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Abstract: In this paper, we classify nucleotide sequences and their positions of influenza A viruses by using bothnu-
cleotide sequence kernelsandphylogenetic tree kernels. In the nucleotide sequence kernel, we regard a nu-
cleotide sequence as a vector, a multiset and a string. In the phylogenetic tree kernel, we use arelabeled
phylogenetic treeobtained by replacing the labels of leaves that are indices of nucleotide sequences in the
reconstructed phylogenetic tree from a set of nucleotide sequences with the nucleotides at a fixed position and
trimmed phylogenetic treesobtained by trimming the branches in the relabeled phylogenetic tree with same
leaves as possible. Then, we observe which of kernels are effective the classification of nucleotide sequences
as analyzing pandemic occurrences and regions and the classification of positions in nucleotide sequences as
analyzing positions in packaging signals.

1 INTRODUCTION

In this paper, we classify nucleotide sequences and
their positions of influenza A viruses by usingnu-
cleotide sequence kernelsandphylogenetic tree ker-
nelsthrough LIBSVM (Chang and Lin, 2013).

In the nucleotide sequence kernels, we use anäıve
kernel, a multiset kernel(Gärtner, 2008) and aspec-
trum string kernel(Leslie et al., 2002) by regarding
a nucleotide sequence as a vector, a multiset and a
string, respectively.

On the other hand, in the phylogenetic tree ker-
nels, we preparerelabeled phylogenetic treesob-
tained by replacing the labels of leaves that are indices
of nucleotide sequences in the reconstructed phyloge-
netic tree from a set of nucleotide sequences with the
nucleotides at a fixed position, andtrimmed phyloge-
netic treesobtained by trimming the branches in the
relabeled phylogenetic tree with same leaves as pos-
sible. Then, we use anagreement subtree mapping
kernel(Hamada et al., 2013) and aleaf-path kernelto
classify relabeled or trimmed phylogenetic trees.

As the target of classification of nucleotide se-
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quences, we classify nucleotide sequences of pan-
demic viruses from ones of non-pandemic viruses,
called pandemic classification, and nucleotide se-
quences at one region from ones at other regions,
called regional analysis, for influenza A (H1N1)
viruses as similar as (Hamada et al., 2013; Makino
et al., 2012b; Shimada et al., 2013). As the target of
classification of positions in nucleotide sequences, we
classify positions in packaging signals from ones not
in packaging signals, calledpackaging signal analysis
for influenza A (H3N2) viruses as similar as (Makino
et al., 2012a; Shimada et al., 2012).

Hence, we observe that both the nucleotide se-
quence kernels and the phylogenetic tree kernels are
effective to the pandemic classification. Also the nu-
cleotide sequence kernels and the leaf-path kernel are
effective to the packaging signal analysis. Further-
more, the phylogenetic tree kernels but none of nu-
cleotide sequence kernels are effective to the regional
analysis.

2 NUCLEOTIDE SEQUENCE
KERNELS

Let Σ be {A,C,G,T} with an alphabetical order�.
Throughout of this paper, we assume that a nucleotide
sequence is a sequence onΣ and every sequence in a
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set of nucleotide sequences has the same length.
First, we regard a nucleotide sequence as a vector

on Σ. For x,y ∈ Σ, we defineδ1(x,y) = 1 if x = y; 0
otherwise. Also we defineδ2(x,y) = 1 if x= y; 1/2 if
(x,y) = (A,T),(T,A),(C,G),(G,C) (that is, base pairs
are weighted); 0 otherwise. Then, we define anäıve
kernel Kj ( j = 1,2) for two vectorsX = (x1, . . . ,xn)
andY = (y1, . . . ,yn) (xi,yi ∈ Σ) on Σ as follows.

K j(X,Y) =
1
n

n

∑
i=1

δ j(xi ,yi).

Next, we regard a nucleotide sequence as amulti-
set. We callX ⊆ Σ×N amultisetonΣ. For a multiset
X, let ΓX(x) denote ann such that(x,n) ∈ X. Then,
we define amultiset product kernel K× and amultiset
intersection kernel K∩ for two multisetsX andY onΣ
as follows.

K×(X,Y) = ∑
a∈Σ

ΓX(a) ·ΓY(a),

K∩(X,Y) = ∑
a∈Σ

min{ΓX(a),ΓY(a)}.

Finally, we regard a nucleotide sequence as a
string onΣ. For a stringX ∈ Σ∗ and a substrings∈ Σ∗

of X, let ΓX(s) be the number of occurrences ofs in
X. Also, fork∈ N, let Σk be{s∈ Σ∗ | |s|= k}. Then,
we define aspectrum string kernel KkS for two strings
X andY on Σ as follows.

Kk
S(X,Y) = ∑

s∈Σk

ΓX(s) ·ΓX(s).

3 PHYLOGENETIC TREE
KERNELS

A tree is a connected graph without cycles. For a tree
T = (V,E), we denoteV by V(T) andv ∈ V(T) by
v∈ T. A rooted treeis a tree with one noder chosen
as itsroot.

For each nodev in a rooted tree with the rootr,
let UPr(v) be the unique path fromr to v. Theparent
of v(6= r), which we denote bypar(v), is its adjacent
node onUPr(v) and theancestorsof v(6= r) are the
nodes onUPr(v)−{v}. We say thatu is achild of v
if v is the parent ofu, andu is adescendantof v if v is
an ancestor ofu.

In this paper, we use the ancestor orders< and≤,
that is,u< v if v is an ancestor ofu andu≤ v if u< v
or u= v. We say thatw is theleast common ancestor
of u andv, denoted byu⊔v, if u≤ w, v≤ w, and there
exists now′ such thatw′ < w, u≤ w′ andv≤ w′.

Two nodes with the common parent are calledsib-
lings. A leaf is a node having no children. We denote
the set of leaves of a rooted treeT by lv(T). For nodes

v,w∈V, we denote apathbetweenv andw by p(v,w).
Also we denote the number of edges in a pathp(v,w)
by ne(v,w). It is obvious thatne(v,v) = 0.

A rooted tree isunorderedif an order between sib-
lings is ignored. A rooted tree isleaf-labeledif just
leaves are labeled by some symbols drawn fromΣ and
full binary if every internal node has just two chil-
dren. We denote the label of a leafv in Σ by l(v). We
call a rooted unordered leaf-labeled full binary tree
a phylogenetic tree. As a reconstruction of a phylo-
genetic tree from a set of nucleotide sequences, we
adopt aneighbor joining method(cf., (Durbin et al.,
1998; Sung, 2009)) based on the Hamming distance
between nucleotide sequences.

Let Sbe a set of nucleotide sequences with length
n and T a phylogenetic tree reconstructed fromS.
Then, we can obtainn phylogenetic trees by relabel-
ing an index ofS assigned to the leaves inT with
the i-th nucleotide inS (1 ≤ i ≤ n), which we call
a relabeled phylogenetic treeat the positioni. Fur-
thermore, we call the phylogenetic tree obtained by
applying thelabel-based closest-neighbor trimming
method(Makino et al., 2012b; Makino et al., 2012a)
to the relabeled phylogenetic tree at the positioni the
trimmed phylogenetic treeat the positioni.

In the remainder of this section, we introduce an
agreement subtree mapping kernel and a leaf-path
kernel as phylogenetic tree kernels.

Let T1 andT2 be phylogenetic trees. Then, we say
thatM ⊆V(T1)×V(T2) is amappingbetweenT1 and
T2 if M satisfies the following conditions.

1. ∀(v1,w1),(v2,w2) ∈ M
(

v1 = v2 ⇐⇒ w1 = w2

)

.

2. ∀(v1,w1),(v2,w2) ∈ M
(

v1 ≤ v2 ⇐⇒ w1 ≤ w2

)

.

Let T1 andT2 be phylogenetic trees andM a map-
ping betweenT1 andT2. Also letMlv beM∩(lv(T1)×
lv(T2)). Then, we say thatM is anagreement subtree
mapping(Hamada et al., 2013) ifM satisfies the fol-
lowing conditions.

1. ∀(v,w) ∈ M
(

v∈ lv(T1) ⇐⇒ w∈ lv(T2)
)

.

2. ∀(v,w) ∈ Mlv
(

l(v) = l(w)
)

.

3. ∀(v1,w1),(v2,w2)∈Mlv
(

(v1⊔v2,w1⊔w2)∈M
)

.

4. ∀(v,w) ∈ M−Mlv ∃(v1,w1),(v2,w2) ∈ Mlv
(

(v= v1⊔v2)∧ (w= w1⊔w2)
)

.

Definition 1. Let T1 and T2 be phylogenetic trees.
Then, anagreement subtree mapping kernelis the
number of all of the agreement subtree mappings be-
tweenT1 andT2 and denote it byKAM (T1,T2).
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For example, consider the treeT illustrated in Fig-
ure 1 (left). Then, Figure 1 (right) illustrates all of
the agreement subtree mappings betweenT and T.
Hence, it holds thatKAM (T,T) = 6.A A

T

Figure 1: The treeT (left) and all of the agreement subtree
mappings betweenT andT (right).

For a phylogenetic treeT andv,w∈ lv(T), we de-
note the frequency of a pathp(v,w) such thatl(v) = a,
l(w) = b andne(v,w) = k by fT(a,b,k).

Definition 2. Let T1 andT2 be phylogenetic trees la-
beled byΣ. Then, theleaf-path kernel KLP(T1,T2)
betweenT1 andT2 is defined as follows, where∆ =
2 ·max{dep(T1),dep(T2)}.

KLP(T1,T2) = ∑
a∈Σ

∑
b∈Σ,a�b

∆

∑
k=0

fT1(a,b,k) · fT2(a,b,k).

For example, consider the treesT1 and T2 in
Figure 2 (upper). Then, we obtainfT1(a,b,k) and
fT2(a,b,k) as Figure 2 (lower). Hence, it holds that
KLP(T1,T2) = 16.

A C A A
T1A C A C
T2

a b k fT1 fT2

A A 0 3 2
A A 2 1 0
A A 4 2 1
A C 2 1 2
A C 4 2 2
C C 0 1 2
C C 4 0 1

Figure 2: TreesT1 and T2 (left) and fT1(a,b,k) and
fT2(a,b,k) (right).

We denote an agreement subtree mapping kernel
(resp., a leaf-path kernel) for trimmed and relabeled
phylogenetic trees byKt

AM andKr
AM (resp., Kt

LP and
Kr

LP), where we useKr
AM just in Table 2.

4 CLASSIFICATION OF
NUCLEOTIDE SEQUENCES

In the classification of nucleotide sequences, we di-
vide a set of nucleotide sequences into positive and
negative examples. Then, in the phylogenetic tree ker-
nels, we use two different phylogenetic trees recon-
structed from positive and negative examples, respec-
tively. Hence, the number of relabeled and trimmed

phylogenetic trees obtained from positive examples
is same as one from negative examples, which is the
length of nucleotide sequences. On the other hand,
the number of leaves in a relabeled phylogenetic tree
obtained from positive examples is different from one
from negative examples, which is the number of nu-
cleotide sequences.

4.1 Pandemic classification

In pandemic classification, we use 3670 nu-
cleotide sequences at 2008 and 2009 provided from
NCBI (Bao et al., 2008). The length of nucleotide se-
quences is 895, the number of nucleotide sequences
in non-pandemic viruses occurring at 2008 is 326 and
one in pandemic viruses occurring at 2009 is 3344.

Table 1 illustrates the F-value and the AUC
of 5-fold cross validation classifying nucleotide se-
quences in non-pandemic viruses from ones in pan-
demic viruses by using all the kernels through LIB-
SVM (Chang and Lin, 2013).

Table 1: The classification of nucleotide sequences in non-
pandemic viruses from ones in pandemic viruses.

K1 K2 K× K∩ K1
S K2

S K3
S K4

S K5
S Kt

AM Kt
LP K r

LP

F-value 1 1 0.999 0.999 1 1 1 1 1 0.911 0.915 1

AUC 1 1 0.999 0.999 1 1 1 1 1 0.951 0.866 1

In order to avoid the bias of the number of exam-
ples, Table 2 illustrates the F-value and the AUC of 5-
fold cross validation after randomly selecting 200 nu-
cleotide sequences from 2008 and 2009, respectively.

Table 2: The classification of randomly selected 400 nu-
cleotide sequences in non-pandemic viruses from ones in
pandemic viruses.

K1 K2 K× K∩ K1
S K2

S K3
S K4

S K5
S Kt

AM K r
AM Kt

LP K r
LP

F-value 1 1 0.995 0.997 1 1 1 1 1 0.975 0.975 1 1

AUC 1 1 0.998 0.995 1 1 1 1 1 0.992 0.998 1 1

Table 1 and 2 shows that, in the pandemic classi-
fication, all of the nucleotide sequence and the phylo-
genetic tree kernels succeed to classify well.

4.2 Regional Analysis

In regional analysis as an extension of the experimen-
tal result of (Hamada et al., 2013), we divide 3670
nucleotide sequences at 2008 and 2009 into seven re-
gions as Africa (AF), Asia (AS), Europe (EU), Mid-
dle East (ME), North America (NA), Oceania (OC)
and South America (SA). Table 3 illustrates the num-
ber of nucleotide sequences (#NS) and the number
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of phylogenetic trees (#PT) obtained by removing the
positions with the same nucleotide in seven regions.

Table 3: The number of nucleotide sequences (#NS) and the
number of phylogenetic trees (#PT) in seven regions.

AF AS EU ME NA OC SA total

#NS 61 949 965 71 1403 47 174 3670

% 1.66 25.86 26.29 1.93 38.23 1.28 4.74

#PT 289 593 487 311 538 290 344 2852

% 10.13 20.79 17.08 10.90 18.86 10.17 12.06

Table 4 illustrates the F-value and the AUC of 5-
fold cross validation classifying nucleotide sequences
in one region given at the first line from nucleotide
sequences in the other regions by using all the kernels.

Table 4: The classification of nucleotide sequences in one
region given at the first line from ones in the other regions.

AF AS EU ME NA OC SA

K1 F-value 0 0.029 0 0 0 0 0

AUC 0.622 0.690 0.657 0.636 0.662 0.743 0.645

K2 F-value 0 0.012 0 0 0 0 0

AUC 0.628 0.689 0.650 0.559 0.662 0.745 0.646

K× F-value 0 0 0 0 0 0 0

AUC 0.437 0.501 0.541 0.437 0.544 0.549 0.470

K∩ F-value 0 0.127 0.094 0 0.257 0 0

AUC 0.445 0.550 0.616 0.499 0.593 0.637 0.562

K1
S F-value 0 0 0 0 0 0 0

AUC 0.516 0.519 0.498 0.537 0.542 0.516 0.463

K2
S F-value 0 0.022 0 0 0.478 0 0

AUC 0.495 0.612 0.596 0.452 0.666 0.531 0.660

K3
S F-value 0 0.388 0.351 0 0.480 0 0.127

AUC 0.713 0.708 0.708 0.550 0.720 0.624 0.825

K4
S F-value 0.382 0.534 0.507 0 0.546 0.155 0.375

AUC 0.713 0.708 0.708 0.550 0.720 0.624 0.825

K5
S F-value 0.361 0.600 0.544 0.152 0.593 0.282 0.361

AUC 0.793 0.786 0.759 0.653 0.763 0.763 0.934

Kt
AM F-value 0.911 0.766 0.929 0.031 0.830 0.300 0.753

AUC 0.947 0.898 0.978 0.814 0.955 0.933 0.919

Kt
LP F-value 0.873 0.802 0.962 0.853 0.637 0.881 0.837

AUC 0,988 0.918 0.995 0.975 0.805 0.983 0.975

K r
LP F-value 1 1 1 0.998 1 1 1

AUC 1 1 1 0.996 1 1 1

Table 4 shows that, in regional analysis, while the
nucleotide sequence kernels fail to classify, the phy-
logenetic tree kernels succeed to classify well, except
Kt

AM for the regions of ME and OC.
In particular, for the spectrum string kernelKk

S, the
larger valuek tends to give the better performance ex-
cept the regions of AF and SA; in their regions, the

F-value ofK4
S is larger than the F-value ofK5

S. Then,
even if we give the value ofk larger than 5,Kk

S may
not give better performance in regional analysis.

Next, in order to avoid the bias of the number of
examples, we apply regional analysis for every pair of
regions. Table 5 illustrates the F-value and the AUC
of 5-fold cross validation classifying nucleotide se-
quences in one region as positive examples from nu-
cleotide sequences in another region as negative ex-
amples by using the phylogenetic tree kernelsKt

AM ,
Kt

LP andKr
LP, respectively.

Table 5: The classification of nucleotide sequences in one
region from ones in another region.

AS EU ME NA OC SA

AF Kt
AM F-value 0.967 1 0.940 0.989 0.949 0.994

AUC 0.991 1 0.940 0.989 0.949 0.994

Kt
LP F-value 0.944 1 0.914 0.975 0.956 0.993

AUC 0.985 1 0.925 0.995 0.967 0.999

K r
LP F-value, AUC 1 1 1 1 1 1

AS Kt
AM F-value 0.963 0.982 0.914 0.987 0.885

AUC 0.990 0.991 0.945 0.994 0.871

Kt
LP F-value 0.996 0.975 0.865 0.984 0.910

AUC 0.999 0.984 0.921 0.994 0.936

K r
LP F-value, AUC 1 1 1 1 1

EU Kt
AM F-value 0.998 0.944 0.998 0.989

AUC 1 0.971 1 0.999

Kt
LP F-value 1 0.960 1 0.993

AUC 1 0.988 1 0.999

K r
LP F-value, AUC 1 1 1 1

ME Kt
AM F-value 0.980 0.756 0.998

AUC 0.997 0.771 0.999

Kt
LP F-value 0.977 0.920 0.998

AUC 0.991 0.934 0.999

K r
LP F-value, AUC 1 1 1

NA Kt
AM F-value 0.996 0.937

AUC 0.999 0.969

Kt
LP F-value 0.992 0.932

AUC 0.997 0.954

K r
LP F-value, AUC 1 1

OC Kt
AM F-value 1

AUC 1

Kt
LP F-value 0.998

AUC 1

K r
LP F-value, AUC 1

Note that Table 3 shows that the difference be-
tween the number of phylogenetic trees in AF and OC
is 1, one in OC and ME is 21, and one in ME and SA
is 33. Even such regions,Kt

AM , Kt
LP andKr

LP succeed
to classify except forKt

AM for the regions of ME and
OC. In particular, forKt

AM andKt
LP the F-value and

the AUC in Table 5 are larger than ones in Table 4.
Furthermore,Kr

LP succeeds to classify completely all
regions with the F-value and the AUC of 1.
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5 CLASSIFICATION OF
POSITIONS IN NUCLEOTIDE
SEQUENCES

In the classification of positions in nucleotide se-
quences, we divide positions intopositive positions
in target positions andnegative positionsnot in tar-
get positions for a set of nucleotide sequences. Then,
in the phylogenetic tree kernels, we use two differ-
ent phylogenetic trees reconstructed from a set of nu-
cleotide sequences at positive positions and one at
negative positions, respectively. Hence, the number
of leaves in a relabeled phylogenetic tree obtained
from positive positions is same as one from nega-
tive positions, which is the number of nucleotide se-
quences. On the other hand, the number of relabeled
and trimmed phylogenetic trees obtained from posi-
tive positions is different from one from negative po-
sitions, which is the length of nucleotide sequences.

5.1 Packaging Signal

The negative-sense RNA genome of the influenza A
virus is composed of eight different segments, that is,
PB2, PB1, PA, HA, NP, NA, MP and NS. Since in-
fluenza virions do not typically package more than
eight segments, the virus has evolved a selectivepack-
aging mechanismwhich ensures that virions incorpo-
rate one copy of each of the eight segments. Apack-
aging signalis a nucleotide to cause such a selective
packaging mechanism (Hutchinson et al., 2010).

Throughreverse genetics, segment-specific pack-
aging signals have been found in unique regions adja-
cent to the panhandle of each segment. Table 6 repre-
sents the positions as packaging signals obtained by
reverse genetics summarized by (Hutchinson et al.,
2010) in Virology. Here, the column “NCBI” de-
notes the corresponding positions in nucleotide se-
quences of segments in influenza A (H3N2) viruses
provided from NCBI (Bao et al., 2008). Also the col-
umn(+) (resp., (−)) denotes the total number of pos-
itive (resp., negative) positions.

5.2 Packaging Signal Analysis

In packaging signal analysis, we use 1560 nucleotide
sequences of influenza A (H3N2) viruses. Then,
Table 7 illustrates the F-value and the AUC of 5-
fold cross validation classifying positive positions
from negative positions by using the nucleotide se-
quence and the phylogenetic tree kernels through
LIBSVM (Chang and Lin, 2013). Here, we can ob-
tain no value ofKt

AM for the NS segment.

Table 6: The positions in packaging signals of RNA seg-
ments (Hutchinson et al., 2010).

RNA length NCBI (+) (−)

PB2 2341 35–114, 2209–2304 174 2167

PB1 2341 38–163, 2197–2299 227 2114

PA 2233 38–124, 691–731, 742–767, 220 2013

2094–2156, 2169–2176

HA 1778 38–125, 1659–1671 99 1679

NP 1565 46–165, 1482–1526 163 1402

NA 1413 35–185, 1211–1413 352 1061

MP 1027 ε – –

NS 890 36–56 20 870

Table 7: The classification of positive positions from nega-
tive positions.

PB2 PB1 PA HA NP NA NS

K1, K2, K×, F-value 1 1 1 1 1 1 1

K∩, Kk
S , K r

LP AUC 1 1 1 1 1 1 1

Kt
AM F-value 0.925 0.559 0.797 0.308 0.942 0.867 –

AUC 0.999 0.913 0.989 0.781 1 0.967 –

Kt
LP F-value 1 0.649 0.921 0.414 1 0.951 1

AUC 1 0.923 0.966 0.859 1 0.988 1

Next, in order to avoid the bias of the number of
positions and the positions with the same nucleotide,
for every RNA segment, we remove the positions in
positive and negative positions where nucleotide is
same. As a result, the number of positive positions
of PB2 decreases from 174 to 150; PB1 from 227 to
113; PA from 220 to 87; HA from 99 to 77; NP from
163 to 64; NA from 352 to 205; NS from 20 to 11.

Table 8 illustrates the F-value and the AUC of 5-
fold cross validation classifying positive positions af-
ter the removal of positions from randomly selected
negative positions with the same number of positive
positions by using the nucleotide sequence kernels ex-
ceptKk

S and the phylogenetic tree kernels.
Hence, Table 7 and 8 show thatK1, K2, K×, K∩

andKr
LP succeed to classify the positions in packaging

signals from ones not in packaging signals. In partic-
ular, the F-value ofKr

LP for the NS segment is smaller
than the F-values for other segments. On the other
hand,Kt

AM andKt
LP do not classify well segments PA

and NA and segments PA, HA and NS, respectively.

6 CONCLUSION

In this paper, we have classified nucleotide sequences
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Table 8: The classification of positive positions from ran-
domly selected negative positions.

PB2 PB1 PA HA NP NA NS

K1 F-value 0.999 1 1 1 1 0.999 1

AUC 1 1 1 1 1 1 1

K2 F-value 0.999 1 1 1 1 0.999 1

AUC 1 1 1 1 1 1 1

K× F-value 1 1 0.999 1 0.998 1 0.994

AUC 1 1 1 1 0.999 1 0.995

K∩ F-value 1 1 0.999 1 0.997 1 0.995

AUC 1 1 1 1 0.999 1 0.996

Kt
AM F-value 0.909 0.935 0.721 0.959 0.916 0.825 –

AUC 0.981 0.961 0.745 0.984 0.988 0.918 –

Kt
LP F-value 0.966 0.912 0.818 0.603 0.984 0.944 0.521

AUC 0.986 0.933 0.856 0.585 0.999 0.952 0.330

K r
LP F-value 1 1 1 1 1 1 0.916

AUC 1 1 1 1 1 1 0.966

and positions in them of influenza A viruses by using
the phylogenetic tree and the nucleotide sequence ker-
nels. Then, we have observed that both the nucleotide
sequence kernels and the phylogenetic tree kernels are
effective to the pandemic classification. Also the nu-
cleotide sequence kernels and the leaf-path kernel are
effective to the packaging signal analysis. Further-
more, the phylogenetic tree kernels and none of nu-
cleotide sequence kernels are effective to the regional
analysis.

In the case that the phylogenetic tree kernels suc-
ceed to classify, two different phylogenetic trees re-
constructed from positive and negative examples or
positions work well as background knowledge in our
classification. This is typical for regional analysis
which the nucleotide sequence kernels fail to classify.

It is a future work to apply the regional analysis
to influenza A (H3N2) viruses and the analysis of po-
sitions in packaging signals to influenza A (H1N1)
viruses. It is also an important future work to compare
the correlated mutations (Shimada et al., 2012) with
our results and to analyze our results from the view-
points of Virology. Furthermore, it is a future work
to analyze, classify and evaluate another nucleotide
sequences by using the phylogenetic tree kernels and
the nucleotide sequence kernels.
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