
Multi-Objective Capacitated Disassembly Scheduling with Lost Sales 

Hajar Cherkaoui, Matthieu Godichaud and Lionel Amodeo 
Institut Charles Delaunay, LOSI, Université de Technologie de Troyes, UMR 6281, CNRS, Troyes, France 

Keywords: Disassembly Scheduling, Remanufacturing, Multi-Objective, Optimization, Lost Sales, Nsga-II. 

Abstract: Disassembly scheduling is one of the important problems in reverse logistic decisions. This paper focuses 
on this problem with capacity restrictions on disassembly resources, lost sales, multiple products and 
without part commonality. A model with two objectives is developed and optimized by a multi-objective 
approach. The first objective is a sum of several costs to minimize: setup cost, inventory cost, and over 
capacity penalty cost. The second objective is a measure of the service level. Considering the complexity of 
this model, a genetic algorithm is developed (NSGA-II) to obtain a set of Pareto-optimal solutions, the 
results are compared with those calculated by a mixed integer programming model. Results of 
computational experiments on randomly generated test instances indicates that the genetic algorithm gives 
good quality solutions up to all problem sizes in a reasonable amount of computation time whereas linear 
programming solvers do not give solution in reasonable time. 

1 INTRODUCTION  

Nowadays, due to environmental and economic 
reasons, more and more companies acknowledge that 
reverse logistic is a part of the supply chain as 
important as production or distribution. Disassembly 
process consists in separating recovered products to 
generate components which can be reused or be 
conditioned safely for the environnement. 
Disassembly scheduling defines how many products 
to disassemble given the demands for components in 
each period of a finite horizon planning. In this paper 
we consider  two-level product structure disassembly 
scheduling problem with setup times, lost sales, 
multi-products types and limited capacity. Part 
commonality between products is not considered in 
this paper.  

The goal of this study is to develop a 
optimization tool for this problem with two objective: 
total cost and service level. To our knowledge, the 
disassembly scheduling problem with lost sales has 
not been studying in literature. Lost sales allow 
selecting demand to be satisfied and minimizing 
inventory surplus that is inherent to disassembly 
scheduling problem. In the following section, we 
start by a literature review of disassembling 
problems. In section 3, a mathematical formulation of 
the problem is introduced. In section 4, a meta-
heuristic based on genetic algorithm NSGA-II is 
developped for large instance when CPLEX solver 

do not give solutions in reasonable time. Finally, 
section 5 explores the performances of the meta-
heuristic and compares results with solutions given 
by solving the mixed integer programming model. 
Concluding remarks and future research goals will be 
given in section 6. 

2 LITERATURE REVIEW 

In this section we present various problems in 
disassembly system studied in literature. Gupta and 
Taleb (1994) defined and characterized the basic 
disassembly scheduling problem for a single product 
type, without explicit objective function and 
suggested an algorithm that is a reversed Material 
Requirement Planning (MRP). This problem was 
further extended to include commonality parts by 
Guta and Taleb (1997) for multiple product case. 
Disassembly scheduling can be classified into 
deterministic and non-deterministic problems which 
incorporate random factors in the models, Inderfurth 
and Langella (2006) developed two heuristics which 
take into consideration stochastic disassembly 
yields, with multiple product types, parts 
commonality, two-level product structure. Here we 
interested on deterministic problems. When set up 
costs is considered in the objective function, lost 
sizing decision have to be made. We note that 
methodologies for lot sizing in production and 
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assembly scheduling cannot be applied to 
disassembly due to their divergence characteristic, 
see Kim et al. (2007) for more details of the 
divergence characteristic. Resource capacity 
restriction also complicate the problem. Lee et al. 
(2002) considered the capacitated problem, and 
proposed an integer programming model for the case 
of single product type. Lee and Xirouchakis (2004) 
and Kim et al. (2003) proposed integer programming 
models to determine the disassembly scheduling of 
used products in order to satisfy the demand of their 
parts over a planning horizon, considering various 
situations involving costs and capacity. Kim et al. 
(2006) developed a two-phase heuristic to minimize 
of set up, disassembly operation and inventory-
holding costs. Lee et al. (2006) developed an integer 
programming model considering capacity restriction, 
a two stage solution approach is proposed. Barba et 
al (2008) present an algorithm for reverse MRP with 
various lot sizing heuristics. Kim et al. (2010) 
consider the problem that minimizes the total cost 
that is sum of setup cost and inventory holding cost, 
they suggested a branch and bound algorithm that 
incorporates Lagrangian relaxation technique to 
obtain good lower and upper bounds. In this study 
we test the model with their instances. Kim and Lee 
(2011) proposed a heuristic for multi-period 
disassembly leveling and scheduling. To out 
knowledge, there is no study on disassembly lot 
sizing with lost sales. 

There are several references on production lot 
sizing with lost sales. Xiao Liu and Freng Chu 
(2004) address the capacitated lot sizing problem 
with lost sales, they developed a dynamic 
programming algorithm to solve the problem. Absi 
et al (2013) deals with the same problem, they 
proposed a non-myopic heuristic based on a probing 
strategy and refining procedure. Their approaches 
can not be applied in disassembly. Indeed, there is 
one supply product source for several component 
demands and hence when a component demand is 
satisfied and may be cause stockout or inventory 
surplus for others components.   

Various objectives can be considered in lot 
sizing problems. Jafar and Mansoor (2011) 
addressed the lot-sizing problem with supplier 
selection, they developed two multi-objective mixed 
integer non-linear models for multi-period lot-sizing 
problems with multiple products and multiple 
suppliers, three objectives are considered cost, 
quality and service level. Ayyuce et al. (2013) deals 
with multi-objective optimization of a stochastic 
disassembly line balancing problem, they proposed a 
genetic algorithm which generates Pareto-optimal 

solutions considering two different fitness evaluation 
approaches.  

To the best of the authors’ knowledge, no one 
has addressed the optimization of capacitated 
disassembly scheduling with lost sales and multi-
objective approach. In this paper we compare an 
exact method for mono-objective and a meta-
heuristic for multi-objective. 

3 MODEL FORMULATION 

In this section we present the mixed integer 
programming model of the problem. Before 
formulating the mathematical model, the 
disassembly process is described first.  

A parent (root) item can be disassembled to 
produce a specific number of child (leaf) items. 
Given a set of root items, the demand of each leaf 
items of all roots is given over a time horizon. Each 
period has a normal production capacity, exceeding 
this capacity will result a penalty cost. If the demand 
of a leaf item is not met in a period it will be 
considered as lost sales. The problem is to determine 
the quantity and timing of disassembling all root 
items to satisfying demand of their leaf items over 
the planning horizon subject to capacity restrictions 
in each period, respecting a particular service level. 

 In this paper we consider two objectives: total 
cost and service level. The first objective is to 
minimize the sum of purchase, inventory holding, 
and disassembly costs. The second one is to 
maximize the service level.  The cost of not satisfied 
demand is difficult to assess and we cannot combine 
cost and quantity in the same objective function, thus 
we consider in this model one objective (Total cost) 
and we include the second (Service level) as a 
constraint.  

A. Model parameters and decision variables 

The notations used are summarized below. 

Indices:  
r           Index for root items, r=1,2,…, R                                                  
i           Index for leaf items, i=1,2,…,N 
t           Index for periods, t=1,2,…,T 

Parameters  
 .௥         Setup cost of parent item rݏ
 .௧         Capacity available, in time, in period tܥ
߮௜         Parent of leaf item i. 
݃௥         Disassembly operation time of root item r.    
݄௜          Inventory  holding cost of item i. 
 .௧          Penalty cost disassembly time in period t݌
݀௜௧        Demand of item i in period t. 
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ܽ௥௜        Number of unit of items i obtained by 
disassembly of one unit of its parent item r.  
 .௜଴          Initial inventory of item iܫ
  .Large Number          ܯ
 .(%) Maximal lost sales level   ݔܽܯܮ

Decision variables 

௥ܻ௧     = 1 if there is a setup for root item r in period 
t, 0    otherwise. 
ܺ௥௧     Disassembly quantity of root item r through 
period t.  
ܱ ௧ܶ	    Disassembly over-time in period t. 
  ௜௧ܫ             Inventory level of leaf item i at the end of 
period t.  
 .௜௧      Lost sales for each leaf item I in period tܮ

B. Model assumptions  

Assumptions made in this model are summarized as 
follows: 
(a) Demands for leaf items are given and 
deterministic; 
(b) Lost sales is allowed, hence demand can be not 
satisfied; 
(c) The disassembly process is perfect, all parts are in 
perfect quality, no defective are considered;  
(d) Disassembly operation times are given and 
deterministic; 

C. Mathematical formulation 

In this study we solve the problem using two 
approaches.  

The first case is a mixed integer program (MIP) 
where the first objective is the objective function 
and the second objective is a constraint. The 
constraint level is varying it to obtain different 
solutions for the same instance.   

We note that in this model we consider the total lost 
sales level which can be calculated as: 

TotalLostSalesLevel ൌ෍෍L୧୲/

୒

୧

୘

୲

෍෍d୧୲

୒

୧

୘

୲

 

and then total service level can be deducted :  
݈݁ݒ݈݁	݁ܿ݅ݒݎ݈݁ܵܽݐ݋ܶ ൌ 1 െ  ݈݁ݒ݁ܮݏ݈݁ܽܵݐݏ݋ܮ݈ܽݐ݋ܶ

With above parameters and decision variables, the 
MIP is given bellow. 

ݖ	݁ݖ݅݉݅݊݅ܯ ൌ ∑ ∑ ௥ܻ௧ ∗ ሿݎሾݏ ൅ ∑ ∑ ௜௧ܫ ∗
ே
௜

்
௧

ோ
௥

்
௧

݄௜ ൅∑ ܱ ௧ܶ ∗ ௧்݌
௧   

(1) 

Subject to 

௜௧ܫ ൌ ௜,௧ିଵܫ ൅	ܽ߮݅,௜ ∗ ܺ௧ఝ೔ ൅ ௜௧ܮ െ ݀௜௧	for	all	
tൌ2,…T	and	iൌ1,…N	

(2) 

ܺ௥௧ ൑ ܯ ∗ ௥ܻ௧				for	all	tൌ1,…T	and	rൌ1,…R (3) 

ሺ∑ g୰ ∗ ܺ௥௧ሻ െ C୲ 	൏ൌ 	ܱ ௧ܶ
ோ
௥      for all t=1,…T (4) 

௜௧ܮ ൑ ݀௜௧  for all t=1,…T and i=1,…N (5) 

 ∑ ∑ L୧୲/
୒
୧

୘
୲ ∑ ∑ d୧୲

୒
୧

୘
୲ ൑  (6) ݔܽܯܮ

ܺ௥௧, ௜௧ܫ ൒ 0 (7) 

Objective function (1) is the Total cost which is the 
sum of setup cost, expected inventory holding and 
penalty costs, production costs are not considered in 
this study.  

The constraint are the following :  

‐ (2) define the inventory flow conservation of 
leaf items at the end of each period (ܫ௜,଴) is an 
input data.  

‐ (4) Ensure that a setup is performed in a period 
when disassembly operation is performed.  

‐ (5) Enforces the capacity feasibility. 
‐ (7) State the upper bound available of lost sales 

level; we note that maximizing the total service 
level equivalent minimizing the total lost sales 
level.  

‐ (8) Defines the domain of variables. 

The second case we solve the problem by using the 
NSGA-II algorithm that considers multiple 
objectives:  

ଵݖ	݁ݖ݅݉݅݊݅ܯ ൌ ∑ ∑ ௥ܻ௧ ∗ ሿݎሾݏ ൅ ∑ ∑ ௜௧ܫ ∗
ே
௜

்
௧

ோ
௥

்
௧

݄௜ ൅∑ ܱ ௧ܶ ∗ ௧்݌
௧ ଶݖ	݁ݖ݅݉݅݊݅ܯ    ൌ ∑ ∑ ௜௧ܮ

ே
௜

்
௧  

Subject to : Constraints (1) to (6)  and (8). 

4 MULTI-OBJECTIVE GENETIC 
ALGORITHM 

Generally, based on a population search Multi-
Objective Evolutionary Algorithm (MOEA) can 
present a set of non-dominated or Pareto optimal 
solutions. In this study we consider two objectives, 
total cost and service level. To solve the model in this 
paper we use Non-dominated Sorting Genetic 
Algorithm II (NSGA-II), one of the MOEAs 
frequently used in many optimization problems as 
the best technique to generate Pareto frontiers, which 
has been proposed by Deb et al. (2000). Moreover, 
the NSGA-II has been consistently uses in several 
research articles which deals with supply chain 
problems see Godichaud et al., D. Sanchez et al. and 
Li et al. 

D. NSGA-II Principle 

This algorithm uses a fixed-sized population. We 
start by initializing the population then the population 
is sorted based on non-domination criteria into 
several fronts. The first front is a completely non-
dominated set in the current population and the 
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second front being dominated by the individuals in 
the first front only and so on. Each individual in each 
front is assigned fitness value. We said that solution 
 ݌ is better than ݍ if only ݍ is dominated by solution ݌
with regard to all objectives, or ݍ is better than ݌ 
with regard to other objectives. This process is 
continues until all fronts are identified. In addition to 
fitness value we calculate the crowding distance 
which is a measure of how close an individual is to 
its neighbors, we used it in order to maintain 
diversity in the population.  

E. NSGA-II algorithm 

	݊݋݅ݐ݈ܽݑ݌݋݌	݈ܽ݅ݐ݅݊݅	݁ݐܽ݁ݎܥ ଴ܲ, of size n; 
Create child population 	ܳ଴ using binary tournament 
selection, recombination and mutation; 
While (stopping criterion) 

We create a new population 	ܴ௧  which 
combine	 ௧ܲ (parent) and	ܳ௧(child)   
Sort	ܴ௧	by non-domination 
Assign a fitness equal to its non-domination level 
for each solution, identify levels 	ܨ௜, ݅ ൌ 1,2, …  
Computed the crowding distance of each solution 
Set new population 	 ௧ܲାଵ 
Set i=1 
While |	 ௧ܲାଵ| ൅ |௜ܨ| ൑ ݊ do 

Add ܨ௜ to 	 ௧ܲାଵ 
Set i=i+1 

end while 
Set ݂݂݅ܦ ൌ ݊ െ |	 ௧ܲାଵ| 
If ݂݂݀݅ ് 0 

Sort solutions by descending crowding 
distance 
݆	࢘࢕ࢌ																 ൌ   	࢕ࢊ			݂݂݅݀	݋ݐ	1

Add ܵ݊݋݅ݐݑ݈݋௜ of ܨ௜ to 	 ௧ܲାଵ 
end for 

end if 
end while 

F. Encoding 

In this study, the decisions variables are 

௥ܻ௧, ܺ௥௧, ܱ ௧ܶ,   ௜௧ andܫ
 ௜௧, among which ௥ܻ௧ is a binary variable (0-1), andܮ
the others are positive variables of integer numbers. 
Generally, in literature, setup variables are used to 
encode solutions and integer variables are deduced 
based of the properties of the model. These properties 
are not sufficient for the problem with with lost sales 
and integer varaibles can not be computed from ௥ܻ௧, 
and thus, we encode	ܺ௥௧ as chromosomes. 

G. Initial population 

In this study, population of candidate solution	 ଴ܲ is 
randomly generated according to an uniform 

distribution. We use a random integer generator for 
	ܺ௥௧ with respect to the bounding conditions. 

H. Selection and Evaluation  

Capacity constrains and objective functions are used 
to evaluate the objectives of each chromosome, we 
note that there are two objective function values for 
each one. We use the constrained tournament 
method because of its ability to satisfy constraints 
and at the same time perform selection based on 
fitness. 
This operator involves running several tournaments 
among a few individuals chosen at random from the 
population and the one with best fitness (winner) is 
selected for crossover. 

I. Crossover and Mutation  

One crossover point is used. Genes from beginning 
of chromosome to the crossover point is copied from 
one parent, and the rest is copied from the second 
parent, at the end we obtained two children. After 
this we mutate on chromosome by changing one 
more variable in some way by random. Crossover 
and mutation are performed with a given probability. 
Values are mentioned in the next section. 

5 COMPUTATION 
EXPERIMENTS 

The NSGA-II algorithm tested in this paper was 
coded in Java and run on a personal computer with a 
five processors operating at 2.60 GHz clock speed.  

J. Test instances 

For the test, instances are generated as in (H.-J. 
Kim and P. Xirouchakis, 2010). U(a,b) is the discrete 
uniform distribution with a range of [a,b].  

 We generated 10 instances for each number of 
root items (10,20,30), three number of 
children generated from a discrete uniform 
distribution with a rang U(1,10), U(10,100), 
and U(100,1000) for low, medium, and large 
respectively ,and three number of periods 
(10,20,30); 

 ݏ௥ ∶	Setup cost for each root was generated 
from U(1000,5000); 

 ܽ௜ ∶ For each root the number of child were 
generated from U(1,5); 

 ݀௜௧ ∶Demand was generated from U(50,200); 
 ݄௜ ∶ Inventory holding costs were generated 

from U(1,10); 
 ݌௧ ∶	 Penalty costs for overtime were 

generated from U(5,15);  
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 ݃௥ ∶	Disassembly time was generated from 
U(1,3); 

 ܫ଴ ∶	Initial inventory was generated from 
(20,100). 

 ܥ௧ ∶	 Available aggregate capacity in each 
period is set to 540,480 and 400 with 
probabilities, 0.3,0.5,0.2 

K. Parameters setting 
Different tests with different parameters were made 
to choose the efficient parameters for the algorithm. 
The following control parameters for genetic 
algorithm are the ones we used in our case study: 

 Maximum generation	ܾܰݎݐݐܫݎ ൌ 1500. 
 Population size	ܾܰܲ݌݋ ൌ 100. 
 Mutation probability	Coef௠ ൌ 0,2. 
 Crossover probability	Coef௖ ൌ 0,9. 

L. Computational Results 
In this section, we apply the GA discussed earlier to 
solve the model proposed and to show the 
effectiveness of our GA meta-heuristic firstly we 
compare the NSGA-II performances with those of 
Cplex 12.5 software, in terms of computation time 
and solution quality to solve the small-sized problem 
and after we present the strength of the NSGA-II to 
solve all sizes instances.  

The figure 1 present Pareto front obtained with 
NSGA-II for the first instance (10 periods, 10 roots, 
low number of children), the Pareto contains 100 
solutions. We present also 11 exact algorithm 
solutions solved with mono-objective for 11 
different percentages of lost sales level. We note that 
each solution obtained is a point of the optimal 
Pareto front. 

To show the quality of our results we will 
compare the two fronts: the first obtained by Cplex 
(optimal pareto solution) and the second obtained by 
NSGA-II. 

 
Figure 1: Example of Pareto front obtained with GA (100 
solutions) and some exact algortihm solutons (11 
solutions). 

To compare our curves we use the Hyper Volume 
indicator. Readers wishing more detailed description 
of the algorithm can be referred to Deb. 

Table 1 present the hyper volume values:  

Table 1: Hyper volume values for Cplex and NSGA-II. 

 Hyper Volume 
Cplex 0.829 

NSGA-II 0.826 

݌ܽܩ

ൌ
஼௣௟௘௫݁݉ݑ݈݋ܸݎ݁݌ݕܪ െ ேௌீ஺ିூூ݁݉ݑ݈݋ܸݎ݁݌ݕܪ

஼௣௟௘௫݁݉ݑ݈݋ܸݎ݁݌ݕܪ
 

݌ܽܩ ൌ 0.36% 

The gap indicates that the front solutions of NSGA-
II is 99,64% close to the  optimal front obtained by 
Cplex. Moreover the decision maker has several 
choices in terms of solutions (100 by NSGA-II 
against 11 by Cplex). 

Here, the heuristic solutions are compared with 
Cplex solutions to assess the benefits of increasing 
the CPU time limit. Concerning the exact method 
(case 1), we solve the problem on mono-objective. 
This table summarizes the computation time of one 
instance with 10 periods, 10 roots and low number 
of children. As mentioned in mathematical model 
there is a constraint of lost sales level: LMax, in this 
experiment we change the LMax value and we 
evaluate the objective function. In this test we used 
Cplex software to obtain solutions. 

For this instance for each lost sales level value 
we allowed Cplex to run for maximum 3000sec to 
avoid excessive computation times and we fixed the 
absolute tolerance on the gap between the best 
integer objective and the objective of the best node 
remaining at 0.01.  

Table 2: CPU time for different lost Sales level. 

Lost Sales  level (%) Objective CPU(sec) 

0 1.71 

10 5.89 

20 49.30 

30 1138.43 

40 1804.52 

50 466.61 

60 98.88 

70 59.77 

80 21.39 

90 6.19 

100 0 

Total time 3652,69 

We reported CPU time in second for the instance

ICORES�2015�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

176



example in table 2, the total time to compute 
solutions for each percentage of lost sales level (11 
solutions) is:  

ா௫௔௖௧݈ܽݐ݋ܶ ൌ ෍ ݁ݒ݅ݐ݆ܾܱܿ݁ܶ
௉௘௥௖௘௡௧௔௚௘

 

ா௫௔௖௧݈ܽݐ݋ܶ ൌ  ܿ݁ݏ3652,69

On the other side the total time to obtain the 
Pareto front which provides 100 solutions with the 
NSGA-II algorithm (considering mathematical 
model case 2) for the same instance is: 
	Total୒ୗୋ୅ି୍୍ ൌ 4sec (see the table 2 in the next 
section). We kept a large number of solution to 
analyse the behaviour of the algorithm. In practice, 
decision makers have to choose only one solution 
based on its preferences. Multi criteria decision 
making can be used to this end with the NSGA-II 
solutions as an input.  

Total୒ୗୋ୅ି୍୍ ≪ Total୉୶ୟୡ୲				 
(4sec<<3652,69sec) 

Table 3: CPU time in seconds of Kim problem instances. 

Number of 
root items 

Number of 
children 

Number of 
periods 

CPU(sec) 

10 
 
 
 
 
 
 
 
 
 
 
 
20 
 
 
 
 
 
 
 
 
 
 
 
30 
 
 
 
 
 
 
 
 
 
 

Low 
 
 
 

Medium  
 
 
 

Large 
 
 
 

Low 
 
 
 

Medium 
 
 
 

Large 
 
 
 

Low 
 
 
 

Medium 
 
 
 

Large 
 

 

10 
20 
30 

 
10 
20 
30 

 
10 
20 
30 

 
10 
20 
30 

 
10 
20 
30 

 
10 
20 
30 

 
10 
20 
30 

 
10 
20 
30 

 
10 
20 
30 

4 
7 
10 
 

19 
37 
66 
 

299 
414 
741 

 
7 
11 
15 
 

47 
86 

115 
 

618 
776 
1271 

 
11  
20 
26  

 
80 

121 
171 

 
973 
2278 
3317 

Genetic algorithm is much faster than Cplex, 
without taking into consideration the number of 
solution found. Genetic algorithm gives solutions 
that are very close to optimal ones within very short 
computational time. Hence the efficiency of the 
genetic algorithm provides the decision maker a 
huge choice in terms of solution quality and in short 
time. Before presenting results we note that from 30 
periods with medium number of children Cplex 
could not give solutions. In this section the table 3 
summarize the computation time of the GA for all 
instances.  
 We observe that the computation time increases 
quickly as the number of the periods, on the other 
side it does not increase apparently as the numbers of 
root items increase. 

6 CONCLUSIONS 

In this paper, we addressed the multi-products 
capacitated disassembly scheduling with setup times 
and lost sales. To our knowledge, it the first time that 
disassembly scheduling problem with lost sales is 
investigated. We formulated a multi-objective 
optimization model, and propose a genetic algorithm 
NSGA-II for solving the problem. The objectives 
considered are (1) Minimizing the total cost and (2) 
Maximizing the service level. The performance of 
NSGA-II is investigated by comparing its results 
with those obtained by exact method on mono-
objective sample (270 test problems) randomly 
generated (Kim et al.-2009- instances). This 
comparison shows that the NSGA-II give solution 
with  good quality in reasonable time while Cplex 
software does not. This research can be extended in 
several ways. New mathematical formulation 
approaches can be developed considering multi level 
product structure and parts commonality constraints. 
Uncertainties such as stochastic demands or 
stochastic disassembly times have to be considered. 
The method can also be improved by using other 
dominance criterion to reduce the number of solution 
and be developing hybridization. Properties of the 
model should also be investigated to improve 
encoding of solutions.  
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