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Abstract: Researches on inertial navigation systems (INS) have formulated complex step detection algorithms and 
stride length estimations. But for current systems to work, INSs have to correctly identify negative 
pedestrian locomotion. Negative pedestrian locomotion are movements that a user can naturally make 
without any real position displacement, but has sensor signals that might be misidentified as steps. As the 
INS’s modules have a cascading nature, it is important that these false movements are identified beforehand. 
This research aims to provide a solution by studying patterns exhibited by positive and negative pedestrian 
locomotion when sensors are placed on a user’s front pocket. A model was then built to classify negative 
from positive pedestrian locomotion, and to improve the INS’s accuracy overall. 

1 INTRODUCTION 

Indoor navigation systems determine where a device 
has traversed inside a building. These navigation 
systems can be employed in applications to help 
users find a specific location in closed places like 
conference centers and office buildings. Unlike 
outdoor navigation systems like the Global 
Positioning System (GPS), indoor navigation 
systems cannot use satellite signals as heavy 
attenuation takes place when the signals make their 
way through physical obstacles. 

To solve this, researchers have experimented 
with Wi-fi signals like (Bahl and Padmanabhan, 
2000a), (Bahl and Padmanabhan, 2000b),  (Battiti, 
2005), (Youssef et al., 2003), and (Youssef and 
Agrawala, 2004); vision (Karlsson et al., 2005); 
ultra-wide bands (Teuber and Eissfeller, 2006); 
cellular-based signals (Otsason et al, 2005); 
magnetometers (Chung et al., 2011); and 
combinations of these (Brunato and Battiti, 2005). 
All of these researches are dependent on 
environment variables such as Wi-fi routers and 
markers, and some require data collection prior to 
system use. This would mean that a significant 
change in the environment or the variables would 
affect the performance of these navigation systems. 

INSs, on the other hand, uses data from inertial 
sensors such as gyroscopes and accelerometers to 

determine the path a device has travelled. Smart 
phones currently already have these sensors as 
micro-electrical-mechanical systems (MEMS) 
devices, making it possible for INSs to be applied in 
smart devices and possible for ubiquitous use. 
Compared to other navigational systems, INSs are 
independent of its environment, requiring less cost 
that otherwise would have incurred with the need of 
access points. This also implies less environment 
set-up as access points do not need to be installed for 
the navigation system to operate. Considering that it 
is a cheaper and simpler alternative, INS appears to 
be a more attractive approach to building navigation 
systems. 

2 CHALLENGES 

Using INSs in real-world situations, however, is 
limited because its MEMS devices are susceptible to 
noise and gradual drifts that cause cascading errors. 
Because of this, most existing INSs integrate regular 
checking with access points with known positions 
such as satellites and Wi-fi routers to calculate the 
position of the mobile unit to compensate for these 
inaccuracies (Martin et al., 2006). 

Another problem, which this study intends to 
address, is correctly classifying irregular move-
ments. In this research, positive pedestrian 
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locomotion is defined as movements that include 
moving from one physical position to another on 
foot. Examples of these are walking, jogging, 
running, and climbing up and down the stairs. False 
pedestrian locomotion are movements that do not 
require moving from a position, such as standing. 
There are, however, some false pedestrian 
locomotion movements that can simulate movement 
from position, and these presents a problem to some 
existing INSs. These movements include walking-
in-place, jogging-in-place, and running in place. It is 
important future INSs can correctly disregard false 
pedestrian locomotion movements to avoid 
cascading errors as the modules depend on each 
other as displayed in Figure 1. Similarly, it cannot be 
expected that users would not exhibit any form of 
negative pedestrian locomotion movements in real-
world applications. An INS that considers in these 
negative movements will better suit mobile 
applications that plan to map user paths in an area. 

 
Figure 1: Conventional system flow of inertial navigation 
systems. 

The main objective of this research is to solve 
this problem by creating an additional module in an 
INS whose role is to classify whether a user is 
making a positive or negative pedestrian locomotion 
movement. In the proposed solution, false pedestrian 
locomotion movements will be properly detected, 
thus false steps would be avoided. This will 
consequently affect the estimated path length of the 
user and is hypothesized to improve the outputs of 
the INS. 

3 REVIEW OF RELATED 
LITERATURE 

3.1 Pedestrian Locomotion Heuristics 

There are currently no studies that have a separate 
module to classify positive from negative pedestrian 
locomotion, but there are some that have integrated 

similar measures in their step detection algorithms. 
In some studies like (Lee and Mase, 2001) and (Li et 
al., 2012), additional heuristics were implemented to 
prevent allowing false positive steps. These 
heuristics are hard-coded based on each study's 
preliminary data. As it is, more heuristics will need 
to be added to allow more movements. 

Although the following research did not take into 
consideration a wider range of movements compared 
to this study, their heuristics were able to prevent 
certain negative pedestrian locomotion movements 
as positive. 

3.1.1 Lag Parameter 

In a study conducted by (Lee and Mase, 2001), a lag 
parameter was added in their step detection 
algorithm. With the lag, the system can supposedly 
check if the step taken is not a step but another body 
movement. It involves getting the z-axis of the 
accelerometer that is indicative of upward 
movements of the leg. The lag parameter is as 
follows: 

lag = min୨ୀ଴…୒ ൭෍zሺnሻzሺn െ jሻ୒
୬ୀ଴ ൱ (1) 

where lag is the lag parameter, N is the window size, 
and z(n) is the z-axis value of the accelerometer at 
time j, which usually changes as the subject raises 
his leg. 

The lag must be greater than a threshold to pass 
the heuristic. As can be seen in the equation, the 
study assumed that other body movements would 
have less activity in the accelerometer's z-axis, and 
that walking would induce peaks in the z-axis. 
However, walking-in-place would also express a 
high activity in the z-axis even though it is truly a 
false pedestrian locomotion movement. 

3.1.2 Dynamic Time Warping 

In (Li et al., 2012)’s study further used dynamic time 
warping (DTW) as an added filter to detect false 
steps. Aside from (1) checking if peaks and valleys 
pass a certain threshold, (2) peaks and valleys must 
also not be too short, or (3) too long (maximum of 1 
second). Acceleration's peak and valley's magnitudes 
are also considered, where (4) the magnitude must 
be within a minimum of 0.2g, and a maximum of 
2.0g.  

With DTW, two more heuristics were formed. A 
fifth heuristic uses DTW to calculate the similarity 
of steps taken with the right leg, and similarity of 
steps taken with the left leg. In this condition, the 
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similarity of the last step taken with the left/right 
foot and the current step taken with the left/right foot 
must be greater than a threshold. If the result is 
negative, a sixth heuristic compares the current left 
step with the next left step. If these two signal's 
similarity passes the threshold, the current left step 
would be considered a step. With this method, their 
step detection algorithm can tell the difference 
between a step taken while walking and a step taken 
while walking-in-place given that the two steps are 
taken after the other and the false step is just a 
momentary gap from a series of true pedestrian 
locomotion movements. However, their system can 
still possibly fail if the user continues to perform a 
false pedestrian locomotion movement. 

After adding the DTW heuristic, the research 
recorded a drop in false positives (incorrectly 
processed false steps) from 29 to 14.  

In the study, false negatives are more important 
than false positives. False positives can be further 
checked with the step detection algorithm. Even if a 
false step was considered a step in the pedestrian 
locomotion model, there is still the possibility that 
the false step would be detected as false by the step 
detection algorithm. The false negatives increased 
from 0.4 to 0.5. But as stated in the study, the 
benefits outweighed the disadvantages. 

4 PROPOSED SOLUTION 

This research proposes to create a separate module 
in the standard INS framework that will focus on 
classifying a movement as either false or true 
pedestrian locomotion movement. As shown in Fig. 
2, the new module would operate first before the 
step detection module. If the module identifies a 
window of movement as false pedestrian 
locomotion, the succeeding modules would not 
process that window. If it does detect the window as 
true, the succeeding modules would operate 
normally. This would imply that the INS could 
 

 
Figure 2: Proposed system of the research. 

perform more efficiently should the new module 
classify well. On the other hand, a cascading error 
can transpire instead. 

4.1 Inertial Navigation System 

A simple INS would be created to compare the 
performance of a conventional INS against an INS 
with the pedestrian locomotion detection module. 
The modules are discussed below along with the 
algorithms and heuristics used in each.  

4.1.1 Step Detection Module 

The step detection module would detect steps from 
accelerometer signals once the pedestrian 
locomotion model determines that the user is 
performing a positive pedestrian locomotion 
movement. 

The accelerometer signals would be scoured for 
a value greater than threshold α. In order to discard 
false peaks, a second threshold β	is introduced. 
Threshold β	is the minimum time gap between two 
steps. Before a step is identified, the time gap 
between the said step and the previous step must be 
greater than threshold β. 

Both thresholds were determined after collecting 
user data. 

4.1.2 Stride Length Estimation Module 

The stride length estimation module would start 
calculating for the step length once the Step 
Detection Module has determined the user made a 
step. A linear model would be created as previous 
studies such as (Li et al., 2012) have shown before 
that a linear relationship exists between stride length 
and step frequency. This module would update the 
step frequency along with the Step Detection 
Module. A linear model would be generated after 
collecting data. 

4.1.3 Heading Determination Module 

This module would work side-by-side with the 
Stride Length Estimation Module after the Step 
Detection Module determines a step has been taken. 
It is responsible of approximating the direction the 
user is heading. In this research, the orientation y-
axis data would be used to determine the heading. 
The values can range between 0° and 359°. 
4.1.4 Mapping Module 

The mapping module outputs a series of points
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indicating a user's traversal across a space. It would 
receive inputs from the stride length estimator 
module and heading determination module, and 
would have knowledge of the coordinates of the 
previous point. The coordinates of the initial point 
would be set to (0,0). 

The new point would be calculated as: xୡ୳୰ = l ∗ cosሺαሻ +	x୮୰ୣ୴ (2) yୡ୳୰ = l ∗ sinሺαሻ +	y୮୰ୣ୴ (3) 
where ݔ௖௨௥ is the x-coordinate of the current point, ݕ௖௨௥ is the y-coordinate of the current point, ݔ௣௥௘௩ is 
the x-coordinate of the previous point, and ݕ௣௥௘௩ is 
the y-coordinate of the previous point, l is the stride 
length, and ߙ is the heading. 

4.2 Pedestrian Locomotion Model 

As the main component of the pedestrian locomotion 
module, the pedestrian locomotion model is a 
classifier that identifies movements as either positive 
or negative pedestrian locomotion movements. A 
discussion of how the model was created is written 
below. 

4.2.1 Data Collection 

In this research, 30 subjects will participate by 
performing 12 movements for data collection. Each 
subject should be at the age range of 19 to 49 years 
old, as a stable gait has been found across that age 
range (Thanh et al., 2012). On a similar note, the 
subjects should also be able-bodied. Every subject 
will perform each of the 12 movements for 5 
minutes each. The 12 movements are composed of 3 
positive pedestrian locomotion movements: (a) 
walking, (b) climbing down stairs, and (c) climbing 
up stairs; and 9 negative pedestrian locomotion 
movements: (d) turning, (e) standing, (f) swinging 
one's legs, (g) sitting, (h) twisting, (i) walking in 
place, (j) leaning on the heels and balls of one's feet, 
(k) doing random movements in place, and (l) 
bending. The random activity can be used to test the 
robustness of the model in terms of classifying 
unlisted movements in future research. 

A Samsung Galaxy S2 phone was used to collect 
data. For this purpose, a mobile application was 
developed to collect sensor readings from the tri-
axial gyroscope and tri-axial accelerometer at a rate 
of 100Hz. The phone was placed in the subjects's 
right-side pockets at the front. Placing the phone in 
the mid-section of the subject is strategic as it is the 
person's center of gravity, making it sensitive to 
movements made with the limbs. The position is 

also a typical location phones are placed in. The 
phone is limited to a specific orientation that faces 
the phone screen towards the thigh of the subject, 
and the top of the phone is pointed down.  

4.2.2 Feature Modelling 

The data entries would be grouped into windows of 
size 100. This window size is equivalent to a second 
worth of records, and will have an overlap of 50%. 

Three features were extracted from each of the 
sensors's axes: mean, standard deviation, and energy. 
These features were extracted without removing the 
gravity factor from the readings, or applying any 
filter. 

4.2.3 Model Generation 

A C4.5 model and a support vector machines (SVM) 
model would be generated using WEKA's J48 and 
sequential minimal optimization (SMO) algorithms. 
The model would be used in the pedestrian 
locomotion detection module, and would determine 
if the person is performing a positive or negative 
pedestrian locomotion movement.  

5 RESULTS AND DISCUSSION 

5.1 Tests 

Two kinds of test were conducted to evaluate the 
INS with and without the prediction module: the 
square route test, and the multi-activity square route 
test. The tests were carried out by six subjects, 
wherein they were limited to follow a marked route, 
to execute movements as instructed to them, and to 
only bring the phone out at the beginning and end of 
each test. The subjects were allowed to walk on their 
own natural regular pace. 

Square Route Test: The square route test is a 
20m walk that is composed of four five-meter 
sections that are orthogonal after one another. The 
route is purely positive pedestrian locomotion, and is 
intended to test the prediction model's performance 
in a situation where an INS without a prediction 
module will perform perfectly. Another factor to 
analyse is the model's ability to classify "walking 
while turning" from "turning in place". 

Multi-Activity Square Route Test: The multi-
activity square route test is similar to the square 
route test but introduces negative pedestrian 
locomotion in every corner. The routine, which is 
presented in Figure 3 begins with 1) a five meter 
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walk, 2) five seconds of standing, 3) five meter walk 
after a perpendicular turn, 4) five seconds of 
walking-in-place, 5) five meter walk after a 
perpendicular turn, 6) five seconds of bending, 7) 
five meter walk after a perpendicular turn, and 8) 
five second of twisting. Since walking five meters 
usually takes 3.5 to 5 seconds, this test is the more 
balanced in terms of number of the positive and 
negative pedestrian locomotion movements. This 
makes this test a good way to evaluate the INS with 
a prediction module. 

 
Figure 3: The multi-activity square route test is composed 
of negative and positive pedestrian locomotion. 

5.2 Prediction Module 

For the square route test, the recall of positive and 
accuracy are the same because it is a purely positive 
activity. The INS without a prediction module also 
has a 100% recall and accuracy for the same reason. 

As can be seen in Table 1, the J48 and SMO 
models performed well. A closer look at the J48 
results reveals that three subjects had data that were 
all correctly classified, while the other three had one 
misclassification each. The SMO model correctly 
classified all instances as positive except for one 
misprediction. 

The multi-activity square route shows a lower 
accuracy and recall for both models. It is, however, 
important to note that both models have an 
acceptable recall on positive. In this research, the 
recall on positive locomotion is more important. 
Accidentally predicting a negative locomotion as 
positive does not automatically mean that steps will 
be detected; the possibility of the step detection 
module to not detect steps is still open. 

Table 1: Prediction module results for INSs with and 
without a prediction module. 

  Recall on 
Positive 

Recall on 
Negative Accuracy 

Square 
Route 

J48 97.03%  97.03% 

SMO 99.01%  99.01% 

Multi- 
Activity
Square 
Route 

w/out 100.00% 0.00% 48.51% 

J48 87.72% 67.77% 77.45% 

SMO 90.35% 71.07% 80.43% 

5.3 Step Detection Module 

It is expected that the step count error in the step 
detection module will decrease if the INS will use a 
prediction module. Table 2 shows the step count 
error produced by the INS with and without a 
prediction module. 

The square route test reveals that the INS without 
a prediction module performs better, only 
mispredicting seven steps. The INSs with the 
prediction modules had a higher error, with the J48 
model missing 12 steps and the SMO eight steps. 
This suggests that the additional module allowed 
more false negatives than an INS without a 
prediction module. 

But the multi-activity square route test presents a 
different outcome where the INSs with the 
prediction module now performs more accurately in 
terms of step count error. Both prediction models 
elicited a significantly lower step count error. This 
indicates in exchange of versatility when it comes to 
negative locomotion, some false negatives were 
allowed to be made. But given the difference in 
errors, the benefits of having a prediction module 
outweigh the disadvantages. INSs with the module 
are more adaptable in terms of allowing the subject 
to perform negative pedestrian locomotion.  

Table 2: Step detection module results for INSs with and 
without a prediction module. 

  Actual # 
of Steps 

Estimated # 
of Steps Error 

Square 
Route 

without 

188 

181 3.72%

J48 176 6.38%

SMO 180 4.26%

Multi- 
Activity 
Square 
Route 

without 

193 

296 34.80%

J48 233 17.17%

SMO 233 17.17%
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5.4 Stride Length Estimation Module 

As with the step detection module, the error in total 
distance travelled will also be assessed for the stride 
length estimate module. The length errors of the 
INSs with and without a prediction module are 
presented in Table 3.  

Similar to the results of the step detection 
module, the error result is based on the kind of test 
the INS undergoes. This is because the stride length 
estimation module's result is also based on the 
preceding step detection module; that is the total 
distance travelled is directly proportional to the step 
count. Given this, the INS without the prediction 
module performed better in the square route test, 
while the INS without it had a better accuracy in the 
multi-activity square route test. Though there is a 
clear advantage when the basic INS is used in a 
purely positive activity, using a classification model 
introduces versatility to the system. 

Table 3: Stride length estimation module results for INSs 
with and without a prediction module. 

 
  Actual 

Length (m) 
Estimated 
length (m) Error 

Square 
Route 

without 

120 

117.98 1.69%

J48 114.70 4.41%

SMO 117.29 2.26%

Multi- 
Activity 
Square 
Route 

without 

120 

193.67 61.39%

J48 151.97 26.64%

SMO 161.65 34.71%

5.5 Mapping Module 

The final output of the INS is the route the user has 
traversed. For both tests, the INS with the prediction 
module fared well. Both J48 and SMO prediction 
 

 
Figure 4: Map generated using J48 and SMO as pedestrian 
locomotion classification models. 

modules came up with close results, one of which is 
shown in Figure 4. In the figure, the route in black is 
the actual route and the route in yellow is the 
estimated route of the INS. Although the distance 
travelled was accurately measured, the orientation 
was not determined properly, thus resulting to an 
incorrect map. 

It is also important to note that the INS used in 
this research worked well with the given route 
because it is limited to perpendicular orientations. 
The heading determination module used in this 
research is especially basic and still needs 
improvement. 

6 CONCLUSIONS 

This research was able to present that a J48 and 
SMO pedestrian locomotion classifier can increase 
the over-all performance of an INS. The step 
detection and stride length estimation module also 
benefited from the prediction model especially with 
experiments that have negative pedestrian 
locomotion activities.  

In conclusion, the results have shown that adding 
a pedestrian locomotion module allows an INS to be 
more versatile. An INS with a prediction module can 
handle negative pedestrian locomotion activity, 
while a normal INS will require users to walk 
continuously and maintain a low sensor activity to 
prohibit a negative pedestrian locomotion activity to 
be falsely considered a step. And as negative 
pedestrian locomotion activities are inevitable in real 
scenarios, a prediction module presents an adequate 
solution to this INS problem. 

Further research can delve into further testing the 
system for its capabilities and weaknesses. 
Additional work still needs to be done to improve 
the heading determination module of the system, 
which is currently limiting the system to specific 
routes. Future studies can also focus on employing 
additional sensors to improve and compensate for 
the MEMs inherent noise.  
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