenza A Kiw  F-value 0.9250.559 0.797 0.308 0.942 0.867 —
virus is composed of eight different segments; that s, Ay 0999091309890781 1 0.967 -
PB2, PB1, PA, HA, NP, NA, MP and NS. Since in- K{,  F-value 1 0.6490.9210.414 1 0.951 1
fluenza virions do not typically package more than FUC 1 0.9230.9660.859 1 0988 1
eight segments, the virus has evolved a selepiaak-
aging mechanismhich ensures that virions incorpo- Next, in order to avoid the bias of the number of
rate one copy of each of the eight segmentgpagk- positions and the positions with the same nucleotide,
aging signalis a nucleotide to cause such a selective for every RNA segment, we remove the positions in
packaging mechanism (Hutchinson et al., 2010). positive and negative positions where nucleotide is

Throughreverse genetigsegment-specific pack- same. As a result, the number of positive positions
aging signals have been found in unique regions adja-of PB2 decreases from 174 to 150; PB1 from 227 to
cent to the panhandle of each segment. Table 6 repre-113; PA from 220 to 87; HA from 99 to 77; NP from
sents the positions as packaging signals obtained by163 to 64; NA from 352 to 205; NS from 20 to 11.
reverse genetics summarized by (Hutchinson et al.,  Table 8 illustrates the F-value and the AUC of 5-
2010) in Virology. Here, the column “NCBI” de- fold cross validation classifying positive positions af-
notes the corresponding positions in nucleotide se- ter the removal of positions from randomly selected
guences of segments in influenza A (H3N2) viruses negative positions with the same number of positive
provided from NCBI (Bao et al., 2008). Also the col- positions by using the nucleotide sequence kernels ex-
umn(+) (resp, (—)) denotes the total number of pos-  ceptK& and the phylogenetic tree kernels.

itive (resp, negative) positions. Hence, Table 7 and 8 show thigt, Ko, K., Kn
andK{, succeed to classify the positions in packaging
5.2 Packaging Signal Analysis signals from ones not in packaging signals. In partic-

ular, the F-value oK{, for the NS segment is smaller
than the F-values for other segments. On the other
hand K},, andK{ do not classify well segments PA
and NA and segments PA, HA and NS, respectively.

In packaging signal analysis, we use 1560 nucleotide
sequences of influenza A (H3N2) viruses. Then,
Table 7 illustrates the F-value and the AUC of 5-
fold cross validation classifying positive positions
from negative positions by using the nucleotide se-
quence and the phylogenetic tree kernels through® CONCLUSION

LIBSVM (Chang and Lin, 2013). Here, we can ob-

tain no value oK}, for the NS segment. In this paper, we have classified nucleotide sequences
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Table 8: The classification of positive positions from ran- tion. J. Virol., 82:596-601. Also available at:
domly selected negative positions. http://www.ncbi.nlm.gov/genomes/FLUY/.
Chang, C.-C. and Lin, C.-J. (2013).IBSVM — A library
PB2 PB1I PA HA NP NA NS for support vector machine (version 3.17vailable
at http://www.csie.ntu.edu.tw/cjlin/libsvm.
Ki Fvalue 0999 1 1 1 1 0999 1 ) -
ac 1 1 1 1 1 1 1 Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998).
Biological sequence analysis: Probabilistic models
Ko Fvalue 0999 1 1 1 1 099 1 of proteins and nucleic acidsCambridge University
AULC 1 1 1 1 1 1 1 Press.
K, Fvalue 1 1 0999 1 0998 1 0994 Gartner, T. (2008)Kernels for structured dataworld Sci-
AUC 1 1 1 1 099 1 0.995 entific.

Hamada, I., Shimada, T., Hirata, K., and Kuboyama, T.
(2013). Agreement subtree mapping kernel for phy-
logenetic trees. IProc. DDS 13 pages 1-8.

K~ F-value 1 1 0999 1 0997 1 0.995
AUC 1 1 1 1 0999 1 0.996

Kim F-value 0.909 0.935 0.721 0.959 0.916 0.825 - Hutchinson, E. C., von Kirchbach, J. C., Gog, J. R., and
AUC 0.981 0.961 0.745 0.984 0.988 0.918 - Digard, P. (2010). Genome packaging in influenza A
Kp F-value 0.966 0.912 0.818 0.603 0.984 0.944 0.521 virus. J. Gen. Viral, 91:313-328.
AUC 0.986 0.933 0.856 0.585 0.999 0.952 0.330 Leslie, C. S., Eskin, E., and Noble, W. S. (2002). The spec-
trum kernel: A string kernel for svm protein classifi-
Kip Fvalue "1 11 "1 1 1 0916 cation. InProc. PSB 2002pages 566-575.

=2 & ! ! ! l B — Makino, S., Shimada, T., Hirata, K., Yonezawa, K., and

Ito, K. (2012a). A trim distance between positions as
and positions in them of influenza A viruses by using packaging signals in H3N2 influenza virusesPirc.
the phylogenetic tree and the nucleotide sequence ker-  SCIS-ISIS 201ages 1702-1707.
nels. Then, we have observed that both the nucleotideMakino, S., Shimada, T., Hirata, K., Yonezawa, K., and Ito,
sequence kernels and the phylogenetic tree kernelsare K- (2012b). Atrim distance between positions in nu-
effective to the pandemic classification. Also the nu- CIeOt'dglsegfences' fAroc. DS 2012 (LNAI 2569)
cleotide sequence kernels and the leaf-path kernel ar hages . 2

ffective to th kadi . | VS Furth eShimada, T., Hamada, 1., Hirata, K., Kuboyama, T.,
efiective 1o the packaging signal analysis. Further- Yonezawa, K., and Ito, K. (2013). Clustering of po-

more, the phylogenetic tree kernels and none of nu- sitions in nucleotide sequences by trim distance. In

cleotide sequence kernels are effective to the regional Proc. IIAI AAI 2013 pages 129-134.

analysis. Shimada, T., Hazemoto, T., Makino, S., Hirata, K., and Ito,
In the case that the phylogenetic tree kernels suc- K. (2012). Finding correlated mutations among rna

ceed to classify, two different phylogenetic trees re- segments in H3N2 influenza viruses. fnoc. SCIS-

constructed from positive and negative examples or ISIS 2012 pages 1696-1705.

positions work well as background knowledge in our Sung, W.-K. (2009) Algorithms in bioinformatics: A prac-
classification. This is typical for regional analysis tical introduction Chapman & Hall/CRC.
which the nucleotide sequence kernels fail to classify.
It is a future work to apply the regional analysis
to influenza A (H3N2) viruses and the analysis of po-
sitions in packaging signals to influenza A (H1N1)
viruses. Itis also an important future work to compare
the correlated mutations (Shimada et al., 2012) with
our results and to analyze our results from the view-
points of Virology. Furthermore, it is a future work
to analyze, classify and evaluate another nucleotide
sequences by using the phylogenetic tree kernels and
the nucleotide sequence kernels.
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