
A Novel Model of Security Policies and Requirements

Preetam Mukherjee1 and Chandan Mazumdar2
1Centre for Distributed Computing, Jadavpur University, Kolkata, India

2Department of Computer Sc. & Engg., Jadavpur University, Kolkata, India

Keywords: Security Requirements, Security Policies, Security Violations, Process Algebra.

Abstract: The responsibility of controlling, monitoring, analyzing or enforcing security of a system becomes complex
due to the interplay among different security policies and requirements. Many of the security requirements
have overlap among themselves and they are not exhaustive in nature. For that reason, maintaining security
requirements and designing optimal security controls are difficult, and involve wastage of valuable
resources. Finding out a set of mutually exclusive and exhaustive security requirements and canonical
policies will indeed ease the security management job. From this motivation, in this paper we try to find out
a set of mutually exclusive and exhaustive security requirements. To do this, a small set of low-level
security policy descriptions are proposed using Process Algebraic notions, by which all kinds of high level
security policies can be represented. Non-compliance to this new set of security policies gives rise to a set of
security violations. These security violations are mutually exclusive and exhaustive, so all the other security
violations can be described by this basic set of security violations. From these security violations, a set of
security requirements is determined. To preserve the security for any system it is necessary and sufficient to
maintain these requirements.

1 INTRODUCTION

For securing an Information Technology (IT)
system, each IT entity needs to comply with the
security policies imparted on them by the
administration. Policies can be of different types,
including access control policies, information flow
control policies, obligation policies etc. When an
entity does not fulfil a security policy, the non-
compliance to the policy is termed security violation
by that entity.

Security policies for a system are developed
from the point of view of maintaining security
requirements. In literature, different security
requirements have been defined including
confidentiality, integrity, availability, etc. These
requirements are defined from different points of
view and some of them are semantically
overlapping. As such it is difficult to ascertain that
all security issues relevant to a system are covered
by the selected set of security requirements. Several
security models are proposed in literature to find out
inter relationships of these security requirements.
But no model in the literature, to the best of our
knowledge, has proposed the basic set of non-
overlapping security requirements by which all the

other requirements of security can be addressed.
This basic set of security requirements is indeed
required to precisely monitor, analyze, enforce or
control security. This motivates us to gather and
define a set of mutually exclusive and exhaustive
security requirements for an IT entity.

In this paper, we have taken the notion of process
and action from the process algebraic framework to
model an IT entity and its actions (Milner, 1989).
Based on the above notions a novel method of
describing low-level Security Policies is presented.
The proposed policies are dynamic in nature, in the
sense that they may change as and when security
requirements change. We have defined the possible
violations to these policies. The security violations
defined here form a mutually exclusive and
exhaustive set. From these security violations we
can determine the basic set of security requirements
which are also mutually exclusive and exhaustive.

It is expected that, this basic set of security
requirements will make analysis of security easier
including in risk analyses, in threat analyses, in
attack analyses, in monitoring security etc. Also, in
the enforcement problem of security policy, this
study will give a concrete basis regarding what to
enforce to maintain security. Optimized set of

73Mukherjee P. and Mazumdar C..
A Novel Model of Security Policies and Requirements.
DOI: 10.5220/0005239400730082
In Proceedings of the 1st International Conference on Information Systems Security and Privacy (ICISSP-2015), pages 73-82
ISBN: 978-989-758-081-9
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

controls can be designed as well, if a well-
formulated set of security requirement can be
obtained.

The rest of this paper is organized as follows. In
section 2, we propose a model for defining an entity
and its actions using the notions of process algebra.
In section 3, a novel method of describing low-level
security policies is proposed and the methodology of
compliance with the policy is also given. Section 4
introduces the set of security requirements which are
mutually exclusive and exhaustive. Analyses of
different security violations are done from the view
of hand-shake communication in section 5, with the
identification of conjugate pairs of security
requirements. Section 6 discusses some related
research. Finally we conclude the paper by
summarizing the findings.

2 PROCESS AND ACTION

An entity of an IT system can perform various
internal and external actions. If watched externally,
one can only observe the entity to carry out
interactions with its environment. These interactions
are nothing but information exchanges, and, can be
considered to be instantaneous. The entity,
performing these interactions, can be represented as
a process, which can give out information and/or
receive information (Milner, 1989).

In this work, an IT entity is defined as a Process.
Actions by a process are of three types: input action,
output action and empty action or no-action (φ). In
process algebra, output actions (ā) are denoted by an
overbar to distinguish them from input actions (a).
(In this paper ‘a’ is used to denote general action if
not mentioned otherwise). An input or output action
(a) is represented by a triple (e, f, k), where, e is a
process which is performing the action, e ∈ E, E: set
of all the processes. f is another process in e’s
environment with which the process e is performing
the action, f ∈ E and f ≠ e. And k is information
exchanged by the action, k ∈ K, K: set of all the
information units possible to be transmitted.

a = (e, f, k) ∈ (E x E x K) (1)

3 SECURITY POLICIES AND
RULES

A security policy is an imperative statement that
defines a choice in the behavior of a system
(Damianou et al., 2001). Security policies are of

different types, access control policies, information
flow control policies, obligation policies etc. Access
control policies specify the legal and illegal accesses
to information by some entity; information flow
control policies specify legal and illegal propagation
of information; and obligation policies specify the
mandatory actions to execute.

But from the process algebraic notion of system
modeling, all the entities, including the passive
entities, are taken as processes. As shown in section
2, an entity or process can perform actions only. If
we can control actions of entities in a system of
processes, the access and information flow can also
be controlled, rendering the system secure. In this
paper, low-level policies are used to control the
actions performed by entities/processes.

These low-level policies decide, whether a
particular action by a process is allowable, or if a
process is obliged to perform an action. These
policies are dynamic in nature as they may change as
per requirement, with time. A Security policy can be
expressed by a set of rules. A rule can be of three
types: Permission – execution of an action is
granted, Prohibition – execution of an action is not
granted, or Obligation – execution of an action is
mandatory (Cuppens et al., 2005).

Policy specification can be done in three ways,
Closed Policy: Only permissions are specified; an
action is granted only if the permission to that action
is explicitly specified. Open Policy: Only
prohibitions are specified; an action is granted only
if the prohibition to that action is not explicitly
specified. Hybrid Policy: Both permissions and
prohibitions are specified; an action is allowed
depending on the way the specified permission and
prohibition to that action are handled or prioritized
and how unspecified actions are handled (Jajodia et
al., 2001). Obligation can be introduced in any of
these policy specifications as required.

Policy Conflict happens when different policies
are imparting mutually dissimilar rules on the same
action at the same time. In the closed policy,
permissions and (if required) obligations are
specified. Obligations are actually permissions to the
actions, which must be executed. So there is no
possibility of conflict in the case of closed policy.
For open policies prohibitions and (if required)
obligations are specified. In open policies, there may
be conflict between obligation and prohibition rules.
For the case of Hybrid policies, policy conflict can
happen between permission and prohibition, and/or
obligation and prohibition. Among all these policy
specifications, if there is a constraint over the
parallel execution of actions, then two or more

ICISSP�2015�-�1st�International�Conference�on�Information�Systems�Security�and�Privacy

74

obligations can be in conflict with each other
(Essaouini et al., 2013).

Resolution of policy conflicts can be done in
different ways; two of them are,

No Conflict is Allowed: under this scheme of
resolution, conflicts will be considered as
inconsistency.

Giving Priority among Rules: under this scheme of
resolution of policy conflict, rules are given an order
of precedence. Four types of precedence rules are
possible,
 Prohibition is given priority among all other

rules;
 Obligation is given the highest priority, then

Prohibition and then Permission;
 Permission is given the highest priority, then

Prohibition and then Obligation;
 Prohibition is given the lowest priority among all

other rules.

3.1 Permitted Actions

A process can perform various actions at a point in
time, from a set PA of possible actions including
input, output and empty (φ) actions, but one action
at a time. But not all these actions are permitted by
the applied policies. In subsection 3.1.4, a
methodology have been given to find out the
effective set of permitted actions (pA) for a process
at a particular point in time under a set of security
policies/rules and priorities among these rules.

Example: A server ‘S’ has two enlisted clients (A
and B). S is attached with Local Area Network
(LAN). S can perform various actions with attached
LAN. Using the representation in Equation(1) in this
example, e is server S and f is LAN, information
exchanged k will vary, and depending on that,
actions will change accordingly.

Type of possible actions include, input actions
where k = reqA or reqB (Request from client A or B
respectively); output actions where k = repA or repB
(Reply to client A or B respectively) and no-action
(φ) where k = null.

Therefore, set of all possible actions (PA) by
server S are, {reqA, reqB, repA, repB, φ}.

Scenario 1: In scenario 1, server S has received
reqA, 4 time units ago (with the assumption that one
action required one time unit for its performance)
and after that S has performed no-action (φ) for 4
times.

Scenario 2: In scenario 2, server S has performed
repA.

This example will be used throughout the paper for
explanation.

3.1.1 Prohibitions

Definition: If execution of an action is marked as
illegal then that action becomes prohibited action or
prohibition.

These prohibitions can be divided into two types:
 History based Prohibitions;
 Stand-alone Prohibitions;

History based Prohibitions: The actions which are
prohibited at a certain point in time, depending on
the history of actions by the process, are known as
history based prohibitions.

ሺhA;	axሻ	⊭ Pi :	a ∈	HQi (2)

a is the prohibited action and hA is the history of
actions by the process till the concerned point in
time. Execution of ‘a’ is denoted by ax. (hA; ax)
means execution of a after hA. Pi is the policy
statement. HQi is the set of history based
prohibitions at the certain point in time, for a certain
process and for a certain policy Pi.

History based prohibitions can be derived from
policies like,
 Separation of duty policy;
Performing a duty earlier, prohibits a process (may
be human being) from performing another duty
which is in conflict from the point of view of
separation of duty policy.
 Non-generation of receipt by beneficiary before
receiving money;
If in its history of actions the beneficiary process has
not received money, then by this policy, beneficiary
is prohibited to generate the receipt.

Stand-alone Prohibitions: The actions which are
prohibited at a particular point in time, but the
prohibitions do not depend on the history of actions
are known as stand-alone prohibitions.

ax ⊭ Pi :	a ∈	SQi (3)

SQi is the set of stand-alone prohibitions at a certain
point in time for a certain process for a certain
policy Pi.

Stand-alone prohibitions can be derived from
policies like,
 A process is always barred to execute an action;
An employee process is always prohibited to leak
internal information of company.
 A process is barred to execute an action at

present time;
A software process is prohibited to send page
request to a social networking site within office

A�Novel�Model�of�Security�Policies�and�Requirements

75

hours.
 A process is barred to execute an action from the
present place;
A process (person) is prohibited to make a call while
inside a bank ATM.

In a hybrid policy specification, the set of
prohibitions Q for a particular process, for all the
policy generated prohibitions (if there are any) at the
concerned point in time, is:

Q =	ሺ∪HQiሻ	∪	ሺ∪SQiሻ	 (4)

In the given example suppose, server S has two
policies from which Prohibitions can be derived,
 1. Can not perform reqX when last action in
history (not considering no-actions) is reqY. (where,
X may or may not be equal to Y)
 2. Can not perform repX when last action in
history (not considering no-actions) is not reqX.

Both of policies 1 and 2 will give history based
prohibitions. When these policies are applied to
scenario 1 as given earlier, then following sets of
prohibitions will come up,
 From the first policy, reqA and reqB are

prohibited to be performed by the server in the
given scenario. So, HQ1 = {reqA, reqB}

 From the second policy, repB is prohibited. So,
HQ2 = {repB}.

Therefore, in the given scenario 1 under policies 1
and 2, Q = {HQ1 ∪	HQ2}

Or, Q = {reqA, reqB, repB}
When policies 1 and 2 are applied to scenario 2

as given before, then following sets of prohibitions
will come up,
 From the first policy, nothing is prohibited. So,

HQ1 = { }
 From the second policy, repA and repB are

prohibited. So, HQ2 = {repA, repB}.

Therefore, in the given scenario 2 under policies 1
and 2, Q = {HQ1 ∪	HQ2}

Or, Q = {repA, repB}

3.1.2 Permissions

Definition: If execution of an action is marked as
legal, then that action becomes permitted action or
permission.

These permissions can be divided into two types:
 History based Permissions;
 Stand-alone Permissions;

History based Permissions: The actions which are
permitted at a particular point in time, depending on

the history of actions by the process, are known as
history based permissions.

ሺhA;	axሻ	⊨	Pi : a ∈	HPi (5)

a is the permitted action, hA is the history of actions
by the process till the concerned point in time and Pi
is the policy statement. HPi is the set of history
based permissions at a certain point in time, for a
certain process and for a certain policy Pi.

History based permissions can be derived from
policies like,
 Things permitted to do after getting some

license;
A process (person) is permitted to run a car by
himself after getting driving license.

Stand-alone Permissions: The actions which are
permitted at a particular point in time, but the
permissions do not depend on the history of actions
are known as stand-alone permissions.

ax ⊨	Pi : a ∈	SPi (6)

SPi is the set of stand-alone permissions at a certain
point in time for a certain process for a certain
policy Pi.

Stand-alone permissions can be derived from
policies like,

 A process is granted to execute an action at present
time;
A software process is permitted to send page request
to a social networking site after office hours.
 A process is granted to execute an action from

the present place;
A process (person) is permitted to make a call while
in its home.

Assuming a hybrid policy specification, set of
permissions R for a particular process, for all the
policy generated permissions (if there are any) at the
concerned point in time, is:

R = ሺ∪HPiሻ	∪	ሺ∪SPiሻ	 (7)

In the given example suppose, server S has three
policies from which Permissions can be derived,
 3. S can perform input reqX.
 4. S can perform output repX.
 5. S can perform φ.

All three policies will give Stand-alone Permissions.
When policies 3, 4 and 5 are applied to scenario 1 as
given earlier, then following sets of permissions will
come up,
 From the policy 3, reqA and reqB are permitted.

So, SP3 = {reqA, reqB}
 From the policy 4, repA and repB are permitted.

So, SP4 = {repA, repB}.

ICISSP�2015�-�1st�International�Conference�on�Information�Systems�Security�and�Privacy

76

 From the policy 5, φ is permitted. So, SP5 =
{φ}.

Therefore, in the given scenario under policies 3, 4
and 5, R = {SP3 ∪	SP4 ∪	SP5}

Or, R = {reqA, reqB, repA, repB, φ}
When policies 3, 4 and 5 are applied to scenario

2 as given earlier, then same sets of permissions will
come up.

Therefore, in the given scenario under policies 3,
4 and 5, R = {reqA, reqB, repA, repB, φ}.

3.1.3 Obligations

Definition: If among a set of actions, execution of
any one action is compulsory, then that set of action
is known as obligatory actions or obligations. [As
per assumption only one action is possible to be
executed by a process at a time.]

These obligations can be divided into two types:
 Dead-lined Obligations;
 Point Obligations;

Dead-lined Obligations: An action, which has a
deadline for its execution, can be executed at any
time within the deadline. If at a particular point in
time, without executing any action from a particular
set of dead-lined actions, it is impossible to meet the
deadline for all the dead-lined actions, then dead-
lined actions in that particular set are called Dead-
lined obligations.

ሺ∀a (axሻሻ	⊭	P	:	a ∈	DO	 (8)

DO is the set of dead-lined obligations at a certain
point in time for a certain process for the set of all
applicable policies P.

Dead-lined Obligations can be derived from
policies like:

 Within 7:00 PM delivery of pizza at two places
separated by 5 minutes journey;
The pizza delivery process (delivery-man) is
obligated to reach any one of the two places latest by
6:55 PM.
 Updating antivirus once a month;

Point Obligation: An action which must be
executed only at a particular point in time is termed
as point obligation.

ax	⊭	P	: a ൌ	PO (9)

PO is the point obligation at a certain point in time
for a certain process for the set of all applicable
policies P.

If, for just meeting the deadline of one action at
the concerned point in time, that action itself have to
be executed; then that action is also known as point
obligation. So point obligation can be seen as a

special case of dead-lined obligations.
Point Obligations can be derived from policies

like,
 Time out;
In a software process, if a reply is not received
within 5 seconds, then it is obligatory to stop the
process.
 Monitor alarm;
Whenever an antivirus software process detects a
virus definition it is obligatory for it to generate an
alert.

Set of obligations for a process at the present
moment is: (null set is represented by < > in this
paper)

O = PO,				when	PO	്	൏	and	DO	ൌ	൏	
O = DO,				when	PO	ൌ	൏	and	DO	്	൏

(10)

If PO and DO both are non-null then, there will be
conflict among the obligation policies. If there are
two or more point obligations or, two or more sets of
dead-lined obligations then also, there is conflict in
obligation policies.

In the given example suppose, server S has two
policies from which Obligations can be derived,
 6. Server S is obliged to perform output action
repY, within 5 time units of performing the input
action of reqX (where, X may or may not equal to
Y).
 7. Server S is obliged to perform reqX after
performing repY (where, X may or may not equal to
Y).

These policies will generate Dead-lined obligation.
When policies 6 and 7 are applied to scenario 1 as
given earlier, then following set of obligations will
come up,
 From the policies 6 and 7, one of repA or repB is

obligated. So, DO = {repA, repB}
Therefore, in the given scenario 1 under policy 6 and
7, O = DO

Or, O = {repA, repB}
When policies 6 and 7 are applied to scenario 2

as given earlier, then following set of obligations
will come up,
 From the policies 6 and 7, one of reqA or reqB is

obligated. So, DO = {reqA, reqB}
Therefore, in the given scenario 2 under policy 6 and
7, O = DO

Or, O = {reqA, reqB}

3.1.4 Effective Set of Permitted Actions

Effective set of permitted actions are a set of actions
which can be performed at a particular point in time

A�Novel�Model�of�Security�Policies�and�Requirements

77

by a certain process fulfilling all the security
policies.

From our assumed scenario of hybrid policies
with prohibitions given the highest priority among
all rules, the effective set of permitted actions can be
found out as follows, (with further assumption of
default prohibition on unspecified actions)

pA =	O	\	Q						if	O	്	൏	
pA	ൌ	R	\	Q						if O	ൌ	൏	

(11)

For other cases, where permission or obligations get
priorities, pA can be found out with some simple
changes in Equation(11).

In the given example, if all the policies from 1 to
7 are applied in the given scenario 1, the permitted
set of actions pA is given by the Equation(11) as,

pA = O \ Q as, O ≠ < >.
Or, pA = {repA, repB} \ {reqA, reqB, repB}
Or, pA = {repA}.

In the given example, if all the policies from 1 to 7
are applied in the given scenario 2, the permitted set
of actions pA is given by the Equation(11) as,

pA = O \ Q as, O ≠ < >.
Or, pA = {reqA, reqB} \ {repA, repB}
Or, pA = {reqA, reqB}.

3.2 Security Policy Compliance

To comply with all the policies imposed on a
process at a particular point in time, the process
needs to maintain the following;

a ∈ pA : ax ⊨	P (12)

ax being the execution of action a. P is set of all the
applied policies.

4 SECURITY VIOLATIONS

If the executed action by a process is not in the set of
the effective permissions (pA), then it causes
security violation. Therefore, non-compliance to
security policies infers security violation. V is the
violation statement.

bx : (b ∉ pA) ⇒ V (13)

In more details, violation can happen in the
following ways,

(b ≠ φ) ∧ (φ ∈ pA) : (bx ⊭ P) ⇒ V
(b ≠ φ) ∧ (φ ∉ pA) : (bx ⊭ P) ⇒ V

(b ≠ φ) ∧ (φ ∉ pA) : ∀a (((a ∈ pA) ∧ (ሺ∀a
(axሻሻ ⊭ P)) ⇒ V)

(b = φ) : ∀a (((a ∈ pA)	∧ ሺሺ∀a	ሺaxሻሻ ⊭ P))
⇒ V)

(14)

If the executed action (b) by a process is not in the
set of the effective permissions (pA), then violation
can happen in the ways shown above. If the
executed action is not no-action (φ) and no-action
belongs to pA then, violation will happen only for
executing b, which does not conform to the security
policy. If no-action (φ) does not belong to pA then,
violation will also happen for non-execution of all
the actions in pA, anyone of which should be
executed to fulfil the policy. If executed action b is
the no-action (φ) then violation will only happen for
non-execution of all the actions belonging to pA.

All these violations given above are behavioural
integrity violations by the process (Biba, 1977)
(Mayfield et al., 1991) or violations of safety
properties (Alpern and Schneider, 1985).

Based on the type of violating action, the
following 4 types of security violations can be
conceived of.

4.1 Availability Violation

If a process is not complying with security policy by
not performing any of the permitted actions (not
including no-action), then non performance of
output action (ō), which belongs to the set of
permitted actions, from the point of view of
environment, is reflected as availability violation
(AV).

bx : (b ∉ pA) ∧ (φ ∉ pA) ∧ (a ∈ pA):
((ō ∈ pA) ∧ (ሺ∀a (axሻሻ ⊭ P)) ⇒ AV

(15)

If action b is executed which does not belong to pA
and no-action (φ) also does not belong to pA, then
non-execution of output action ō, which belongs to
pA, causes availability violation, by not performing
the action expected by the environment.

4.2 Confidentiality Violation

If a process is not complying with security policy by
performing output action (ō), from the point of view
of environment this is reflected as confidentiality
violation (CV).

ōx : ō ∉ pA:
(ōx ⊭ P) ⇒ CV

(16)

If output action ō is executed which does not belong
to pA, then execution of that output action reveals
information to environment and causes
confidentiality violation.

4.3 Completeness Violation

If a process is not complying with security policy by

ICISSP�2015�-�1st�International�Conference�on�Information�Systems�Security�and�Privacy

78

not performing any of the permitted actions (not
including no-action), then non performance of input
action (i), which belongs to the set of permitted
actions, from the point of view of environment, is
reflected as completeness violation (CoV).

bx : (b ∉ pA) ∧ (φ ∉ pA) ∧ (a ∈ pA) :
((i ∈ pA)	∧ (ሺ∀a (axሻሻ ⊭ P)) ⇒ CoV

(17)

If action b is executed which does not belong to pA
and no-action (φ) also does not belong to pA, then
non-execution of input action i, which belongs to
pA, means non-acceptance of desired changes in the
entity, causes completeness violation.

4.4 Accuracy Violation

If a process is not complying with security policy by
performing input action (i), from the point of view
of environment this is reflected as accuracy violation
(AcV).

ix : i ∉ pA :
(ix ⊭ P) ⇒ AcV

(18)

If input action i is executed which does not belong to
pA, then execution of that input action causes
undesired changes in the entity, causing accuracy
violation.

In the given example suppose the server S
performs reqB in scenario 1.

Then, as the server is not complying with
security policies by performing input action reqB not
in pA, so Accuracy violation has occurred.

And, the server is not complying with security
policies by not performing any of the actions in pA
(which does not include φ). So for non-execution of
repA Availability violation has occurred.

In the given example suppose the server S
performs repB, in the given scenario 2.

Then, as the server is not complying with
security policies by performing output action repB
not in pA, so Confidentiality violation has occurred.

And, the server is not complying with security
policies by not performing any of the actions in pA
(which does not include φ). So for non-execution of
reqA Completeness violation has occurred and for
non-execution of reqB another Completeness
violation has occurred.

4.5 Violation Quadrant

These four violations can be represented in the form
of quadrant structure, as shown in Figure 1,

Figure 1: Violation Quadrant.

The actions of a process may be within the
effective set of permitted actions or not, because of
the application of the security policies as shown
earlier. By not complying with security policies a
process creates security violation. Security
violations covered in subsection 4.1 to 4.4, are the
only possible violations and they form an exhaustive
set. Since, these violations are semantically non-
overlapping they are mutually exclusive.

Corresponding set of mutually exclusive and
exhaustive Security Requirements are termed as
follows,
 Availability requirement;
 Confidentiality requirement;
 Completeness requirement;
 Accuracy requirement.

Maintenance of the above security requirements is
expected to be the necessary and sufficient condition
to make a system of processes secure.

5 HAND-SHAKE
COMMUNICATION

In the process algebraic framework proposed by
Milner (Milner, 1989), communication between two
processes is simultaneous actions by both the
involved processes. This is known as handshake
communication. From this notion we have found out
relationship among the security requirements
proposed in the subsection 4.5.

We have represented Handshake communication
as the ensemble of two points,

1> One process sends information or performs an
output action (ā) and the recipient process in its
environment has not received that information or has
not performed the corresponding input action (a) – is
not possible. Thus the following is true:

¬((ā) ∧	¬(a))
or, (ā) → (a)

(19)

A�Novel�Model�of�Security�Policies�and�Requirements

79

2> One process performs a receive action or
input action (a) and the sender process in its
environment has not performed the corresponding
output action (ā) – is not possible. Thus the
following is true:

or, ¬((a) ∧	¬(ā))
or, (a) → (ā)

(20)

Therefore, hand-shake communication can be
expressed as,

(ā) ↔ (a) (21)

5.1 Induced Security Violations

Interactions of processes have to be mutual every
time as per hand-shake communication. Due to this
mutuality of interactions security violation of one
process can induce security violation on another
process; this phenomenon brings out different
existing security aspects for processes as shown
below.

One process performed availability violation by
not performing output action (ā), induces, another
process, to perform completeness violation by not
performing the corresponding input action (a).

(AV at sender) ∧ ((ā) ↔ (a))
→ (CoV at receiver)

(22)

If the receiving process performs completeness
violation by not performing input action (a) then, by
the laws of hand-shake communication the sending
process performs availability violation by not
performing output action (ā).

(CoV at receiver) ∧ ((ā) ↔ (a))
→ (AV at sender)

(23)

Similarly confidentiality violation done at sender
process will induce accuracy violation at the receiver
process and vice versa.

(CV at sender) ∧ ((ā) ↔ (a))
→ (AcV at receiver)

(AcV at receiver) ∧ ((ā) ↔ (a))
→ (CV at sender)

(24)

Accuracy Violation at receiver violating the sender
process’ Confidentiality is actually the depiction of
covert channel, which is coming from the
interrelation of these violations.

After the above analysis we can deduce that,
Availability – Completeness and Confidentiality –
Accuracy form two conjugate pairs of security
requirements. When a particular requirement is
violated in one process then there must be another

process where the paired requirement gets violated,
due to hand-shake communication.

In the given example the server S and the
attached LAN are two processes performing
Handshake communication.

Then, as in scenario 1 the server S performed
Availability violation by not performing output
action repA, induces the attached LAN to perform
Completeness violation by not performing the
corresponding input action repA (by LAN).

6 RELATED WORK

In (Alpern and Schneider, 1985) authors show every
property can be described as the intersection of
safety and liveness properties. (McLean, 1994)
disproves this argument and shows only property of
traces can be described by Alpern-Schneider
framework. In this work a partial ordering of
possibilistic security properties is done. Separability,
Non-inference, Generalized Noninference,
Generalized Noninterference are partially ordered by
their relative strength from the notion of proposed
selective interleaving function. Zakinthinos and Lee
have extended the partial ordering with some other
properties like, Perfect security property (PSP) and
Output Non-deducibility (Zakinthinos and Lee,
1998).

In (McCullough, 1987) author has compared
different multi level security requirements like,
Simple security property & *-security property by
Bell Lapadula, Non-interference property by
Goguen-Meseguer and Deducibility secure property
by Sutherland; and found large similarities in them.

In (Clarkson and Schneider, 2010(a)) authors
have quantified the integrity by using information
theoretic approach. The work has proposed two
security violations, contamination and suppression,
and their measuring techniques. Different
information flow security properties like,
confidentiality, integrity and availability has been
compared from the point of view of Biba’s duality.
Authors have also formulated security policies with
the conception of hyperproperties in (Clarkson and
Schneider, 2010(b)). Where, every hyperproperty
falls at the intersection of safety hyperproperty and
liveness hyperproperty.

But none of the above works have tried to find
out a set of mutually exclusive and exhaustive
security requirements, which was the motivation
behind writing the present paper.

There is rich literature dealing with enforcement
of security, (Schneider, 2000), (Ligatti et al., 2005),

ICISSP�2015�-�1st�International�Conference�on�Information�Systems�Security�and�Privacy

80

(Khoury and Tawbi, 2012), (Basin et. al, 2013).
How these enforcement mechanisms can be applied
to this work and finding out the set of enforceable
actions will set a possible future direction of our
research.

7 CONCLUSIONS

In this paper we have derived the set of mutually
exclusive and exhaustive security requirements. To
find that out basic notion of process algebra has been
taken. We proposed novel method for describing
low level security policies, dealing with the legality
of actions by a process. Basic security rules of the
policies like Permission, Prohibition and Obligation
are explored. Some examples of formulation of high
level security policies in terms of low level policies
are given in the appendix. The mechanism to get the
effective set of permitted actions complying with all
the applicable security policies at a point in time is
mentioned in this paper. Non-compliance to these
low-level policies is taken as security violation. We
have tried to find out all the possible security
violations. The requirements corresponding to these
security violations are expected to be necessary and
sufficient for a system of processes to maintain
security. This paper also tried to find the dependency
of one security requirement on another and have
found the conjugate pairs among them. The
approach has been illustrated by a running example
of interactions between a server and the attached
network.

Our future work includes how this study can be
applied to different cases of security analyses, like in
risk, threat or attack analysis. With mutually
exclusive and exhaustive set of security
requirements in hand, it is expected to get a better
formal view of security analysis. How to monitor or
enforce security requirements is another possible
area of research. Designing the set of security
controls for a system with optimal usage of
resources is yet another future challenge. It seems,
security policy generation may be done in more
formal way, by using this set of mutually exclusive
and exhaustive security requirements, which needs
further attention.

ACKNOWLEDGEMENTS

This research was partially supported by grants
allocated by the Department of Electronics and

Information Technology, Govt. of India. We wish to
thank anonymous reviewers, there comments come
extremely helpful to articulate the ideas and shape
the illustrations.

REFERENCES

Milner, R., 1989. Communication and Concurrency.
Prentice-Hall International.

Damianou, N., Dulay, N., Lupu, E., Sloman, M., 2001. the
Ponder Policy Specification Language. in Proceedings
of the International Workshop on Policies for
Distributed Systems and Networks. Springer-Verlag.

Cuppens, F., Cuppens-Boulahia, N., Sans, T., 2005.
Nomad: A Security Model with Non Atomic Actions
and Deadlines. in the Computer Security Foundations
Workshop (CSFW).

Jajodia, S., Samarati, P., Sapino, M. L., Subrahmanian, V.
S., 2001. Flexible Support for Multiple Access Control
Policies. in ACM Transactions on Database Systems
(TODS), V.26 N.2, P.214-260.

Mayfield, T., Roskos, J. E., Welke, S. R., Boone, J. M.,
Mcdonald, C. W., 1991. Integrity in Automated
Information Systems. C Technical Report 79-91,
Library No. S-237,254 (IDA PAPER P-2316).

Biba, K. J., 1977. Integrity Considerations for Secure
Computer Systems. Mitre TR-3153, Mitre
Corporation, Bedford, MA.

Alpern, B., Schneider, F. B., 1985. Defining Liveness. in
Information Processing Letters, 21(4):181-185.

Mclean, J., 1994. a Generai Theory of Composition for
Trace Sets Closed under Selective Interleaving
Functions. in Proceedings of the 1994 IEEE
Symposium on Security and Privacy, Pages 79-93.
IEEE Press.

Zakinthinos, A., Lee, E. S., 1998. A General Theory of
Security Properties and Secure Composition. in
Proceedings of the 1997 IEEE Symposium on
Research in Security and Privacy. IEEE Press.

Mccullough, D., 1987. Specifications for Multi-Level
Security and a Hook-up Property. in Proceedings of
the 1987 IEEE Symposium on Research in Security
and Privacy. IEEE Press.

Clarkson, M. R., Schneider, F. B., 2010(a). Quantification
of Integrity. in Proc. 23nd IEEE Computer Security
Foundations Symposium (CSF ’10), Pp. 28–43.

Clarkson, M. R., Schneider, F. B., 2010(B).
Hyperproperties. Journal of Computer Security,
18(6):1157–1210.

Schneider, F. B., 2000. Enforceable Security Policies.
ACM Trans. on Information and System Security. 3, 1.

Ligatti, J., Bauer, L., Walker, D., 2005. Edit Automata:
Enforcement Mechanisms for Run-Time Security
Policies. International Journal of Information Security
4(1-2), 2–16.

Khoury, R., Tawbi, N., 2012. Which Security Policies Are
Enforceable by Runtime Monitors? a Survey.
Computer Science Review 6(1), 27–45.

A�Novel�Model�of�Security�Policies�and�Requirements

81

Basin, D., Jugé, V., Klaedtke, F., Z˘alinescu, E., 2013.
Enforceable Security Policies Revisited. ACM Trans.
on Information and System Security. 16, 1.

Essaouini, N.,Cuppens, F., Cuppens-Boulahia, N., Kalam,
a.a.E., 2013. Conflict Management in Obligation with
Deadline Policies. in Proceedings of the Eighth
International Conference on Availability, Reliability
and Security. (IEEE Computer Society).

APPENDIX

EXAMPLES OF POLICY FORMULATION

Using the low level policy representation formulated
in section 3, high level policies can be explained. In
this section, this point is illustrated by some
examples.

Example of Access control policy rule:
 A has read access to B

Let, in this example A and B be two processes,
performing handshake communication. In that
scenario, this Access Control Policy rule is mapped
to the set of low level policies as follows,
 A has permission of sending “Read Request” via

output action to B.
 A has the permission of receiving “Content” via

input action from B.

On the other hand,
 B has the permission of receiving “Read

Request” via input action from A.
 B has the permission of sending “Content” via

output action to A.

Some other policies like, Principle of Least
Privilege states,
 A subject should get the minimal privileges

required, to accomplish a given task, by the
authority.

In the low level policy set this policy can be mapped
as,
 The authority is prohibited to output the grant of

extra privilege, than required, to a subject.
 A subject is prohibited to input the grant of extra

privilege, than required, from the authority.

On the other hand Information flow control
policies which are violating safety properties can be
explained by this basic set of rules as shown earlier.

ICISSP�2015�-�1st�International�Conference�on�Information�Systems�Security�and�Privacy

82

