
On the Road to a Reference Architecture for Pervasive Computing

Osama M. Khaled, Hoda M. Hosny and Mohamed Shalan
The American University in Cairo, Department of Computer Science, New Cairo, Egypt

Keywords: Pervasive Computing, Ubiquitous Computing, Smart Object, Open Source, Reference Architecture.

Abstract: An efficient development strategy for pervasive computing requires that the smart object manufacturers
design their devices with profound facilities that can be accessible for developers. In our in-progress
research, we present a high level design for smart object essential handlers. This design establishes rules and
regulations for the development of pervasive computing in general and promotes for quality in pervasive
systems in particular.

1 INTRODUCTION

The Pervasive computing concept was first
introduced by Mark Weiser (Weiser, 1991) in 1991
as if he was reading the future of computers in the
21st century. Weiser was convinced that personal
computers are not satisfactory enough for integration
into humans’ lives in a natural way. He was
convinced that computation will converge to become
ubiquitous. In other words, computation will be
present "everywhere" and will be featured by its
invisibility to the human eyes, yet available for
people to use unconsciously. This vision may have
been impossible to achieve during the 90s of the last
century, but we do nowadays have all the
technologies that we need to make Weiser’s vision
come true. We have advanced wireless networks
distributed in many areas, LTE networks across all
countries, hand-held and mobile devices with
integrated sensors, appliances with embedded
computers and wireless controllers. In addition,
industry and universities are more willing to invest
funds on research in these areas. MIT, IBM, UC
Berkeley research projects are just examples for
such enormous research investments (Zhou, et al.,
2010). Moreover, smart cities and mobile health
merge now to enrich human lives with smart health
(Solanas, et al., 2014).

Researchers who work in pervasive computing
face many challenges, however. Pervasive
computing is a descendant of other computing fields,
like distributed systems, and mobile technologies
along with their existing challenges. It is
characterized by the common appearance of factors

like context-awareness, system adaptability, and
volatility. In addition to the above, researchers are
faced with privacy, security, safety, and limited
resources as crucial issues that must be resolved. As
sensed from the term ubiquitous, personal
information may be collected and distributed
without permission from its owner. This can raise
legalization issues that must be resolved within the
information distribution laws. Also, if security can
be breached for devices, appliances, or cars, this can
cause high risks to their users, which results in
safety concerns that must be handled as well (The
Parliamentary Office of Science and Technology,
2006). The challenge of limited resources is
inherited from the mobile technology, but it
becomes more apparent with pervasive
computing since the processing requirements will
constantly increase. This can lead also to higher
consumption for devices’ resources, such as
batteries.

There are some fundamental research challenges
for pervasive computing systems. They can be listed
briefly as follows (Dargie, et al., 2012):
1. Adaptive control: where ubiquitous devices

may need to make decisions using uncertain
data

2. Reliability and accuracy: where future work
needs to address accuracy of recognition
algorithms and the possibility of making use of
cloud computing resources.

3. Security and Privacy: how a device can
recognize other sensing devices and employ
proper security and privacy strategies.

4. Hybrid Intelligence: mixture of non-

98
Khaled O., Hosny H. and Shalan M..
On the Road to a Reference Architecture for Pervasive Computing.
DOI: 10.5220/0005230400980103
In Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS-2015), pages
98-103
ISBN: 978-989-758-084-0
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

deterministic and deterministic intelligence
mechanisms to reason about context types.

5. Unified architecture: where a rapid and
common architecture is required.

6. Tool Support: the need is still there to have
tools to support rapid development of context-
aware systems

The following sections will give an overview for
an in-progress research that addresses some of these
challenges. Section 2 presents some of the related
research work in that field. Section 3 and its
subsections give more details about our proposed
high level design and section 4 concludes the paper.

2 RELATED WORK

There is a number of recent research efforts in open-
platforms for pervasive computing. Check and Kotz
(Chen & Kotz, 2002) designed an open event-driven
platform called Solar which responds to context
changes, represented as events, and interested
applications subscribe to event streams, continuous
list of events, and these, in turn, react accordingly.

There is also a good research in the Internet of
Things (IoT) field as well for building open
platforms. Kim and Lee (Kim & Lee, March 2014)
developed an Open Source platform called OpenIoT
in order to recognize an ecosystem that comprises
different stakeholders. According to Kim and Lee
the device developer provides the suitable device to
host an application which is generated by a software
developer. The service provider purchases the
application and asks the Platform Operator to host
it. The Service User then uses the application using
the Network Operator. The framework consists of
four major platforms (Planet Platform, Mash-up
Platform, Store Platform and a Device Platform to
facilitate (for the ecosystem stakeholder) the
interaction through open-source APIs.

Some researchers believe that in order to
facilitate the development of pervasive computing,
then an open infrastructure has to be there in their
City. Ojala and Kukka (Ojala & Kukka, 2009)
promote an open infrastructure project in the city of
Oulu, Finland. They provided computing facilities
in the city where users can have access to WiFi,
Bluetooth, SMTP servers, Large LCD displays
equipped with RFID and NFC readers. They present
a large-scale infrastructure to make their city
ubiquitous.

There are also some open frameworks that target
the development of pervasive systems with different
capabilities and that are designed for different

purposes. For example, the JCAF (Java Context
Awareness Framework) (Bardram, 2005) is a java
based framework for implementing context-aware
applications. The CMF (Context Management
Framework) by Korpipää et al (Korpipää, et al.,
2003) was designed for Symbian mobile phones. It
allows real-time context reasoning for information
even if there is noise.

Another related research work by Walach et al.
(Walch, et al., 2013) adopts a process-based
development approach. The authors developed a
tool to capture specifications for home automation
and convert them to BPEL (Business Process
Execution Language). On the other hand, Oliver
and Broadbent (Oliver & Broadbent, 2013) worked
on home smart devices as well but to capture their
network traffic and profile devices for further
analysis. According to the two authors, having a
database of network profiles will help in
understanding energy consumption at home as well
as the smart devices’ behaviour in relation with
other devices at home.

Some of the aforementioned research efforts
would have been more efficient if there were unified
architecture for pervasive computing services.
Section 3 will explain part of our vision to
standardize smart object interface.

3 HIGH LEVEL DESIGN

Figure 1: Smart Object Standardization Handlers.

One solution to address the above mentioned
challenges as mentioned earlier in the introduction
section, is to standardize a smart object (SO) with
handlers that can address key quality issues as
shown in Figure 1. These standards can guarantee a
controlled open platform that developers can use.
The developer need not only know how to program
the smart object, in case its interface is available for
any programmer, but needs to know also extra

On�the�Road�to�a�Reference�Architecture�for�Pervasive�Computing

99

details that are considered essential for robust and
safe pervasive systems.

Smart objects could be equipped with sensors,
communication interfaces, processing capabilities,
and actuators. Some usage scenarios of these
objects may put some living creatures’ lives at risk
(Yang & Helal, 2008). Accordingly, software
engineers need to study quality trade-off options
very carefully. Hence, We recommend the
following standards for smart objects:
1. Programming Permissions: as they are

objects in a physical world, they will have
unique identifiers, and as they may risk lives if
not used properly, as well as expose privacy
and security of people, the object will have
three levels of protections for its
programmable interface:
a. Public interface: which can be used by

designers without permission from the
manufacturer

b. Protected Interface: which can be used by
designers who are certified by the
manufacturer

c. Private Interface: which can be used only
by the manufacturer’s engineers.

2. Safety procedures: as smart objects co-exist
with living creatures including humans, it is
essential to know all safety procedures
associated with their use. This is not only
some documents to read, but it may have an
interface to access as well.

3. Security and privacy procedures: rules to
follow in order to secure data processing by
that object and at the same time protect the
user’s privacy

4. Volatility status: the developer should be able
to determine the volatility expectations during
design and later during run-time. Otherwise,
the entire system may fail unexpectedly.

5. Processing Power status: Every object should
reveal its processing status (processing
availability and memory status.

6. Process Hosting: A SO should have an easy
access to its processing power (processor and
memory) if there is enough room and if its
operating system allows it.

7. Community statistics: these are statistics that
the smart object collects about itself and makes
available for other developers. This should not
reveal any personal information. It will just
help developers understand how to deal with
different smart objects in different contexts.

A development framework emerges from the
above mentioned elements where different

stakeholders work together to create a truly smart
environment as shown in Figure 2. Manufacturers
produce the smart object and facilitate its usage.
The developer builds pervasive systems where
he/she can use a protected object handler only if
he/she is certified for that through trusted
organizations. Then smart objects share their run-
time business and technical context for the benefit of
the developers’ community.

Figure 2: Open Development Framework for Pervasive
Systems.

3.1 Programming Permissions

A smart cooker can have different programming
methods to allow others to control it. Figure 3
shows a hypothetical cooker class that has some
attributes and some methods. The (+) is for public,
(-) for private, and (#) is for protected. The
semantics here is different from the normal OOP
approach, although the same terminologies are used.
Accordingly, Height, Width, and IsOvenDoorOpen
are public for any developer to use without having
permission from the manufacturer.

Figure 3: Cooker Handler Class Example.

The main purpose of certifying a software
engineer for using the Cooker interface, is not
because of the complexity of the object handlers, it
is to ensure that the software engineer is capable of
designing robust solutions that will not endanger
lives. Certification could be standardized via

PECCS�2015�-�5th�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

100

international organizations that provide recognized
certificates world-wide. Certificates can then be
implemented as digital certificates signed from one
of these trusted organizations and validated by the
smart object at run-time. However, the software
engineer can still use any of the public and protected
handlers during the development phase.

3.2 Safety Procedures

It is important to differentiate between what the
designer should do in order to protect the smart
object’s internal hardware components from
damage, and what he/she should do in order to keep
the surrounding environment safe. In the first case,
the designer is constrained with hardware limitations
and he/she should be aware of these before
providing any method that can be used by external
programmers. In the second case, the designer must
assume hypothetical scenarios from real life and
modify its design accordingly so that the safety of
the smart object is achieved to the best level.

The certified programmer should be able to use
protected handlers within the safety procedures
provided by the manufacturer. For example, if the
door of the smart Cooker is open and will risk the
safety of close humans while the room temperature
is below -20° and there is no temperature sensor
attached, then the designer must force the
programmer to provide the room temperature before
calling the method OpenOvenDoor(int:
Temprature). The handler will then give the proper
warning in order to check for the proximity of
humans before executing the called handler.

It is always safer to equip smart objects with the
needed hardware capabilities that allow it to take
proper decisions rather than leaving it for the
external programmers. However, the cost trade-off
is always a factor in the production equation which
may require from the designer to design for safety
procedures as if insufficient resources are available.

3.3 Security and Privacy Procedures

Security and Privacy is one of the most researched
topics in pervasive computing. Security and Privacy
of users are combined together as the probability
that they affect each other is very high. If system
security is breached, then it is possible to release
private information about users. On the other hand,
if user privacy is violated, it is possible to breach the
system using real data which can be used then by the
wrong hands and violate the system security.

SO designers should adapt the proper solution to

protect customer information and maintain system
security. For example, information transferred
among smart objects can be encrypted if they release
confidential information. Users may need to
authenticate their identity during various activities
according to the required security level.

Solutions are there and they are straight forward.
However, the designer must take his/her decisions
wisely since enforcing security rules like encryption
may impact the smart object’s battery, and hence
impact the availability of the environment.
Moreover, requiring the users to authenticate
constantly may degrade the usability of the solution.

3.4 Volatility Status

SO is volatile if it disappears from the environment
without prior alarm. In ubiquitous computation,
such behaviour is common rather than exceptional
(Coulouris, et al., 2012). Smart Objects can
disappear for different reasons, for example:
1. The SO is on the move and its existence in the

environment is transient.
2. The SO battery runs out of charge
3. SO hardware failure
4. One of the SO accessible services fails

although the SO remains functional with other
services.

5. A communication failure impacts the data
transformation

6. Network communication bandwidth
congestion.

Some of the major issues that may be caused by
the SO’s sudden disappearance are data corruption
and incomplete operations. Technical solutions that
deal with hazards like frequent retrials and data
hashing can consume substantial traffic and
negatively impact the availability of the
environment.

One of the essential SO handlers is to inquire
about the charging lifetime of the battery. It is
important to know this information at run-time since
factors like rate of data processing and network
communication may change the battery’s ideal time-
to-charge value.

It can help the solutions designers a lot to take
decisions during run-time. For example, the
designer may take quick decisions like warning
system administrators to charge the SO devices, or
switch traffic to standby SO devices.

However, the solution designer should set
expectations based on the maximum threshold for
battery time-to-charge and use SO battery handler as
well to change environmental rules dynamically.

On�the�Road�to�a�Reference�Architecture�for�Pervasive�Computing

101

Accordingly, designers can set time constraints rules
on some objects, or ensure a higher data protection
mode for objects that are about to disappear in order
to mitigate the volatility risk.

It is important to mention that the World Wide
Web Consortium is drafting a new API document to
inquire about the hosting device battery (W3C,
2014). This feature is available also on Andriod
platforms for smart phones developers to use it as
well (Developers, n.d.).

The purpose is to take informed decisions before
the device disappears from the smart environment.
A battery is only one reason that can make the SO
disappear. The other listed points are also crucial
and can greatly affect the availability of the SO.
Accordingly, monitoring the congestion of the
network packets can give better expectations. The
rate of hardware failure, if recorded, can also give a
good indication. The proximity of the device from
the WiFi hotspot can show real expectations as well.
A software bug is another reason that impacts device
volatility status.

3.5 Processing Power Status

One of the basic operating system functions is to
know the processing power (processor and memory)
status. Such knowledge helps in anticipating the
environment’s availability and time-to-finish for
processes. As explained above, an increased
processing cycle consumes more power and
consequently battery-dependent devices deplete
quickly.

The device must give priority for this handler to
run as it should normally be called to take a decision
based on the device processing power status.
However, programmers should be very careful about
the frequency of using this method in order not to
cause frequent interruption for SO processes and
deplete the device battery.

3.6 Process Hosting

Some processes may fail in a smart space if they do
not fulfil their tasks. A process may be considered
failed if it exhibits one of the following during run-
time:
1. The process fulfilled part of its tasks, and

failed to complete the remaining tasks
2. The process completed its tasks beyond its

service level.
3. The process failed to accomplish all its

assigned tasks
One of the main reasons for failure, if faults due

to wrong design are ignored, is that the device
cannot provide the required resources for the process
as needed and on time. In other words, a process
may need to have 50% of the CPU processing power
to complete its tasks in 1 second as a hard limit for
its service level, but because the CPU has other
running processes, it succeeds in 1.5 seconds. The
failure could be also because the available memory
does not satisfy the needs of the process.

The point here is to make use of the
environment’s ideal resources to support processes
that are about to fail in order to sustain a robust
smart space. It means that smart objects may host
processes to make them complete their tasks
successfully. The idea of hosting is to help
processes recover instead of leaving them fail, if
possible, by providing them with needed resources
as long as these resources are device-independent
and will not harm the SO in an way other than taking
more processing power.

3.7 Community Statistics

The development community needs to know more
helpful information about different smart objects and
their behaviour in different contexts. Context may
be understood differently by different people. The
business analyst may be more interested in the
business context of the SO. The solution architect
needs to know the technical context including
information about processor, memory, disk storage,
sensors, actuators, operating system, network
interfaces, temperature, battery, and any other
relevant information.

Knowing information about the business context
of the SO will help in gaining knowledge about the
expected performance of the SO in similar
environments. For example, a camera may be
exhausted in a prison recording videos and taking
snapshots continuously. On the other hand, it may
be switched on and off in a school according to
school operation times.

Similarly, understanding the technical context of
the SO during runtime can help the solution architect
decide on the best configuration and design for the
SO. For example, if it is reported in the community
that the SO temperature increases exponentially
when network packets increase by a certain factor,
then this causes the device to halt. The designer can
then enforce throttling on the network traffic in
order to increase the availability of the device.

Private and confidential information should not
be shared in the developers’ community, and the
manufacturers should take care of that. The device

PECCS�2015�-�5th�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

102

programmer should configure the reporting feature
properly and take into consideration the type of
network, e.g. whether it is LAN, WAN, or Internet.

If there is a single database about different SOs
showing their performance, then data can be
analysed easily and a rich set of statistics can be
made availed for programmers and designers upon
need. Good solutions can be built over a database to
avail useful reports and manufacturers as well and
other programmers worldwide can benefit from it.

4 CONCLUSIONS

Development methodologies need to evolve
differently and quickly in order to cope with the fast
growth in technology. Business analysts and
architects in particular need to be knowledgeable
about different technologies. They need to learn
about psychological, sociological, and health
precautionary procedures as well. This is essential
since smart objects may affect living creatures even
if they bring huge benefits to our lives. Hence,
designing a smart environment for safety, privacy,
and security is mandatory.

Given that there are now a large variety of smart
objects with different technologies, software
development becomes more complicated too. No
one can know everything about all issues and
problems related to that domain. Hence, there is a
need for an open platform community that shares
analytical reports about different smart objects in a
systematic and automated manner.

Our target is to have a robust and innovative
open reference architecture that helps software
engineers working in that field. The reference
architecture will capture the state of the art in the
domain area of pervasive computing with respect to
design patterns, and architecture standards.

REFERENCES

Bardram, J. E., 2005. The Java Context Awareness
Framework (JCAF) – A Service Infrastructure and
Programming Framework for Context-Aware
Applications. Proceedings of the 3rd International
Conference on Pervasive Computing (Pervasive
2005), May, Volume 3468 of Lecture Notes in
Computer Science, pp. 98-115.

Chen, G. & Kotz, D., 2002. Solar: An Open Platform for
Context-Aware Mobile Applications. In Proceedings
of the First International Conference on Pervasive
Computing (Short paper), June.pp. 41-47.

Coulouris, G., Dollimore, J., Kindberg, T. & Gordon, B.,
2012. Distributed Systems Concepts and Design. Fifth
Edition ed. s.l.:Addison-Wesley.

Dargie, W., Plosila, J. & De Florio, V., 2012. Existing
challenges and new opportunities in context-aware
systems. New York, NY, USA, ACM, pp. 749-751.

Developers, A., n.d. BatteryManager. [Online]
Available at:
http://developer.android.com/reference/android/os/Batt
eryManager.html.

Kim, J. & Lee, J.-W., March 2014. OpenIoT: An open
service framework for the Internet of Things. s.l.,
Internet of Things (WF-IoT). IEEE World Forum on
2014, pp. 89,93, 6-8.

Korpipää, P. et al., 2003. Managing context information in
mobile devices. IEEE Pervasive Computing, July-
September, 2(3), pp. 42-51.

Ojala, T. & Kukka, H., 2009. A Digital City Need Open
Pervasive Computing Infrastructure. State College,
PA, In Proceedings of Digital Cities 6: Concepts,
Methods, and Systems of Urban Informatics.

Oliver, B. & Broadbent, M., 2013. HomeFlow: Inferring
Devices Usage with Network Traces. Proceedings of
the 2013 ACM Conference on Pervasive and
Ubiquitous Computing Adjunct Publication, pp. 815-
820.

Solanas, S. et al., 2014. Smart Health: A Context-Aware
Health Paradigm within Smart Cities. IEEE
Communications Magazine, Aug, Volume 52, no.8,
pp. 74-81.

The Parliamentary Office of Science and Technology,
2006. PERVASIVE COMPUTING. POSTnote,
May.Issue 263.

W3C, 2014. Battery Status API. [Online]
Available at: http://www.w3.org/TR/battery-status/

Walch, M. et al., 2013. homeBLOX: Making Home
Automation Usable. Proceedings of the 2013 ACM
Conference on Pervasive and Ubiquitous Computing
Adjunct Publication, pp. 295-298.

Weiser, M., 1991. The Computer for the 21st Century.
Scientific American, September 1991.

Yang, H.-I. & Helal, A., 2008. Safety Enhancing
Mechanisms for Pervasive Computing Systems in
Intelligent Environments. s.l., Sixth Annual IEEE
International Conference, pp. 525-530.

Zhou, J., Gilman, E., Ylianttila, M. & Riekki, J., 2010.
Pervasive Service Computing: Visions and
Challenges. s.l., 10th IEEE International Conference
on Computer and Information Technology (CIT 2010),
pp. 1335-1339.

On�the�Road�to�a�Reference�Architecture�for�Pervasive�Computing

103

