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Abstract: We consider the problem of routing samples taken from patients to laboratories for testing. These samples are
taken from patients housed in hospitals, and are sent to laboratories in other hospitals for testing. The hospitals
are distributed in a geographical area, such as a city. Each sample has a deadline, and all samples have to be
transported within their deadlines. We have a fixed number of vehicles as well as an unlimited number of taxis
available to transport the samples. The objective is to minimize a linear function of the total distance travelled
by the vehicles and the taxis. We provide a mathematical programming formulation for the problem using
the multi-commodity network flow model, and solve the formulation using CPLEX, a general-purpose MIP
solver. We also provide a computational study to evaluate the solution procedure.

1 INTRODUCTION

Every metropolitan city has hospitals of varying sizes,
each cost-effective in serving the healthcare needs of
its surrounding population. Most hospitals include a
laboratory that can perform a variety of tests on sam-
ples collected from its patients. Since laboratories in
smaller hospitals are often not equipped to perform all
tests on its samples, these samples have to be sent to
laboratories in larger hospitals for testing. This paper
addresses the problem of routing samples to hospitals,
called the Hospital Laboratory Courier Routing Prob-
lem (HLCRP). This is the pickup and delivery prob-
lem with time windows without capacity constraints
and with transshipments allowed. Even though we
address the specific problem of routing test samples
between hospitals, our model and solution procedure
can be applied to other problems.

The test samples are collected from the patients
in the hospitals during a day. The samples include
blood, urine, sputum, or tissue, and each sample has
a deadline before which the test should be conducted.
The hospitals are located in a given geographical area,
such as the metropolitan area of a city. Each hospital
is equipped with a laboratory of a given capability.
Some samples can be tested at the hospital where it
was collected, while others have to be transported to
another hospital with better equiped laboratories.

The transportation of samples is done by a fleet of

vehicles of a fixed size. In addition, the use of taxis
is also allowed to transport samples with impending
deadlines. For the fleet of vehicles, there is no depot,
and each vehicle can start its route at any hospital and
finish it at any other hospital. (This characteristic of
the problem also comes from the situation observed in
practice where the cost of the route does not include
the cost of getting the vehicle to the first hospital in
the route.)

The Hospital Laboratory Courier Routing Prob-
lem (HLCRP) deals with finding the routes and sched-
ules for the vehicles such that all the samples are
transported within their deadlines, and a linear func-
tion of the total distance travelled by the vehicles and
taxis is minimized. Since the cost of using a taxi is
several times higher than the standard vehicle, the op-
timizer should also reduce the number of taxi calls.

Thus, the HLCRP is a variation of the pickup and
delivery problem with time windows, without capac-
ity constraints, and with transshipment ((Savelsbergh
and Sol, 1995), (Minic, 1998), (Minic and Laporte,
2006), (Cortés et al., 2010)).

The HLCRP may either be modeled as a vehicle
routing problem (VRP), or as a multi-commodity net-
work flow problem (MCNFP). Typically, the number
of locations in the VRP is large, and each location
has to be visited once. In contrast, in the MCNFP,
the number of locations is smaller, though the num-
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ber of requests originating at each location is large,
with multiple visits to the same location during the
day.

There is a large body of research on the VRP,
with many surveys, including (Cordeau et al., 2007),
(Golden et al., 2008), (Laporte, 1992), (Laporte et al.,
2000), (Toth and Vigo, 2002). There are also many
surveys on the time-constrained version of the VRP
- the Vehicle Routing Problem with Time Windows
(VRPTW) - including (Brysy and Gendreau, 2005)
and (Kallehauge et al., 2005). Examples of the
methods for optimally solving the VRPTW include
Desrochers et. al (Desrochers et al., 1992), who pi-
oneered the column-generation approach for the ve-
hicle routing problem. They decomposed the prob-
lem into a master problem and a subproblem, and
solved the master problem using column generation.
Kohl et. al (Kohl et al., 1999) introduced cuts to the
decomposition-based approach, and Kohl and Mad-
sen (Kohl and Madsen, 1997) develop a Lagrangean
relaxation approach to solve the VRPTW exactly. For
a comprehensive review of the column generation
method to solve the VRPTW, see (Kallehauge et al.,
2005).

We model the HLCRP as an MCNFP. Each node
in the network is a hospital at a particular time in-
stant, and each arc between two nodes is the route be-
tween the corresponding hospitals. Each set of boxes
that are carried together by a vehicle is a commod-
ity that flows through the network. Such models have
been used to design networks and routes for public
transportion (Ceder, 2003), to solve ship routing and
scheduling problems (Christiansen et al., 2004), in
maritime transportation (Brønmo et al., 2007), air-
line schedule planning (Gopalan and Talluri, 1998),
and ferry scheduling (Karapetyan and Punnen, 2013;
Minic and Punnen, 2011).

In related work, heuristics using genetic algo-
rithms have been used to solve the problem of rout-
ing blood samples collected from hospitals and health
care centres to two central laboratories in Spain
(Grasas et al., 2014). In this problem, in addition
to imposing time windows on samples, vehicles also
have capacity restrictions. Finally, (Rais and Viana,
2010) provides a comprehensive survey of operations
research methods used in the healthcare industry. The
applications listed in the survey are far too many to
list here.

2 MODEL

In the model we use for HLCRP, the time horizon is
divided into intervals of size d (where d is a suitably

chosen constant), and each hospital is represented by
multiple nodes, one for each time instant (the multi-
ple of d). Representing each node by multiple nodes,
one for each time instant, is a standard modelling ap-
proach, usually called time expanded network. This
approach has been successfully used to solve many
practical instances of similar routing and scheduling
problems.

A directed arc exists between two nodes a and b,
if it is feasible to travel from node a to node b within
the corresponding time. The movement of the pack-
ages and the vehicles represent the flow through the
network.

The solution to our problem consists of a set of
routes and schedules. Each route is a sequence of hos-
pital locations, each of which has the arrival time and
the departure time. We assume that each vehicle starts
immediately from the first pick-up point, thus there is
no travel cost from and to the depot. We also consider
a second set of vehicles - the taxis. There are no lim-
its on the number of taxi trips. However, using a taxi
to travel between two nodes costs r times more than
using a vehicle.

We provide details of the network construction for
the model in Section 2.1, and the mathematical pro-
gramming formulation for the model in Section 2.2.

2.1 Network Construction

Time Discretization: The size of the network is a
function of the discretization time, denoted Dt. Dt is
specified in minutes. T is the set of all discrete time
instants/stamps, M is the set of all packages, and lp

j ,
ld

j 2 N denote the pickup, delivery locations of pack-
age j, 8 j 2 M. Furthermore, t p

j , td
j denote the ear-

liest pickup time, latest delivery time of package j,
8 j 2M, and hb = min j2M t p

j , he = max j2M td
j denote

the beginning, end of the horizon for our problem.
jT j is given by jT j = b he�hb

Dt c+ 1. The earliest
pickup time stamp of package j 2 M is given by

t
p
j = d

t p
j �hb

Dt e. The latest delivery time stamp of pack-

age j 2M is given by td
j = b

td
j �hb

Dt c. The discretized
cost (distance) from u 2N to v 2N (measured in time
stamps), denoted du;v, is given by du;v = d

du;v
Dt e. Thus

du;u = 1 denotes waiting for one time stamp at node
u 2 N. We assume the graph G is not complete, so the
distance du;v (as well as the discretized distance du;v)
is ¥ if there is no direct route from node u to node v.
We let su;v denote the shortest path distance from u to
v in the network (computed in units of d).

Nodes and Arcs in the Network:
We are given a set N of site nodes (each site
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node denotes a hospital or test site). Correspond-
ing to each site node u 2 N, we construct q copy
nodes (u;1),(u;2),: : : , (u;q), where (u; l) represents
the copy of site node u at time stamp l. We also add a
start node s and a destination node f to the set of copy
nodes. We now describe the set of arcs comprising the
network.

We have three types of arcs in the network, the
set of package arcs Ap, the set of vehicle arcs Ac, and
the set of taxi arcs At . We provide the ability to use
additional problem-specific information to reduce the
number of arcs (and therefore the size) of our model.
Thus, if no package travels from node (u;q) to node
(v;r) in any optimal route, then there is no arc be-
tween nodes (u;q) and node (v;r). Arcs may also not
be present if routing a package through the arc vio-
lates feasibility.

A package arc between two copy nodes indicates
that a package can travel between the corresponding
site nodes feasibly in time. Thus, the package arc
e j
(u;q);(v;r) is in set Ap if package j can arrive at site

node u before time q, can leave site node v at or af-
ter time r, and be feasibly delivered at its destination
node before its deadline. Moreover, r is the earliest
possible time during which the package may arrive at
site node v after departing from site node u at time p.
Similarly, a vehicle arc ec

(u;q);(v;r) (taxi arc et
(u;q);(v;r))

exists if a vehicle (taxi) can feasibly travel from copy
node (u;q) to copy node (v;r).

We describe below the conditions that have to be
fulfilled for the existence of package arcs, vehicle
arcs, and taxi arcs. We define a boolean variable bu;v
which is set to 1 if a package originating at copy node
(u;q) is allowed to travel through copy node (v;r) (it
is set to 0 otherwise). This boolean variable is used
to specify the conditions for the existence of package
arcs.

Conditions for the existence of package arcs:
8 j 2M;8u;v 2 N u 6= ld

j v 6= lp
j ;8q 2 T , package

arc e j
(u;q);(v;r) 2 Ap if each of the conditions below

hold:

blp
j ;u

= 1^blp
j ;v

= 1 (1)

q� t
p
j +slp

j ;u
(2)

r = q+du;v � t
d
j �sv;ld

j
(3)

Here, Equation (2) (respectively Equation (3)) deter-
mines the earliest possible departure time of the pack-
age from u (respectively the latest possible arrival

time at v). Note that there can be more than one pack-
age arc (for different packages) between copy nodes
(u;q) and (v;r).
Conditions for the existence of vehicle and taxi arcs:
8u;v 2 N 8q 2 T ec

(u;q);(v;r) 2 Ac (et
(u;q);(v;r) 2 Ac)

if r = q+du;v � jT j�1
8v 2 N 8r 2 T ec

s;(v;r) 2 Ac

8u 2 N 8q 2 T ec
(u;q); f 2 Ac

We add a vehicle arc from the start node s to every
copy node (u;q) and from every copy node (v;r) to
the end node f .

2.2 Mathematical Programming
Formulation

The decision variables are the boolean variables
x j;u;q;v;r, yu;q;v;r, and zu;q;v;r, that indicate whether a
package, vehicle, or taxi travels along arc e j

(u;q);(v;r),
ec
(u;q);(v;r), or et

(u;q);(v;r), respectively. The number of
vehicles used is modeled using integer variables sv;r
and fu;q.

min å
u;q;v;r: et

(u;q);(v;r)2At

du;v(yu;q;v;r +rzu;q;v;r) (4)

Subject to

å
q;v;r: e j

(l p
j ;q);(v;r)

2Ap

x j;lp
j ;q;v;r

= 1 8 j 2M (5)

å
u;q;r: e j

(u;q);(ldj ;r)
2Ap

x j;u;q;ld
j ;r

= 1 8 j 2M (6)

å
u;q: e j

(u;q);(v;r)2Ap

x j;u;q;v;r = å
w;s: e j

(v;r);(w;s)2Ap

x j;v;r;w;s

8 j 2M;8v 2 N nflp
j ; l

d
j g;8r 2 T

(7)

yu;q;v;r + zu;q;v;r � x j;u;q;v;r

8 j;u;q;v;r : u 6= v^ e j
(u;q);(v;r) 2 Ap (8)

å
v;r: es;(v;r)2Ac

sv;r = k (9)

å
u;q: e(u;q); f2Ac

fu;q = k (10)
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sv;r + å
u;q: e(u;q);(v;r)2Ac

yu;q;v;r = fv;r + å
w;s: e(v;r);(w;s)2Ac

yv;r;w;s

8v 2 N;8r 2 T
(11)

x;z 2 f0;1g y;s; f 2 f0;1; : : : ;kg (12)

Here, Equations (5) and (6) are package pickup
and delivery contraints. Equation (7) are package
transit contraints to ensure that if a package enters a
node, it also exits the node. Equation 8 are package
carry constraints to ensure that packages are carried
by vehicles or taxis. Equations (9) and (10) ensure
that k vehicles start and finish the tours. Finally, Equa-
tion (11) ensures that flow conservation constraints
are met for the vehicles.

3 IMPLEMENTATION AND
EXPERIMENTAL RESULTS

We solve the mathematical programming model
described above using the general-purpose mixed-
integer program solver CPLEX. Since the time-space
network can be too large, we apply arc reduction
procedures prior to the integer program construction.
Moreover, we remove some of the arcs in the network
based on the available heuristic information about the
structure of possible routes. For example, in the graph
networks corresponding to city maps, there are ten-
dencies for routes to extensively use arterial roads.
Another type of arc reduction can come from the fact
that there is rarely a need for a package, that has its
pickup and delivery in the same local area, to be trav-
elling through another distant part of the map. All this
extra information can easily be incorporated into our
model using conditions for the existence of the pack-
age arcs (bu;v in Sec. 2.1).

We generate forty problem instances in total, com-
prised of four sets, each with ten problem instances.
The instances we generate are based on the geograph-
ical location of hospitals in a metropolitan city in
Canada, and publicly available data on the population
these hospitals serve.

In the extreme case, the number of packages we
have is around 140. This, together with the number
of hospitals (at most 20), determines the size of the
input. Each instance was run on the Simon Fraser
University RCG Colony, a cluster of 64-bit Linux
computers (each run is set to use exactly one core
of one processor). We specify the details of our
computational study below.

Comparing Solution Quality Across Problem In-
stances. We use the relative MIP gap, the ratio of

the difference between the solution value (obtained
by the MIP solver) and either the optimal, or a bound
on the optimal, as a measure of the solution quality.
We examine its dependence on three parameters: the
sparsity of the input graph, the number of vehicles in
the fleet, and the discretization time d used to con-
struct the network. The input graph is either sparse or
complete, the number of vehicles ranges from 0 to 25
(in steps of 5), and the discretization time, in minutes,
ranges from 5 to 30 (in steps of 5).

We also measure the running time of our model to
reach the relative gap of 10% for discretization time
steps of 5 minutes and 10 minutes, using 10 vehicles.
When d is 10 minutes (5 minutes), the average time
to reach the gap is 1244 seconds (4124 seconds). We
set a CPU time limit of 2 hours.

Sparse vs Complete Graph. Our model permits
us to specify and exploit the sparsity of the input
graph. It is clear from Figure 1 that our model re-
quires much less CPU time for sparse graphs. Intu-
itively, there are more options available in a denser
graph. The larger solution space that results slows
down the MIP solver.

Missing edges between pairs of nodes may be re-
placed by ‘edges’ with shortest path distances be-
tween corresponding nodes. Adding such missing
edges may provide feasible solutions, where none
may exist in the sparse graph, due to the fact that we
discretize time windows and distances. We evaluate
our solutions on the sparse graph in the rest of the pa-
per.

Number of Vehicles and Discretization Time
Steps. Figure 2 displays how the relative gap changes
with the number of vehicles allowed and the dis-
cretization time. We note that solving the problem
for the case when the packages have to be delivered
by using both vehicles as well as taxis is harder than
for the case when the packages have to be delivered
either entirely by vehicles or entirely by taxis.

Figure 3 presents a table that displays how the rel-
ative MIP gap, the objective function value, and the
number of taxis, depend on the number of vehicles
used and the discretization time step. As can be ob-
served, both the objective function value and the num-
ber of taxis decrease with the number of vehicles al-
lowed. The flexibility of our model in allowing taxis
becomes apparent when fewer vehicles are present. In
these cases, instead of obtaining infeasible solutions,
we get solutions with larger objective function value.
Similarly, in the real-life scenario that motivated our
work, taxis were used whenever it was impossible to
transport a sample within its deadline using the sched-
uled vehicles.
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Figure 1: Dependence of Average Relative Gap on Number of Vehicles and Discretization Time Steps.

Figure 2: Dependence of Average Relative Gap on Number of Vehicles and Discretization Time Steps.

Figure 3: Dependence of Average Objective Function Value, Relative Gap and Number of Taxis on Number of Vehicles and
Discretization Time Steps.

4 CONCLUSION

In this paper, we address an important problem that
arises in the healthcare industry, that of transporting
laboratory samples between hospitals. This problem
arises because the laboratories within a hospital may
not be equipped to perform the required tests on a
sample. We present a mathematical programming for-
mulation of the problem, a solution procedure using
CPLEX, and a set of experiments to evaluate the so-
lution procedure. Even though we test our solution
procedure on generated data, we believe our solution
procedure can be used to solve the real-world problem

that motivated this exercise in the first place. The ap-
proach outlined in this paper can be applied to solve
problems of comparable size that arise in the health-
care industry.

Future work may include a model-based heuris-
tic that will provide good solutions for larger problem
instances. In addition, the geographical area may be
partitioned into zones, and the size of the flow net-
work reduced by removing arcs unlikely to be used
in an optimal solution. This may permit us to solve
much larger instances of the problem.
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