
A Scratch-based Graphical Policy Editor for XACML

Henrik Nergaard, Nils Ulltveit-Moe and Terje Gjøsæter
Institute of Information and Communication Technology, University of Agder, Jon Lilletuns vei 9, 4879 Grimstad, Norway

Keywords: Authorisation, XACML, Privacy, Editor, Smalltalk.

Abstract: This paper proposes a policy-maker-friendly editor for the eXtensible Access Control Markup Language
(XACML) based on the programming language Scratch. Scratch is a blocks-based programming language
designed for teaching children programming, which allows users to build programs like a puzzle. We take
this concept one step further with an XACML policy editor based on the graphic programming elements of
Scratch implemented in Smalltalk. This allows for aiding the user on how to build policies by grouping blocks
and operators that fit together and also indicating which blocks that will stick together. It simplifies building
the XACML policies while still having an XACML "feel" of the graphic policies.

1 INTRODUCTION

The eXtensible Access Control Markup Language
(XACML) is a declarative access control policy lan-
guage, standardised by OASIS, that is implemented in
XML (Moses, 2005). The Standard defines a large set
of XML elements, is very verbose and has high ex-
pressive power, which creates a high usage threshold
for users that are not familiar with it or other XML
based languages. Writing these polices can be diffi-
cult, especially for larger policies when the complex-
ity increases, and user errors and typos can easily hap-
pen. XML lacks a user friendly representation, espe-
cially when the number of elements increases. Man-
ual reading and error correction of bigger XML files
can be a tedious and complicated task. The complex-
ity in writing and correcting XACML policies may be
some of the reason why simpler and less expressive
authorisation standards (e.g. OAuth, RBAC or simple
access control lists) may be preferred in practical im-
plementations, or even that users decide to roll their
own authorisation solution, with the possible security
risks this may cause.

When creating a policy based on XACML, the
creator has to have knowledge from both the stan-
dardisation of XACML as well as general XML be-
haviour. Problematic areas in XACML include the
length of XACML attributes, correct handling of long
URLs, and a vast amount of functions that must be
used correctly, which is not always trivial for users.
Without help from proper tools, creating large poli-
cies can involve tremendous work. Our solution is to

use a user-friendly editor that helps in creating these
XACML polices.

The rest of the article is organised as follows:
Section 2 covers general background and motivation.
Section 3 covers the design criteria and goals. In sec-
tion 4, we describe the implementation of the graph-
ical editor aimed at designing XACML policies. In
section 5, the benefits and limitations of the proposed
editor is discussed. Section 6 contains a summary of
the article. Finally section 7 contains plans for future
work on the editor.

2 BACKGROUND AND
MOTIVATION

The policy editor for XACML policies is imple-
mented based on the Scratch programming environ-
ment (Malan and Leitner, 2007; Resnick et al., 2009),
on the Pharo Smalltalk engine(Bera and Denker,
2013). It aims at providing a policy-maker-friendly
policy description language for designing XACML
authorisation policies.It is also a design objective that
it in the future shall be able to design XACML-
based anonymisation policies for XML documents
(Ulltveit-Moe and Oleshchuk, 2015; Ulltveit-Moe
and Oleshchuk, 2012). Scratch is a programming lan-
guage for children created by the Lifelong Kinder-
garten research group at Massachusetts Institute of
Technology’s Media LAB (Resnick et al., 2009),

182 Nergaard H., Ulltveit-Moe N. and Gjøsæter T..
A Scratch-based Graphical Policy Editor for XACML.
DOI: 10.5220/0005240101820190
In Proceedings of the 1st International Conference on Information Systems Security and Privacy (ICISSP-2015), pages 182-190
ISBN: 978-989-758-081-9
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

<PolicySet xmlns="&xacml;policy"

xmlns:xsi="http://www.w3.org/2001/ XMLSchema -instance"

xmlns:xs="http://www.w3.org/2001/ XMLSchema"

xmlns:gml="http://www.opengis.net/gml"

xsi:schemaLocation="&xacml;policy cs-xacml-schema-policy -01.xsd"

PolicySetId="MyPolicySet"

PolicyCombiningAlgId="&xacml;policy-combining -algorithm:deny -overrides">

<Target />

<Policy PolicyId="SamplePolicy"

RuleCombiningAlgId="&xacml;rule -combining -algorithm:permit-overrides">

<Target>

<Resources >

<Resource >

<ResourceMatch MatchID="&xacml;function:string-equal">

<AttributeValue DataType="&xs;#string">SampleServer </AttributeValue>

<ResourceAttributeDesignator DataType="&xs;#string"

AttributeId="&xacml;resource:resource -id" />

</ResourceMatch>

</Resource >

</Resources >

</Target>

<Rule RuleId="LoginRule" Effect ="Permit">

<Target>

<Actions >

<Action>

<ActionMatch MatchID="&xacml;function:string-equal">

<AttributeValue DataType="&xs;#string">login</AttributeValue>

<ActionAttributeDesignator DataType="&xs;#string"

AttributeId="&xacml;action:action-id" />

</ActionMatch >

</Action>

</Actions >

</Target>

<Condition >

<Apply FunctionId="&xacml;function:and">

<Apply FunctionId="&xacml;function:time -greater-than -or-equal">

<Apply FunctionId="&xacml;function:time -one-and-only">

<EnvironmentAttributeDesignator DataType="&xs;#time"

AttributeId="&xacml;environment:current -time" />

</Apply>

<AttributeValue DataType="&xs;#time">T9H </AttributeValue>

</Apply>

<Apply FunctionId="&xacml;function:time -less -than -or-equal">

<Apply FunctionId="&xacml;function:time -one-and-only">

<EnvironmentAttributeDesignator DataType="&xs;#time"

AttributeId="&xacml;environment:current -time" />

</Apply>

<AttributeValue DataType="&xs;#time">T17H </AttributeValue>

</Apply>

</Apply>

</Condition >

</Rule >

</Policy>

<Rule RuleId ="FinalRule" Effect="Deny">

<Target />

</Rule >

</PolicySet >

Figure 1: Simple XACML policy generated by the policy editor.

A�Scratch-based�Graphical�Policy�Editor�for�XACML

183

Figure 2: Simple policy using the XACML policy editor based on Scratch.

(Malan and Leitner, 2007). It is a graphical language
which defines a set of programming constructs which
can be put together as puzzle pieces in order to define
a computer program (Malan and Leitner, 2007). The
language enforces that only blocks that fit logically
together according to the language syntax will stick
together.

We believe that a high-level policy language ed-
itor for policy makers is needed, to avoid much of
the underlying distraction and syntactic complexity
of XACML. The two examples below illustrate this.
Figure 1 shows all the complexity and intricacies of
an XACML policy written in XML. The XACML has
been simplified somewhat by denoting the XACML
namespace as&xacml; and the XML Schema names-
pace as&xs;. This is a simple XACML policy ex-
ample1 that applies for requests to a server called
SampleServer, with a rule that matches a login action
and contains an XACML Condition stating that the
Subject only is allowed to log in between 09:00 and
17:00.

Figure 2 shows the same policy implemented us-
ing our XACML policy editor. The syntactic blocks
in the Scratch based XACML editor is able to hide

1The policy example was inspired by http:// www.oasis-
open.org/committees/download.php/2713/Brief _Introduc-
tion_to_XACML.html

much of the complexity involved in writing XACML
statements by providing features such as:

• managing XACML identities and XML schema
data types;

• automatically matching attribute designators to
the context they are in and the data type they be-
long to;

• automatically inferring some XML elements, for
example the<Condition> clause;

• performing run-time type checking operations,
ensuring that only sensible XML elements can be
put together.

Still the question remains - why write another
XACML policy editor, and not reuse and extend one
of the existing XACML policy editors? A basic re-
quirement for us is that the policy editor would need
to be Open Source, since we want it to be freely avail-
able and possible to adapt to a user’s specific needs.

One example of an open source policy editor for
XACML is the UMU-XACML editor2. This editor is
made by the University of Murica in Spain. The edi-
tor is written in Java and essentially manages a DOM
tree with XACML nodes, and provides a user inter-
face with sensible default values or choices for each

2UMU-XACML-Editor: http://umu-xacmleditor.
sourceforge.net

ICISSP�2015�-�1st�International�Conference�on�Information�Systems�Security�and�Privacy

184

type of DOM nodes in the XACML document. The
editor supports folding down elements within a given
policy in order to view parts of the DOM tree. The ed-
itor does not yet support unfolding everything, which
makes it cumbersome to get an overview over any-
thing but very small policies. The folding mechanism
is problematic from a usability perspective, since the
policy-maker does not get an overview over the entire
policy.

Another problem with this approach, is that the
details of each XACML element is shown in a sepa-
rate window, which means that it is not possible for
a policy-maker to get an overview over how a given
policy works without reading the generated XACML.
Furthermore, some choices are missing, for example
for choosing functions. In total, UMU-XACML does
not reduce the overall complexity in writing XACML
policies much. UMU-XACML will in other words
aid the user in creating an XACML policy, but it has
some severe usability issues that makes it undesirable
as a design base for our policy editor.

The WSO2 Identity Server3 is a complete iden-
tity management solution that has a web based user
interface for designing XACML policies. This in-
terface is from a structural perspective quite similar
to UMU XACML, but provides web based forms for
generating different policy templates (simple, basic
or standard), as well as having a separate policy set
editor. This approach has similar deficiencies as the
UMU XACML editor since it is difficult to get an
overview over the policies without reading the gener-
ated XACML. Our approach aims on the other hand
at giving the policy maker all necessary information
in order to understand the policy in an easily read-
able high-level graphic language, instead of using a
program that creates a forms-based user interface for
generating XACML.

Axiomatics has created a freeware policy editor
that uses a simplified policy editor language called
Axiomatics Language for Authorization (ALFA),
which can be used to generate XACML policies
(Stepien et al., 2009). This approach aims at achiev-
ing similar objectives as our project, by simplifying
the policy language used to generate XACML poli-
cies. The policy editor is an Eclipse plugin that pro-
vides a language that is syntactically similar to Java
or C#4.

Others have also taken a similar approach, by
defining user-friendly domain-specific languages for

3WSO2 Identity Server: https://docs.wso2.com/ dis-
play/IS450/Creating+an+XACML+ Policy.

4Axiomatics Language for Authorization (ALFA)
http://www.axiomatics.com/axiomatics-alfa-plugin-for-
eclipse.html

Figure 3: Simple policy using UMU XACML Editor.

implementing parts of the XACML syntax. One such
example is easyXACML, which has implemented an
XACML editor for thetarget section of XACML and
a constraints editor for non-technical users (Stepien
et al., 2009; Stepien et al., 2011). This approach is in
some ways similar to ALFA and Ponder2 XACML
policy integration (Zhao et al., 2008), by defining
domain-specific high-level authorisation policy lan-
guages. We believe our solution achieves much of
the same objective by providing a rich and sim-
ple graphical programming environment based on
Scratch, which is well known for being easy to use.

Another simplified authorisation language is Pon-
der2, developed at Imperial College, London which is
a general purpose authorisation environment for em-
bedded devices (Twidle et al., 2009). The policies are
written in a high-level language called PonderTalk,
which is based on Smalltalk. Ponder2 is a power-
ful environment, but it lacks a high-level graphical
language that can aid policy-makers on how to put
together policies. PonderTalk therefore has a higher
starting threshold for writing policies than our solu-
tion, since it requires the policy-makers to learn a sub-
set of Smalltalk as well as how to write the policies
in PonderTalk. Another disadvantage is that Ponder2
cannot generate XACML policies, which is required
by our use cases (Ulltveit-Moe and Oleshchuk, 2015).

Our solution could in principle be extended to
achieve the same benefits as PonderTalk, by support-
ing a message passing interface (Twidle et al., 2009),
since our solution also is based on Smalltalk. This
is another observation that went in favour of using
Scratch as design base. However adding a message
passing interface like this would mean evolving away
from the core XACML standard.

A�Scratch-based�Graphical�Policy�Editor�for�XACML

185

A major requirement of the policy editor, in addi-
tion to writing general XACML policies, is being able
to support writing anonymisation policies for XML
documents (Ulltveit-Moe and Oleshchuk, 2015). This
means that Ponder2 is not a suitable design base for
us.

This overview over different XACML editors
shows that there is a need for a good XACML edi-
tor that is able to provide a simplified policy develop-
ment language for policy-makers. All existing envi-
ronments have their disadvantages with respect to us-
ability and other issues; many DOM-tree-based XML
editors require you to edit sub-tree-objects by “zoom-
ing in”; clicking on them to open them up and show
the details, without allowing the user to see the big
picture with all details at the same time. Our solu-
tion avoids this problem by providing all information
available for the user in the simplified graphical lan-
guage, so that there is no need to zoom in or out of the
policy.

There are many language workbenches and tools
for creating editors - both textual and graphical, but
from a usability perspective even text editors with
language assistance, are too unstructured for XML
in general and in particular for such a highly struc-
tured language as XACML. On the other hand, creat-
ing a diagram-like graphical syntax for XACML us-
ing graphical editor tool-kits like GMF5 would be an
option, but diagrams tend to take a lot of space and it
is easy to lose the overview in a similar way as with
DOM-tree-based editors.

But why choose Scratch of all things - a program-
ming language designed for children? We wanted a
highly structured design that was radically different
from existing Java/Eclipse based editors.

Other possible design bases exist, for example
MIT App Inventor for Android. This is a similar block
programming language based on Scratch which can
be used for designing mobile apps (Roy, 2012). App
Inventor was considered being too tied to the under-
lying Android operating system and was therefore re-
jected.

There are also other blocks based programming
languages, for example UML (Fowler, 2004), Lad-
der (Hammond and Davis, 2005) or Lego Mindstorm
(Ferrari et al., 2003). However Scratch is consid-
ered one of the early models of such languages with
the necessary functionality which is open source and
was therefore chosen. We did not base the editor
on Scratch 2.0, to avoid dependencies to Flash, and
ended up using a version of Scratch 1.3 ported to the

5Graphical Modelling Framework, http://www.
eclipse.org/modeling/gmp/

Pharo Smalltalk engine called Phratch6. The Pharo
Smalltalk environment7 was chosen instead of Squeak
to get a more modern look and feel on the devel-
opment environment than the venerable Smalltalk-80
user interface.

3 EDITOR DESIGN

The underlying idea is to use the same approach
as Scratch has done with its environment, but using
the blocks to express XACML elements. The pure
XACML can then be hidden behind the scenes and
a simplified representation can be used to create and
express policies. Simplifications are done by using
blocks for elements and their arguments for the at-
tributes, the policies are then built up by placing and
stacking blocks onto each other forming a functional
policy. Using this representation of graphical blocks
and arguments enables a type-what-you-need based
design, letting the user focus on the important policy
logic and not the XACML XML syntax. Another use-
ful feature with using graphical elements is that the
possibility for user error due to misspellings and syn-
tax errors is reduced. The arguments and blocks can
have constraints in them enabling only blocks that are
applicable can fit.

The main goal for the editor is to generate cor-
rect XACML according to the XACML 2.0 Standard
(Moses, 2005). Support for generating XACML 3.0
is left as future work. This implies also that the edi-
tor should be able to express the whole or at least the
most frequently used parts of the standard.

4 AN EDITOR FOR
XACML - IMPLEMENTATION

The editor implementation is based on Phratch, an
editor for graphical programming based on Scratch
(Malan and Leitner, 2007; Resnick et al., 2009).
Phratch uses the Pharo 3.0 environment (Bera and
Denker, 2013), which is portable across most com-
mon operating systems. An advantage by using
Smalltalk, is that this is an agile development environ-
ment suitable for rapid prototyping. This means that
we quickly can test out ideas and modify the func-
tionality if it does not work out as well as expected.
Implementing the editor was done by building upon
a subset of Phratch. The visualisation for the blocks
and the arguments is the same for the editor as it is

6Phratch: http://www.phratch.com/
7Pharo: http://pharo.org

ICISSP�2015�-�1st�International�Conference�on�Information�Systems�Security�and�Privacy

186

Figure 4: Block placement indicator.

from Phratch since they represent a similar top down
structure as the original XACML would have with its
nested elements.

4.1 User Interface

The user interface consist of three parts; a category se-
lector, a block palette, and a script area, as illustrated
in Figure 2. The category selector enables the dif-
ferentiation of blocks into categories to group related
blocks. Under the category selector is the blueprint
for the different blocks. It contains a block palette that
shows the available blocks for the selected category.
Each category has a base colour that their respective
blocks uses, if not specified otherwise. Blocks shown
in the palette can be dragged onto the script area and
used in the policy.

When placing a new block onto an existing pol-
icy in the script area, the editor will indicate if that
block can fit where the user wants it to be. Figure 4
shows what the indication looks like in the editor. If
the block could not be placed in the slot due to the
rules and constraints given, then no indication for it
would be given, and it would be rejected from being
placed there.

4.2 Blocks

There are four different base type of blocks im-
plemented into the editor, Figure 5 illustrates their
shapes. The first two blocksContainer, andElement
are the ones placed directly onto the script area, puz-
zling them together into a policy. These blocks repre-
sent the XACML elements.

The Input types are used to represent XACML
attributes and are placed into other blocks colour-
marked for that attribute type. TheInput string block
is used for long strings that cannot simply be hidden
away in the background, for example XPath expres-
sions.

Each block contains a text describing the specific
element and can also contain an arbitrary number of
arguments, giving the possibility to present both sim-
ple and advanced elements with their attributes from
the XACML specification.

Figure 5: Blocks.

Figure 6: Arguments.

4.3 Arguments

The Arguments used in the editor are illustrated in
Figure 6, placed inside an element block, these spec-
ify the attributes for the block.

The complex argument with a hexagonal shape,
is a place holder for an input block. It is used when
more than just one piece of information is needed to
be passed along to the main block. Going back to the
example from Figure 2, the black input block with the
text “String =[]” not only returns the string written
by the user, but also the data type and its XACML
URI representation back to the owner block. The ar-
guments that take a written string can also have the
input string block placed into them.

Number arguments are used when the user input is
constrained to only integer or floating point numbers.

List arguments act as drop-down boxes for select-
ing defined items, and can either be a single list or
have a multi tiered selection of items.

Arguments can constrain the input blocks or text
allowed to be placed into them, for example string and
numerical arguments can have constraints in the form
of regular expression or a specific interval for numer-
ical values.

To better indicate the allowedInput blocks in
complex types and where input string blocks should
be placed, they are given the same kind of colour as a
visual indication. The constraint rules for complex ar-
guments makes it impossible to place the wrong input
block into them, reducing user error significantly.

4.4 XACML Text Generation

The XML presentation of XACML is generated on
demand when the user wants to export the graphical
policy into XACML or preview it using the XACML
pane in the editor. Generating the XML starts at the
outer topmost block, and recursively calls the contin-
uing blocks in the stack. When all the XML is gener-
ated, it runs through a formatting method to enhance
the visual appearance.

Each block from the palette has its own unique
method for generating its corresponding XML, to-
gether with extra behaviour dictated by the shape of
the block. An example of this extra behaviour is in

A�Scratch-based�Graphical�Policy�Editor�for�XACML

187

the container block which appends the inner blocks,
and adds any additional needed elements. This en-
ables the editor to hide elements that do not have any
unique attributes, for example thetarget or condition
elements. Figure 7 shows an examplerule with anac-
tion inside it. The generated output is shown in Figure
8, and here thetarget andactions elements encapsu-
lates theaction element. Since these do not contribute
to anything but verbosity, the editor adds them auto-
matically when needed. These improvements allow
for simplifying the graphic representation of XACML
compared to the very verbose XML representation.

Figure 7: Graphical representation.

<Rule RuleId="TestRule" Effect="Permit">

<Target>

<Actions>

<Action >

<ActionMatch

MatchID="&xacml;function:string-equal">

<AttributeValue DataType="&xs;#string">

Read

</AttributeValue>

<ActionAttributeDesignator

DataType="&xs;#string"

AttributeId="&xacml;action:action-id" />

</ActionMatch>

</Action>

</Actions>

</Target>

</Rule>

Figure 8: Generated XACML from Figure 7.

5 DISCUSSION

Our approach has the advantage over existing
XACML tools by focusing on the meaning and at-
tributes of the policy, and not the XML syntax of
XACML.

Generating XACML from a created policy by the
editor is quite fast. Using the policy from Figure 2,
tests are done by duplicating this policy and stack-
ing these together simulating a larger policy. The first
test illustrates the blocks stacked onto the bottom of
the policy under the last rule block. The generation
speed for this stacking by up to 10 consecutive times
is shown in Figure 9. The time it takes to generate
the policy from the “hello world” example is on av-
erage 3ms, while stacking 10 of these the generation

takes approximately 26ms, still a relative fast gener-
ation time. The second test performed with the hello
world example is by nesting the next “hello world”
into the “FinaleRule” container block from the previ-
ous one. This shows how the generation is over larger
inner nesting of blocks, and from Figure 10 it can be
seen that the generation has similar generation speed
as when blocks are stacked.

Figure 9: N stacked “Hello-World” policies.

Figure 10: N Nested “Hello-World” policies.

The editor now has 80% of elements from
XACML 2.0 implemented as blocks. The last 20%
are elements used for referring to other policies, ver-
sion definition and elements used when using self-
made policy-combining algorithms. The objective is
to implement full support for XACML in the future,
however the policy editor is already usable for several
simple policies, since the unimplemented elements
are less frequently used.

The complex arguments and list arguments en-
sures that a wrong input cannot be added to them,
specific types of number and string literals have con-
straints that ensures that only a valid input can be
typed. The stacking and nesting of blocks does how-
ever not yet have all the constraints needed to cover all
possibilities. This means that it still may be possible
for users not knowing the rules for XACML elements
to put together non-functional policies. It is prob-
ably not possible to avoid all fault scenarios, how-
ever improving the constraints handling is ongoing
work where improvements can be added when com-

ICISSP�2015�-�1st�International�Conference�on�Information�Systems�Security�and�Privacy

188

mon fault scenarios are being detected and mitigated.
Our approach simplifies several XACML con-

cepts significantly, as we have described earlier,
which means that overall it should be much easier for
policy-makers to write XACML policies than writing
such policies using existing tools. User-testing exper-
iments proving that the usability is significantly im-
proved is however left as future work.

In this paper, we let the qualitative arguments
for increased usability, based on the heritage from
Scratch, speak for themselves.

6 SUMMARY

We have implemented and tested an editor capable
of generating XACML 2.0 from a graphical blocks-
based representation. this enables the user to focus
on the important details and logic of the policy and
not on the complex syntax of XACML and XML. It
allows policy makers to focus on creating the correct
policies, and does not require a significant amount of
programming experience to be used. Policies created
by the editor are represented in a simplified policy
language that is quite close to XACML, and that can
be exported to XACML code. The editor uses colour
identification and feedback to show the user correct
placement of elements into the policy. This reduces
the learning curve for implementing XACML poli-
cies significantly compared to existing XACML ed-
itors, while still keeping core parts of the XACML
structure and syntactic elements. Providing a simpli-
fied syntax based on Scratch both improves the main-
tainability and makes it easier to support an agile pol-
icy development strategy under dynamically changing
environments.

7 FUTURE WORK

Investigating the usability with regards to familiar and
non familiar users of XACML is something we would
like to do in the future. Users who can write XACML
could test the editor by creating large complex poli-
cies, and non-technical users creating smaller, simpler
policies. The criteria for such a study should include
evaluating the time used versus size and complexity
of the policy, syntax errors, and logical errors.

Implementing modularisation, and support for
multiple active policies in the editor is left for fu-
ture work.This modularisation will allow the user to
break the policies into smaller parts, with clearer in-
tent. these parts can then be reused for the same or

other policies as well. Another step beyond mod-
ules is to provide the possibility to define and create
custom elements and attributes graphical in the editor
that then can be used for policies, using the extendible
parts supported by XACML.

XACML3.0 support is also left as future work,
however we have considered the XACML 3.0 syntax
when doing some of the simplifications in the graphic
language. Some more work is left on covering the last
portion of elements and attributes from the XACML
2.0 standard.

Another advantage by using Phratch as design
base, is that this may allow for mixing existing
Phratch functionality into the XACML policy gen-
eration language in order to define policy templates
that can instantiate variations of similar policies eas-
ily. This will allow for programmatic generation of
authorisation policies, which makes it easier to gener-
ate and maintain large and complex authorisation or
anonymisation policies. This feature is planned im-
plemented in a future version.

Another possible future improvement, is imple-
menting support for location-based XACML poli-
cies based on GeoXACML (Matheus and Herrmann,
2008). This could make it possible to integrate map
data, for example from Google maps, into the policy
editor, which would allow for defining geographical
authorisation constraints on the policies. Further elab-
oration of such a scenario may be supporting location-
based dynamic access control policies for moving ob-
jects. This may be useful for designing access control
policies for vehicles, boats or other objects moving
in a 2D plane, which could be simulated using ex-
isting functionality in Scratch. Support for express-
ing the RBAC profile of XACML (Anderson, 2005),
is another possibility for extending the policy edi-
tor, for example based on the work in (Ulltveit-Moe
and Oleshchuk, 2013; Ulltveit-Moe and Oleshchuk, ;
Bonatti et al., 2013).

ACKNOWLEDGEMENTS

This project was sponsored as a summer internship at
the University of Agder. The project has also been
sponsored by the FP7 EU projects:

PRECYSE - Protection, prevention and re-
action to cyberattacks to critical infrastruc-
tures, contract number FP7-SEC-2012-1-285181
(http://www.precyse.eu);

SEMIAH - Scalable Energy Management Infras-
tructure for Aggregation of Households, contract
number ICT-2013.6.1-619560 (http://semiah.eu).

A�Scratch-based�Graphical�Policy�Editor�for�XACML

189

REFERENCES

Anderson, A. (2005). Core and hierarchical role based ac-
cess control (rbac) profile of xacml v2.0.OASIS Stan-
dard.

Bera, C. and Denker, M. (2013). Towards a flexible Pharo
Compiler. In Lagadec, L. and Plantec, A., editors,
IWST, Annecy, France. ESUG.

Bonatti, P., Galdi, C., and Torres, D. (2013). ERBAC:
Event-driven RBAC. InProceedings of the 18th ACM
Symposium on Access Control Models and Technolo-
gies, SACMAT ’13, pages 125–136, New York, NY,
USA. ACM.

Ferrari, M., Ferrari, G., Clague, K., Brown, J., and Hempel,
R. (2003).LEGO Mindstorm Masterpieces: Building
and Programming Advanced Robots. Syngress.

Fowler, M. (2004). UML Distilled: A Brief Guide to
the Standard Object Modeling Language. Addison-
Wesley Professional.

Hammond, T. and Davis, R. (2005). LADDER, a sketching
language for user interface developers.Computers &
Graphics, 29(4):518–532.

Malan, D. J. and Leitner, H. H. (2007). Scratch for bud-
ding computer scientists. InProceedings of the 38th
SIGCSE Technical Symposium on Computer Science
Education, SIGCSE ’07, pages 223–227, New York,
NY, USA. ACM.

Matheus, A. and Herrmann, J. (2008). Geospatial extensi-
ble access control markup language (geoxacml).Open
Geospatial Consortium Inc.

Moses, T. (2005).eXtensible Access Control Markup Lan-
guage (XACML) Version 2.0. OASIS Standard.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A., Rosen-
baum, E., Silver, J., Silverman, B., and Kafai, Y.
(2009). Scratch: Programming for all.Commun.
ACM, 52(11):60–67.

Roy, K. (2012). App inventor for android: Report from
a summer camp. InProceedings of the 43rd ACM
Technical Symposium on Computer Science Educa-
tion, SIGCSE ’12, pages 283–288, New York, NY,
USA. ACM.

Stepien, B., Felty, A., and Matwin, S. (2009). A non-
technical user-oriented display notation for xacml
conditions. In Babin, G., Kropf, P., and Weiss, M., ed-
itors, E-Technologies: Innovation in an Open World,
volume 26 ofLecture Notes in Business Information
Processing, pages 53–64. Springer Berlin Heidelberg.

Stepien, B., Matwin, S., and Felty, A. (2011). Advantages
of a non-technical XACML notation in role-based
models. In2011 Ninth Annual International Confer-
ence on Privacy, Security and Trust (PST), pages 193–
200.

Twidle, K., Dulay, N., Lupu, E., and Sloman, M. (2009).
Ponder2: A policy system for autonomous pervasive
environments. InFifth International Conference on
Autonomic and Autonomous Systems, 2009. ICAS ’09,
pages 330–335.

Ulltveit-Moe, N. and Oleshchuk, V. Mobile security with
location-aware role-based access control. InSecu-

rity and Privacy in Mobile Information and Com-
munication Systems, volume 94 ofLecture Notes of
the Institute for Computer Sciences, Social Informat-
ics and Telecommunications Engineering. Springer
Berlin Heidelberg.

Ulltveit-Moe, N. and Oleshchuk, V. (2012). Decision-
cache based XACML authorisation and anonymisa-
tion for XML documents.Comput. Stand. Interfaces,
34(6):527–534.

Ulltveit-Moe, N. and Oleshchuk, V. (2013). Enforcing
mobile security with location-aware role-based ac-
cess control.Security and Communication Networks,
pages 172–183.

Ulltveit-Moe, N. and Oleshchuk, V. (2015). A novel
policy-driven reversible anonymisation scheme for
xml-based services.Information Systems, 48(0):164
– 178.

Zhao, H., Lobo, J., and Bellovin, S. (2008). An algebra
for integration and analysis of ponder2 policies. In
IEEE Workshop on Policies for Distributed Systems
and Networks, 2008., pages 74–77.

ICISSP�2015�-�1st�International�Conference�on�Information�Systems�Security�and�Privacy

190

