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Abstract: Systems for complexity estimation typically aim to quantify the overall complexity of a domain, with the
goal of comparing the hardness of different datasets or to associate a classification task to an algorithm that is
deemed best suited for it. In this work we describeMultiResolution Complexity Analysis, a novel method for
partitioning a dataset into regions of different classification complexity, with the aim of highlighting sources of
complexity or noise inside the dataset. Initial experiments have been carried out on relevant datasets, proving
the effectiveness of the proposed method.

1 INTRODUCTION

Many experimental works on classification algo-
rithms attempt to analyze the behavior of classifiers
by studying their performances on different domains.
However, the reasons behind the classifier’s success
(or failure) are rarely investigated. The connec-
tion between data characteristics and classifier design
and performance has received attention only recently
(Sohn, 1999). The aim of this emerging research area
is to discover and analyze characteristics of the data
that are related to itsclassification complexity.

A very simple measure of data complexity is the
accuracy (or some other performance metric) of the
adopted classifier on the dataset at hand. However,
this measure does not give any insight on the reasons
for which the classifier achieves that performance.
Moreover, theoretical studies most often reach very
loose bounds, that are not useful in practice (i.e., the
Bayes error (Fukunaga, 1990); a notable work by
Tumer (Tumer and Ghosh, 1996) aims at estimating
the Bayes error through classifiers combination).

A work by Ho details how some measures can
help discriminate an easy problem from difficult ones,
for example, average number of points per dimension,
maximum Fisher’s discriminant ratio, non-linearity of
nearest neighbor classifier (Ho and Basu, 2000). In
another work, Ho shows how to use these metrics to
select between different kinds of ensemble classifiers
for a particular classification task (Ho, 2000).

In order to find complexity measures easier to cal-

culate than the Bayes error, various authors compare
their metrics to the Bayes error itself (which is con-
sidered the golden standard). Of course, this kind of
comparison is only possible with domains for which
the Bayes error can be calculated with analytical or
numerical methods, or on datasets for which lower
and upper bounds on the Bayes error are relatively
close to one another (Bhattacharyya, 1943).

On the other hand, Singh (Singh, 2003) calcu-
lates a complexity metric by partitioning the feature
spaces into hyper cuboid, and proves the effectiveness
of his metric by showing its correlation with the per-
formance of a real classifier on unseen test data.

In the recent years, various complexity measures
have been applied to compare classifiers in order to
find the optimal classification algorithm for a given
domain (Mansilla and Ho, 2005), (Luengo and Her-
rera, 2012). In (Sotoca et al., 2006), the authors de-
scribe an automatic framework for the selection of an
optimal classifier. Finally, in (Luengo et al., 2011) the
authors apply the measures of complexity to analyze
the behavior of various techniques for imbalance re-
duction.

In general, the current literature on the topic con-
siders a dataset as a whole, to either find the most
important characterization of its complexity, as in the
case of (Ho and Basu, 2000), or to rank datasets by
their “overall” complexity.

In fact, instead of estimating the overall complex-
ity of a domain, we aim at estimating its local char-
acteristics, in order to find high-complexity regions
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inside a dataset. This can be viewed as a particu-
lar way of exploiting boundary information (Pierson
et al., 1998), which has been used in other works to
extrapolate a measure for the whole dataset (Pierson
et al., 1998).

In this work we proposeMRCA(i.e., MultiReso-
lution Complexity Analysis), a method for identify-
ing regions of different complexity in a dataset. The
remainder of the paper is organized as follows: Sec-
tion 2 illustrates the proposed method for identifying
regions of different complexity. Section 3 illustrates
and discusses experimental results. Conclusions and
future work (Section 4) end the paper.

2 METHOD DESCRIPTION

Let us have adatasetdefined as a set ofN object-label
pairs. Each object is described by a vector offeatures
drawn from a feature spaceX . The label associated
with each object is an element of a finite set ofclasses
Y . We can then writeD = {(xi ,yi), i = 1, . . . ,N}. In
the following, with a small abuse of notation, we will
write x∈D to refer to the feature vector of an element
in the dataset, andy(x) to refer to the observed label
associated to it. As the method we are proposed has
only been tested on binary datasets, for convenience
we will assume thatY = {−1,+1}.

A classifierfor a datasetD is a computable func-
tion c which returns apredictedlabel for an object
given as input. In general, the form ofc is indepen-
dent of the dataset, and a set of parameters need to
be set. When the predicted label differs from the true
one present in the dataset, we say that the classifier
has committed an error.

A training algorithmfor a classifierc over atrain-
ing datasetT (often T ⊂ D) is an algorithm which
takes the elements ofT as examples to set the free
parameters ofc. Often, the parameters are set to min-
imize the number of errors over the training set, but
various refinements may be used to try to reduce the
number of errors on unseen instances.

What we propose is a method to identify the inher-
ent complexity of groups of elements in the dataset, so
that it can be split into regions of different complex-
ity. We will show that the method is always capable
of separating the “hard” regions (in which the classi-
fication accuracy is always less than 50%) from the
“easy” and “average” regions.

MRCAoperates according to the following steps:

1. Define a transformation able to map elements of
the given dataset to aprofile spaceP and apply
the transformation to every element in the dataset;

2. Cluster the items in the profile space –with the un-
derlying assumption that items with similar com-
plexity occur close to each other in this space;

3. Evaluate the inherent complexity of each cluster
and rank clusters according to a complexity metric
calledmultiresolution index(MRI for short).

Our algorithm has to be applied on the “training”
part of the dataset, as it needs to know the class label
yx of each instancex.

2.1 First Step: Generating a Profile
Space

The first step is aimed at facilitating the task of esti-
mating the complexity of a samplex∈ D. To this end,
we apply a technique calledmultiresolution analysis.
We estimate the complexity of the sample by drawing
around it hyper spheres of different radii. The con-
tent of each hypersphere is then analyzed by means of
a lightweight but effective complexity metric, called
imbalance estimation function. Given a set of exam-
plesD, and recalling thatY = {−1,+1}, the imbal-
ance estimation function is defined as follows:

ψD(x,σ) = y(x) ·
∑x′c∈D y(x′c) ·φσ(x,x′)

∑x′c∈D φσ(x,x′)
∀x ∈ D

(1)
where x is the center of the current hypersphere,
whose extension is controlled by thescale factorσ,
x′c is a generic feature vector inD, andφσ(x,x′) is
a function (probehereinafter) devised to account for
the importance ofx′c with respect to the objectx un-
der analysis. As a design choice, the probe is also
entrusted with checking whetherx′c is within the cur-
rent hypersphere or not. In particular, the value re-
turned by the probe will be zero whenx′c is outside
it. The simplest definition for the probe would be a
sharp boundary checker, which returns 0 outside the
hypersphere and 1 inside. A more sophisticated pol-
icy would constrainφ to play the role of a fuzzy mem-
bership function, entrusted with asserting to which
extent the samplex′c belongs to the probe centered in
x. In this case, a value in the range[0,1] would be
returned whenx′c is inside the hypersphere, depend-
ing on its proximity withx (the closer the higher). It
can be easily shown that, by definition,ψ ranges in
[−1,+1]. In particular:

• ψ ≈ −1 indicates a strong imbalance among the
samples that occur within the probe, with labeling
mostly different from the one ofx;

• ψ ≈ 0 indicates that positive and negative samples
are equally distributed within the probe;
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• ψ ≈ +1 indicates a strong imbalance among the
samples that occur within the probe, with labeling
mostly equal to the one ofx.

The number of hyper spheres beingm, each sam-
ple x ∈ D would be described in the profile spaceP

by a vector ofm components. Aprofile p ∈ P for an
x ∈ D is obtained by repeatedly varying the scale fac-
tor in ψ, which forces the generation and evaluation
of probes with different size. The set of adopted scale
factors{σ1,σ2, . . . ,σm} must be drawn in accordance
with the wanted size of the profile, with the additional
constraint thatσ1 < σ2 < .. . < σm. In doing so, the
profile for a samplex ∈ D is given by:

p = [ψD(x,σ1), . . . ,ψD(x,σm)] = ΨD(x) (2)

Applying the profile transformationΨ to every ele-
ment in a set of instancesD gives rise to a set of
profile patternsDP, with elements belonging to the
profile spaceP = [−1,+1]m.

We would like to stress that to apply the profile
transformation, we need both the feature vector and
the label associated with it.

2.2 Step Two: Clustering the Profile
Space

Applying centroid-based clustering toDP allows to
identify regions characterized by different degrees of
classification complexity. Assuming that a distance
functiond is defined inP , each cluster can be iden-
tified by its proper centroid, yielding a set ofr cen-
troids:

C = { p(k) |k= 1,2, . . . , r } (3)

Thek-th element of the underlying partition overDP
is defined as:

D
(k)
P = {p ∈ DP | fk(p) = 1} k= 1, . . . , r (4)

wherefk : p →{0,1} is the characteristic function for
thek-th cluster, which relies on the distance function
as follows:

fk(p) =







1 k= argmin
1≤ j≤r

d(p,p( j))

0 otherwise
(5)

As for eachx∈ D a correspondentp∈ DP exists, also
the original datasetD can be clustered accordingly. In
symbols:

D(k) = { (x,y(x)) |Ψ(x) ∈ D
(k)
P } k= 1, . . . , r (6)

2.3 Step Three: Complexity Estimation

The third step of the proposed method is aimed at es-
timating the complexity of each cluster, with the goal
of ranking them according to their complexity.

To estimate the complexity, we defined a simple
metric calledMulti Resolution Index. The MRI can
be calculated for an element inDP or for a cluster. In
either case, it ranges in [0, 1] (the higher the value is,
the more complex the corresponding pattern or cluster
is). We decided to adopt a cumulative strategy, which
uses the first kind ofMRI to evaluate the second.

As for a single patternp ∈ P , we realized that the
components of a profile with finer granularity carry
more information about the difficulty of classifying a
pattern. To take into account this aspect, we opted
to weight the components according to the size of the
probe. In particular, theMRI of a pattern in the profile
space is defined as:

MRI(p) =
1

2m
·

m

∑
j=1

wj · [1− p j] (7)

where wj ( j = 1,2, . . . ,m) denote weights applied
to the components ofp. In particular, to imple-
ment a policy that weights more the components
with finer granularity, one may get the actual values
[w1,w2, . . . ,wm] as samples of a monotonically de-
creasing function.

To compute theMRI of a cluster, we average the
adopted metric on the patterns that belong to the clus-
ter:

MRI(k) =
1

|D
(k)
P |

· ∑
p∈D

(k)
P

MRI(p) (8)

MRI(k) is expected to yield small values when thek-
th cluster is characterized by a strong imbalance that
agrees with the labeling of the cluster elements them-
selves, asψ ≈ 1. The worst case occurs when the
imbalance is against the labeling of the cluster ele-
ments, which yieldsMRI(k) ≈ 1. In case of a bal-
anced cluster,MRI(k) ≈ 1

2. As a final note on the pro-
posed method, let us point out that, by virtue of the
backward mapping between the clusters inDP and
the clusters inD, the ranking holds also forD(k) –
notwithstanding the fact that the samples correspond-
ing to the components of a cluster are typically scat-
tered along the feature space rather than being close
to each other.

3 EXPERIMENTAL RESULTS

3.1 Parameters Setting

The proposed method is customizable along several
dimensions, which are preliminarily summarized be-
low.
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Shape of the probe. As already pointed out, we as-
sume the probe be spherically shaped1. According to
this assumption, a probe will be completely charac-
terized by the reference samplex and by the radiusσ
of the hypersphere. The adopted probing functionφ
is the boundary checker, defined as:

φσ(x,x′) =
{

1 ‖x′− x‖ ≤ σ
0 otherwise

(9)

In agreement with Equation 9, the imbalance esti-
mation function defined in Equation 1 can be rewrit-
ten as:

ψD(x,σ) = y(x) ·
N+

σ (x)−N−
σ (x)

N+
σ (x)+N−

σ (x)
(10)

whereN+
σ (x) andN−

σ (x) are the number of patterns
in D with label+1 and−1 in the hypersphere with
centerx and radiusσ.

Distance measure. In the experiments we adopted the
Euclidean distance, defined as:

d(p,p′) =

√

m

∑
j=1

[

p j −p′
j

]2 p,p′ ∈ P (11)

Of course, other distance metrics are also applicable
(e.g., a la mode ofp-norms).

Cardinality of the profile space. We ran the experi-
ments with multiple values for the cardinality of the
transformed space. Experiments have been run with a
value form that falls between 10 and 50.

Scaling strategy. The radius of the probe is scaled
linearly using the scale factorσ up to the greatest
value σmax, which is calculated as the value of the
radius for which the corresponding hypersphere con-
tains (on average) a fixed percentage of the dataset
elements, sayρ. We ran our experiments withρ =
0.05,0.1,0.15,0.2. The expression forσ j is given by:

σ j =
j
m
·σmax j = 1,2, . . . ,m (12)

Weighting policy. The weighting policy has been de-
fined in accordance with the adopted scaling strategy.
We imposed a linear behavior also to this function. In
symbols:

wj = 1−
j −1
m

j = 1,2, . . . ,m (13)

Partitioning strategy and cardinality of the partition.
The k-means algorithm has been adopted to imple-
ment the clustering strategy. The choice felt tok-
means, due to its simplicity among the centroid-based

1In presence of clear differences among the dimensions
of the feature space, which can be put into evidence by cal-
culating the covariance matrix from the available samples,
one may decide to preliminarily equalize the space.

clustering algorithms. It turns out that its main limi-
tation, namely the need for specifying the number of
clusters by hand, was in fact useful in this setting. Ex-
periments have been run varying the number of clus-
ters from 3 to 5. In particular, withr = 3, we were
expecting the cluster algorithm to identify a “hard”
cluster and an “easy” cluster, together with a medium
complexity cluster.

3.2 Datasets

To assess the validity of the proposed method, we per-
formed experiments on various binary datasets. We
opted for the KEEL repository (Alcalá-Fdez et al.,
2011), which contains several binary datasets able to
guarantee the statistical significance of experimental
results. The selected datasets are characterized as fol-
lows:

Type of features. We have selected only datasets with
only real-valued features.

Dimensionality of the feature space. With the goal of
testing the effectiveness of the proposed method on
different feature spaces, we selected datasets whose
number of features goes from 2 to 57.

The selected datasets are summarized in Table 2.
Some of them are also hosted by the UCI repository
(Bache and Lichman, 2013).

3.3 Results

We applied PCA to each dataset, reducing the num-
ber of features to 5. Then we applied a Mahalanobis
transformation on the PCA-reduced feature space, in
order to obtain a uniform covariance matrix (that is,
as a result of the two transformations the covariance
matrix of the sample becomes a 5×5 identity matrix).
On this reduced feature space, we have run our com-
plexity estimation algorithm for every combination of
the parameters shown in Table 1, for a total of 300
experiments (60 for each dataset).

In order to assess the effectiveness of the partition-
ing strategy, we checked whether a correlation exists
between theMRI of each cluster and the local com-
plexity directly estimated by means of a classifier. We
ran a 10-fold cross validation on each dataset, using
decision trees as learning algorithm (with standard
Weka (Hall et al., 2009) settings for C4.5). As perfor-
mance metrics, we evaluated accuracy, F-Score and
Matthews’ correlation coefficient for each cluster.

Figure 1 shows the relation betweenMRI and
accuracy when data are split into 3, 4 and 5 clus-
ters (MRI indexes have been normalized for the sake
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Table 1: Parameters used in the experiments.

Parameter Symbol Values

Profile size m 10, 20, 30, 40, 50
% of samples in maximum probe ρ 0.05, 0.10, 0.15, 0.20
Number of clusters r 3, 4, 5

Table 2: Summary of the KEEL datasets used for experi-
ments.

Name Features Size

Banana 2 5,300
Phoneme 5 5,404
Ring 20 7,400
Spambase 57 4,597
Twonorm 20 7,400

of readability). Figures 2 and 3 show the same re-
lation betweenMRI and, respectively, F-score and
Matthews’ correlation coefficient.

To accurately quantify the relation betweenMRI
and the performance metrics, we also calculated Pear-
son’s correlation coefficient for each experiment. Ta-
bles 3, 4, and 5 report the average correlation (and
confidence interval) calculated over all datasets be-
tween theMRI and accuracy, F-score and Matthews’
correlation coefficient.

Table 3: Correlation betweenMRI andaccuracy.

m r 0.05 0.10 0.15

10
3 98.1±1.1 98.1±1.3 98.2±1.3
4 97.9±1.3 96.9±1.9 96.3±1.3
5 97.8±1.5 97.0±1.8 96.5±1.8

20
3 98.2±1.2 98.1±1.3 98.3±1.3
4 97.9±1.3 97.2±1.8 96.8±1.8
5 98.0±1.1 97.1±2.0 96.5±1.9

30
3 98.2±1.1 98.1±1.3 98.2±1.3
4 98.0±1.3 97.3±1.8 96.8±1.8
5 98.1±1.0 97.1±1.8 96.8±1.9

40
3 98.3±1.1 98.2±1.3 98.3±1.3
4 98.0±1.2 97.2±1.8 96.9±1.8
5 98.1±1.0 97.2±1.7 96.7±1.9

50
3 98.3±1.1 98.2±1.2 98.3±1.3
4 98.0±1.2 97.3±1.8 96.9±1.8
5 98.0±1.0 97.2±1.7 96.7±1.9

3.4 Discussion

As experimental results show,MRI is always success-
ful at sorting clusters in decreasing order of classi-
fication accuracy, and its performance is stable over

Table 4: Correlation betweenMRI andF-Score.

m r 0.05 0.10 0.15

10

3 96.8±2.2 96.2±3.1 97.6±1.3
4 97.0±1.6 95.5±1.7 87.0±14.4
5 91.7±9.0 89.0±12.3 87.3±14.9

20

3 97.0±2.0 96.5±2.6 97.7±1.3
4 97.1±1.6 95.8±1.8 95.0±1.9
5 92.4±8.0 89.7±11.8 87.6±14.8

30

3 97.0±2.0 96.5±2.7 97.7±1.3
4 97.2±1.6 96.0±1.7 95.1±1.9
5 92.6±8.2 90.0±11.4 87.9±14.2

40

3 97.1±1.9 96.6±2.5 97.7±1.3
4 97.2±1.6 96.0±1.8 95.2±1.8
5 92.6±8.1 90.0±11.5 88.0±14.1

50

3 97.1±1.9 96.6±2.5 97.7±1.3
4 97.2±1.6 96.0±1.7 95.2±1.9
5 92.7±7.7 90.0±11.8 88.1±14.1

Table 5: Correlation betweenMRI andMatthews’ correla-
tion coefficient.

m r 0.05 0.10 0.15

10

3 97.5±0.6 97.1±0.9 97.0±1.2
4 96.0±2.7 94.9±2.5 93.4±4.4
5 94.6±5.3 92.8±7.1 92.5±6.8

20

3 97.6±0.6 97.3±0.8 97.2±1.1
4 96.1±2.7 95.2±2.5 94.7±2.6
5 95.1±4.6 93.5±5.9 92.6±6.5

30

3 97.6±0.6 97.3±0.9 97.2±1.2
4 96.2±2.8 95.1±2.8 94.7±2.6
5 95.0±4.9 93.3±6.2 92.9±6.6

40

3 97.6±0.6 97.3±0.8 97.3±1.0
4 96.2±2.7 95.2±2.6 94.7±2.6
5 95.1±4.7 93.7±5.7 93.0±6.2

50

3 97.6±0.6 97.3±0.8 97.3±1.1
4 96.1±3.0 95.2±2.7 94.7±2.7
5 95.0±4.8 92.9±7.1 93.1±6.2

a broad range of different classification domains and
configuration parameters (in particular, its perfor-
mance is clearly independent of the profile sizem).

The best performance is obtained with three clus-
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Figure 3: MRI v, Matthews’ correlation, with m 30, ρ 0 1.Figure 3:MRI v, Matthews’ correlation, withm= 30,ρ = 0.1.

ters, which allow to split the dataset into hard, easy,
and medium complexity clusters. In particular, as
Figures 1a, 2a and 3a clearly highlight, the proposed
method has demonstrated very useful to identify hard

regions of the datasets in hand. In particular, the per-
formance metrics are 50% or less for “hard” clusters.

When the number of clusters increase, the corre-
lation betweenMRI and F-Score and Matthews’ cor-
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relation coefficient tends to be lower than the correla-
tion betweenMRI and accuracy. Figures 2 and 3 show
that there is actually only one outlier dataset, namely
the Ring dataset, for which we provide further discus-
sion.

The choice ofρ, the average percent of samples
embodied by the probe with greatest size, slightly in-
fluences the performance of theMRI. The reported ta-
bles show that the optimal choice isρ = 0.05. Greater
values ofρ decrease the performance of theMRI
for ranking purposes. However, this phenomenon is
largely expected, as increasing values ofρ force the
algorithm to concentrate on greater hyper spheres,
gradually shadowing its ability of performing a local
analysis.

4 CONCLUSIONS

In this work, a method for partitioning datasets into
regions of different classification complexity has been
proposed. The method relies on a specific metric,
calledMRI, which is typically used for clustering the
elements of a dataset into three regions of increasing
classification complexity, thus separating the “easy”
part of the data from the “hard” part (possibly due to
noise). Increasing the number of clusters up to five
does not decrease the ranking capacity of theMRI,
except for particular datasets and only when com-
pared with F-Score or Matthews’ correlation coeffi-
cient. Moreover, the proposed method proved to be
stable and effective for the majority of experiments
and parameter settings.

Further work on theMRI will be carried out along
both theoretical and experimental directions. Studies
on statistical significance ofMRI estimates may help
to discover a lower bound on the optimal number of
clusters to be used for splitting a dataset. We are also
planning to substitute the imbalance estimation func-
tion with a local correlation estimation, aimed at sep-
arating linearly separable areas (which are typically
easy to classify), from noisy areas, as these two would
have the same imbalance but different local correla-
tion indexes.
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