
Vulnerability Analysis using Network Timestamps in Full
Virtualization Virtual Machine

M. Noorafiza1,2, H. Maeda1, R. Uda1, T. Kinoshita1 and M. Shiratori1
1Graduate School of Computer Science, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji Tokyo, Japan
2Department of Computer Science, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur, Malaysia

Keywords: Vulnerability, Security, Privacy, Malware, Virtual Machine, Cloud Computing.

Abstract: Virtualization is the main underlying technology for cloud computing. The popularity of cloud computing
had expanded rapidly over the past few years. As any new technology advancement, cloud computing also
has vulnerability possibilities and potential security risks. Therefore it is important to study and understand
the underlying technologies in cloud computing and test any possible loophole that may give advantages for
malware and attackers. Virtual machine (VM) is one of the basic component in cloud computing. VM itself
is a program that executes multiple operating systems on one physical machine. Due to the complexity of
the VM, together with the complex setting of the network environment and physical machine technology
during the implementation of VM environment, vulnerability in the environment may occur. For example,
the ability of malware to detect either the environment that they are attacking is on VM or not. Through this
detection, the malware or attackers may hide its malicious program since VM are commonly used as
defensive system for malware detection, such as honeypots. In this paper, we present a remote detection
technique for VM that uses IP timestamp option in full virtualization that could be used to detect VM
environment and contributing to VM vulnerability. Evaluation of this technique was done by examining and
analysing the characteristic of IP packet timestamps replies from VM and real machine. This research
finding could serve as new knowledge for further studies on how to provide comprehensive protection from
VM vulnerability. This research also could formulate more effective security improvement that could lead
to better security policy towards VM technology.

1 INTRODUCTION

Virtualization technologies allow multiple operating
systems and applications run on the same machine
that resulted on effective time and cost for
deployment. Virtualization is also one of the
important pillar for cloud computing. Through cloud
computing, users will be able to conveniently access
the applications and services on the cloud via their
thin client or mobile devices. The user friendly
characteristic makes the popularity of cloud
computing sky rocketing. (Buyya, R., et al., 2009)
argues that cloud computing are expanding until
cloud computing itself could be considered as the
next vital utility after water and electricity.
However, virtualization technology may also serve
as the limitation of cloud computing since there are
potential security risks that associated with VM
technology (Anthes, G., 2010). This limitation may
causes enterprises and organizations to hold back

from implementing cloud computing as their IT
solution. Such example for the vulnerability and
security issues in VM is the ability of malicious code
to detect the presence of VM (Grobauer, B., et al.,
2011). Despite of enormous effort in keeping the
differences of running on VM and real machine
environment as minimum as possible, there are still
possible methods in detecting the virtual machine
environment.

In this paper, we present a remote detection
technique for VM that uses IP timestamp option in
full virtualization that could be used to detect VM
environment and contributing to VM vulnerability.
IP timestamp option allows a requester to request
timestamps value from any machine which handles
packets by specifying its IP address. This research is
the continuity from our previous work and we are
now focusing on testing VM remote detection
method using network timestamps in full
virtualization. Our previous study (Noorafiza, M., et

83Noorafiza M., Maeda H., Uda R., Kinoshita T. and Shiratori M..
Vulnerability Analysis using Network Timestamps in Full Virtualization Virtual Machine.
DOI: 10.5220/0005242000830089
In Proceedings of the 1st International Conference on Information Systems Security and Privacy (ICISSP-2015), pages 83-89
ISBN: 978-989-758-081-9
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

al., 2013) proved that there were distinguishable
differences in the timestamps replies behaviours
received from para-virtualization VM and non-VM
machines even in a high performance private cloud
computing environment. Findings from this paper
proved that there were distinguishable differences in
full virtualization as well. This research is vital in
contributing to comprehensive analysis for network
timestamps pattern that could lead to detection of
VM that was implemented using full virtualization
technique and the possible attack vector. This
finding also provide more input for researchers in
initiating and establishing security improvement and
also formulating more effective and better security
policy towards VM technology in full virtualization.

2 RESEARCH BACKGROUND

2.1 Virtualization and Cloud
Computing

Virtualization technology is the key feature for cloud
computing. A host computer runs software program
known as a hypervisor or Virtual Machine Monitor
(VMM) that creates one or more VM that simulate
physical computers. There are two types of
hypervisor, para-virtualization and full virtualiza-
tion. Differences of characteristic between the two
types of virtualization are shown in Figure 1. Full
virtualization offers the best isolation and security
for virtual machines. It simplifies migration and
portability as the same virtualized guest OS instance
can run on native hardware. In full virtualization, the
hypervisor provides most of the same hardware
interfaces as those provided by the hardware’s
physical platform. In other word, the OSs and
applications running within full virtualization do not
need to be modified for virtualization to work if the
OSs and applications are compatible with the
underlying hardware. For full virtualization, as the
guest OS is fully abstracted from the underlying
hardware by the virtualization layer, the guest OS
does not aware it is being virtualized and requires no
modification, therefore making the implementation
simpler. In addition, full virtualization is the only
option that requires no hardware system assist to
virtualize sensitive and privileged instructions.
The hypervisor translates all operating system
instructions and caches the results for future use,
while user level instructions run unmodified at
native speed. In full virtualization technique, speed
of executing the instructions will be slower than
speed of executing instructions in para-virtualization

Figure 1: Two Types of Virtualization,

because hypervisor in full virtualization run similar
to physical machine that will cause some delay that
are able to be detected by attackers and malicious
software. Meanwhile, para-virtualization is a method
for the hypervisor to offer hardware interfaces to the
guest OS to use instead of using normal hardware
interfaces. Para-virtualization is lower in
virtualization overhead, but the performance
advantage of para-virtualization over full
virtualization can vary greatly depending on the
workload. As para-virtualization cannot support
unmodified operating systems, its compatibility and
portability is poor. Para-virtualization can also
introduce significant support and maintainability
issues in production environments as it requires deep
OS kernel modifications (VMWare, 2007).

2.2 Security Issues

Despite of the advantages of virtual machine
technology and cloud computing, security issues
remain as the main issue. One of the biggest
challenges in cloud computing is the design of the
VM itself that could lead to various security
vulnerabilities and threats. Meanwhile, details of the
underlying resource architectures where these
systems operate are not commonly published for
research. Security issues in virtualization
technologies remain exist and this scenario is
contributing to the vulnerability of cloud computing.
Hypervisor technologies and implementation
technique of VM also varies. Each scenario of VM
implementation both in full virtualization and para-
virtualization should be tested and analysis should
be made. However, with the fast track changes in the
VM technologies, more comprehensive and fast
track study need to be performed periodically.
Making virtual and native hardware indistinguisha-
ble, thus preventing VM detection is vital in order to

ICISSP�2015�-�1st�International�Conference�on�Information�Systems�Security�and�Privacy

84

minimize security issues towards VM. Therefore,
security risk towards cloud computing that utilize
VM as the main technology could be reduced.
 By VM detection, malicious system could
withdraw any harmful operations such as botnet
attack and hiding itself from the VM security
systems. As the result, malware may avoid from
being detected by VM security applications, thus
reducing the risk for their behavior from being
studied and revealed. Attackers may now write
programs that first try to detect either the system are
running on VM or not before executing any
destructive or security breaching operations. The
malware could than selectively targeting to only
execute their operation on native machines or client
devices such as smart phones and mobile devices.
This will creates critical vulnerability in cloud
computing. Furthermore if majority of future
malware detection such as honeypot runs on virtual
machine, malware will eventually choose not to run
at all on those environments. The malware attacks
will be escaping from detection and exploiting of the
VM itself (Ferrie, P., 2007).
 Enterprises are also trending in using smart and
mobile device that runs on Android, Apple iOS,
Apple Mac OS X, Blackberry and etc. This trend is
the result from the emerging use of cloud computing
environment as information are now easily can be
accessed through the cloud computing. Enterprises
will provide the mobile devices to their employees
in order to give better mobility in completing their
daily task. In such cases the required thin client
software applications such as those that are related
to sales, finance and customer managements will be
made available to be downloaded to the devices.
However, before the applications could be released
to the employees, we predict that there are high
possibilities that implementation and testing process
for the applications will be done using emulator in
the VM on the cloud computing environment. The
applications test results might not give the true
results, especially in term of security testing against
various malicious code because the malicious
operation may not show their behavior when they
had detected that the running environment are VM.
As a result once the application released, the mobile
device and other stand-alone environment might be
compromised in such a way that the malware will
start to execute malicious behavior once it had
detected that it is not on a VM environment.
Therefore data that are stored or communications
through the mobile devices might be revealed to
malicious third party.

3 RELATED WORKS

In previous researches, one of the methods for
detecting execution within a VM, have typically
focused on specific artifacts of the implementation,
such as hardware naming, guest-to-host
communications systems, or memory addresses.
Functional and transparency detection method was
discussed in (Ferrie, P., 2007; Garfinkel, T., et al.,
2007) by highlighting detection strategies that look
upon the characteristic of logical discrepancies,
resource discrepancies and timing discrepancies
between VM and non-VM environment. Detection
method that focuses on differences in performance
between VM and physical hardware were also
discussed. However, as machines that are being used
to host the VM are continuously improved, the
difference according to performance might be
different and more tests need to be done constantly
to verify current situation. A light weight detection
method of Virtual Machine Monitor using CPU
instruction execution performance stability had been
studied in (K. Miyamoto, et al., 2011). However, this
method required adjustment to be made in operating
system (OS) and could lead to instability in the OS
itself. On the other hand, detection method that
focuses on network implementation and VM
behavior could be considered as a technique for
remotely detecting VM without compromising the
target. Method that using network timestamps was
first exploited by (Kohno, T., et al.,2005) using TCP
timestamps as a convert channel to reveal a target
host’s physical clock skew, which uniquely identifies
a physical machine.
 Malware will try to avoid honeypots that are
mainly implemented in VM to trace and record their
behavior and signature. One of the honeypot tools is
the automated solution, dynamic malware testing
systems TTAnalyze (Bayer, U., et al., 2006) was
proposed and became the ideal tool for quickly
getting an understanding of the behavior of an
unknown malware. This tool automatically loads the
sample of malicious code to be analyzed into a
virtual machine environment and execute it. The
tools recorded the interaction with the operating
system that involves recording which system calls
were invoked, together with their parameters. This
tool could be considered as the early stage of
implementation of honeypots in VM. Meanwhile,
Temporal Search is a behavior based analysis
technique that exploits the fact that, using processor
performance to measure time can be inaccurate and
the only way for malware to coordinate malicious

Vulnerability�Analysis�using�Network�Timestamps�in�Full�Virtualization�Virtual�Machine

85

events based on time is to use the system’s
timekeeping infrastructure (Crandall, J. R., et al.,
2006). Virtual machine usage in discovering the
system timers without making assumptions about the
integrity of the kernel was shown. Fuzzy
benchmarking was discussed as an approach that can
successfully detect the presence or absence of a
VMM on a remote system by making timing
measurements of the execution time of particular
code sequences executing on the remote system
(Franklin, J., et al., 2008). Time measurement could
be used in order to detect the VM environment. In
this research we are focusing on timestamps.
Timestamps is the current time of an event that is
recorded by a computer. Through mechanisms such
as the Network Time Protocol (NTP), a computer
maintains accurate current time, calibrated to minute
fractions of a second. Network timestamps exist in
various network protocols such as Internet Protocol
(IP) and Internet Control Message Protocol (ICMP).
The IP is designed for use in interconnected systems
of packet-switched computer communication
networks. It provides info for transmitting blocks of
data called data-grams from sources to destinations,
where sources and destinations identified by fixed
length addresses. IP timestamp (Mills, 1992) is an
optional extension to the IP header. It allows the
sender to request timestamp values from any
machine which handles the packet by specifying it’s
IP address. However, length of the IP timestamps
reply will only limited to nearest microsecond. In
this research, for comparison purposes with para-
vitualization analysis that we already performed in
(Noorafiza, M., et al., 2013). For the VM
technologies, we chose the popular virtualization
products for most open platforms over the past 5
years which are VMWare ESX (P. Padala, et al.,
2007) and Oracle VirtualBox (J. Watson, 2008).
Both of these products also could be implemented in
full virtualization technique and suitable for our
desired experiments environment.

4 EXPERIMENTAL
ENVIRONMENTS

In this study, we present a remote detection
technique for VM that uses IP timestamp option in
full virtualization. To evaluate our technique,
experiments were done to obtain IP timestamps
reply data to prove that VM is detectable using
timestamps discrepancies in full virtualization. The
experiments environment were a private cloud

computing environment that consist of full-
virtualization VM and was set up in our campus lab.
Experiments were done in the lab network
environment to minimize interruption to the IP
timestamps data due to router clock skew. We set up
different test environment with high performance
machine as a host of 30 running VMs in order to
provide maximum utilization for the machine in full
virtualization technique. The experiments
environment used in this research is shown in Figure
2. In the experiments, packets were sent from stand-
alone host OS to guest OS in VM and host in stand-
alone environment.

Figure 2: Experimental Environment Set up.

A custom script was executed in the test machine to
send packets to target servers requesting for IP
timestamps replies. This request was repeated until
5,000,000 times. IP packets data structure with
timestamps request options are as per Figure 3 and
IP timestamps option packets structure that were
cosntructed is as per Figure 4. These requests were
sent to the target hosts.

Figure 3: IP Packets Data Structure.

Figure 4: IP Timestamps Option Packets Structure.

ICISSP�2015�-�1st�International�Conference�on�Information�Systems�Security�and�Privacy

86

The specifications for the experiment environment
are shown in Table 1, Table 2 and Table 3.

Table 1 Experiment Environment for Real OS.

OS Linux Ubuntu 12.04

CPU Linux Ubuntu 12.04

Memory 1GB

Hardware Dell Power Edge

Table 2: Experiment Environment for VMWare.

OS Linux Ubuntu 12.04

VMM
 VMWare vSphere
 Hypervisor (ESXi) 5.1.0

CPU Intel Xeon E5-2440

Hardware Dell Power Edge

Memory (Virtual Allocation) 1GB

Storage (Virtual IDE) HDD 16GB

Table 3: Experiment Environment for VirtualBox.

OS Linux Ubuntu 12.04

VMM Oracle VirtualBox 4.3.12

CPU Intel Xeon E5-2440

Hardware Dell Power Edge

Memory (Virtual Allocation) 1GB

Storage (Virtual IDE) HDD 16GB

For the target server, VM software from VMWare,
VM vSphere 5 was emulated in the VM
environment as full virtualization VM system and
Linux Ubuntu 12.04 was emulated as the OS on the
VM. 5,000,000 times of request packets were sent to
the target server to obtain its timestamps in the IP
packets reply. Later the same experiment was also
done using Oracle Virtual Box with Linux Ubuntu
12.04 as the emulated OS. Multiple IP timestamps
requests were sent constantly to remote hosts as
attempts to measure the differences in timestamps
reply characteristic received from real machine and
VM. The differences were measured to the nearest
microsecond. We chose high performance Intel(R)
Xeon(R) Processor E5-2440 with 6 cores and
2.40GHz clock speed as the host machine for the
VM in our test environment. Timestamps replies that
were received at the request machine were compiled
to the nearest microsecond as data in a CSV file. In
the case of VM, since there will be VM interface
between the CPU and the network interface, it is
expected that there will be a small delays for issuing
the timestamps between the requests. On the other
hand, it will not be an issue in real machine since it
will only have CPU and network interface

interactions. Thus, as the results from analysing and
comparing the timestamp replies data between VM
and real machine, it is expected that the timestamps
value from VM will change more frequently
compared to the timestamp replies in real machine.

5 EXPERIMENTAL RESULTS
AND ANALYSIS

In our previous study we had proven that para-
virtualization VMs are clearly detectable remotely
by analysing the replies from IP timestamps. The
conclusion was done based on the collected
timestamps data in IP and ICMP replies by looking
at timestamps stamping differences. In this study, we
performed testing using high performance machine
by implementing full virtualization technique using
VMWare ESX and VirtualBox. The timestamps
reply consists of 32 bits but only could be display in
8 digits of timestamps in hexadecimal and 10 digits
of timestamp in decimal number. The collected IP
timestamps data was analysed to determine its
characteristic behaviour. In the data analysis, we
define N as count for how many times same
timestamps was replied from the targeted server. For
real machine, we observed that 62% of the
timestamps replies were 5 times of the same
timestamps value and 25% of the timestamps replies
were 4 times of the same timestamps value.
However, we also observed that for VM
environment the behaviour of timestamps stamping
are different which are, lesser same timestamps were
sent as replies when the timestamps reply request
were sent to the requestor. We could clearly see the
behaviour pattern differences in this experiment as
shown in Table 4. Figure 5 has shown the
comparison of real environment and VM
environment, for how many time the same
timestamps reply were sent. In real machine, more
than 60% of timestamps are stamped for 5 times. In
contrast, we could see that there were no 5 times
same timestamps reply in VirtualBox and VMWare
ESX.

Table 4: Experiment Results for Full Virtualization.

Count N Real Machine (%) VirtualBox (%) VMWare (%)
7 2 0 0
6 3 0 0
5 62 0 0
4 25 1 36
3 5 19 55
2 2 47 8
1 0 33 2

Vulnerability�Analysis�using�Network�Timestamps�in�Full�Virtualization�Virtual�Machine

87

Figure 5: Count for same timestamps reply.

The reason is because VM sometime interrupted
timestamps operations to complete other operations
and make the time taken to complete job longer than
real machine. Even though in full virtualization that
simplifies migration and portability, the remote
detection by using IP timestamps packet reply still
could be observed and this could reveal the
environment that one system is running on. Malware
will be able to detect the environment that they are
running on and could choose not to run at all or
manipulate the running environments for the attack.
Full virtualization offers the best isolation and
security for virtual machines, however, remote
detection by using network timestamps need to be
addressed to resolve the VM vulnerability. Since that
machine that was used to install the VM is
continuously improved, the difference according to
performance might be different. More tests need to
be done constantly and periodically to verify the
current situation and detect vulnerability.

6 CONCLUSIONS

Building a transparent VM is still a difficult task, as
shown from the results of this research where remote
detection method was discovered in full virtualize-
tion technique. How VM could be detected has
significant value that requires extensive studies and
research in order to prevent any security loop holes
that could exploit the vulnerability of VM including
security holes that caused by any possible detection
method. By analyzing all possible detection
methods, which will be the ideal expectation,
countermeasures could be proposed and
implemented for creating better secured VM in
cloud computing environment. Our study explores

detection methods by looking it from perspective of
detecting VM existence by performing timestamps
analysis in full virtualization using IP timestamp
option, so that vulnerability that caused by ability to
detect VM existence from timestamps data could be
addressed. As a future work, we would like to
perform more tests using various machines and also
in grid and cloud test bed to get more data
characteristics for comprehensive analysis. This
research shows that behavior between IP timestamps
packets reply from the most popular technique of
choice, VMWare ESX and VirtualBox could be
differentiated remotely and this could be potentially
used as a VM detection method before attack vector
chosen to compromised the target host. Based on our
discussion in previous section that timestamps reply
will be different in VM and stand-alone machine, as
a future work, we would like to propose a
mechanism to change timestamps reply in stand-
alone machine to look similar with VM timestamp
reply. This mechanism should be able to hide the
differences between timestamp reply in VM and
non-VM and prevent it from being used as method
to detect either that the machine is running on VM
environment or not. Later on, based from this
research, we will also perform more studies about
malware behavior and its relationship with VM
discrepancies in both full virtualizations and para-
virtualization. We are aiming to set up various
scenarios for both full and para-virtualization and
obtain various characteristic of data. The results will
contribute on providing more secure cloud
computing services. The approach that we proposed
will contribute to VM environment prevention of
detection based on remote timestamps reply. Our
approach will decrease the possible detection
method that could lead to manipulation for cloud
computing environment and the possible attack
vector. Base on the finding, we would like to
propose the solution by applying it to cloud
computing security policy framework for cloud
computing.

REFERENCES

Anthes, G., "Security in the cloud." Communications of
the ACM 53(11): 16-18. (2010).

B. Lau and V. Svajcer. “Measuring virtual machine
detection in malware using DSD tracer”. Journal in
Computer Virology, 6(3), 2010.

Bernd Grobauer, Tobias Walloschek, and Elmar Stocker.
2011. Understanding Cloud Computing Vulnerabili-

0

10

20

30

40

50

60

70

0 2 4 6 8

Percentage
(%)

timestamps (count)

Count for same timestamps reply

Real
Machin
e

Virtual
Box

Vmwar
e

ICISSP�2015�-�1st�International�Conference�on�Information�Systems�Security�and�Privacy

88

ties. IEEE Security and Privacy 9, 2 (March 2011), 50-
57.

J. Crandall, G. Wassermann, D. Oliveira, Z. Su, S. Wu,
and T. Chong. “Temporal search: detecting hidden
malware timebombs with virtual machines”. In
ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming
languages and operating systems, pages 25–36, New
York, NY, USA, 2006. ACM Press.

J. Franklin, M. Luk, J. M. McCune, A. Seshadri, A. Perrig
and L. van Doorn. “Remote detection of virtual
machine monitors with fuzzy benchmarking”.
SIGOPS Oper. Syst. Rev., 42(3):83–92, 2008.

J. Watson, “Virtualbox: bits and bytes masquerading as
machines,” Linux Journal, vol. 2008, no. 166, p. 1,
2008.

K. Miyamoto, H.Tanaka, “Proposal of Effective Detection
Method of VMM without Feature Database”,
Information Processing Society of Japan, Vol. 52. pp.
2602-2612, 2011. (Japanese).

Karen A. Scarfone and Peter M. Mell, Guide to Intrusion
Detection and prevention Systems (Idps), technical
Report NIST Gaithersburg, MD, United States, 2007.

Matrazali Noorafiza, Hiroshi Maeda, Toshiyuki Kinoshita,
Ryuya Uda: Virtual machine remote detection method
using network timestamps in cloud computing.
ICITST 2013: 375-380.

Mills D. Network Time Protocol (version 3): specification,
implementation and analysis. Technical Report RFC
1305,Network Working Group; March 1992.

Nance, Kara, Hay, Brian, Bishop, Matt "virtual machine
introspection." IEEE Computer Society. (2008).

P. Ferrie, “Attacks on More Virtual Machine Emulators”,
Symantec Advanced Threat Research, 2006.

P. Padala, X. Zhu, Z. Wanf, S. Singhal, and K. Shin,
"Performance evaluation of virtualization technologies
for server consolidation, HP Labs, Tech. Rep. HPL-
2007-59, 2007.

R. Buyya, C. Yeo, S. Venuopal, J. Broberg, and I.Brandic,
“Cloud Computing and emerging IT platforms: vision,
hype and reality for delivering computing as the 5th
utility”, Future Generation Computer Systems, pp.
599-616, 2009.

T. Garfinkel, K. Adams, A.Warfield, J. Franklin,
“Compatibility is Not Transparency: VMM Detection
Myths and Realities”, Proceedings of the 11th
Workshop on Hot Topics in Operating Systems (Hot
OS-XI), 2007.

T. Kohno, A. Broido and K.C. Claffy. “Remote physical
device fingerprinting”. In SP ’05: Proceedings of the
2005 IEEE Sympossium on Security and privacy,
pages 211-255, Washington, DV, USA, 2005.

The Internet Engineering Task Force Darpa Internet
Program Protocol Specification, http://www.ietf.org/
rfc/ (Access date: 23 September 2014).

U. Bayer, C. Kruegel, and E. Kirda. “TTAnalyze: A Tool
for Analyzing Malware”. In 15th Annual Conference
of the European Institute for Computer Antivirus
Research EICAR), 2006.

VMWare, “Understanding Full virtualization, Para-
virtualization and hardware Assist,” 2007. [Online].
Available: http://www.vmware.com/files/pdf/VM
ware_paravirtualization.pdf (Access date: 23
September 2014).

Vulnerability�Analysis�using�Network�Timestamps�in�Full�Virtualization�Virtual�Machine

89

