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Abstract: Successful detection of rheumatoid arthritis (RA) at the early stages of development can significantly 
enhance the chances of effective therapy. The early onset of RA is often marked with inflammation of the 
synovial lining of the joint, a condition known as synovitis. Effective imaging of synovitis is therefore of 
critical importance. While dynamic, contrast-enhanced magnetic resonance imaging (MRI) is capable of 
effective imaging of synovitis, it is a costly modality. As an alternative, inexpensive approach, optical 
imaging post injection of the near-infrared fluorescent dye indocynine green (ICG) has been recently 
proposed for imaging RA. Evaluation of the obtained optical images is performed via examination by 
trained human readers. However, optical imaging has yet to achieve the diagnostic accuracy of MRI. In this 
paper we present a method for automatic evaluation of the fluorescence images and compare its 
performance with the human-based evaluation. Our method relies on our previous work on spatiotemporal 
analysis of image sequence with principal component analysis (PCA) to seek synovitis signal components 
with the help of a segmentation method. The results for a group of 600 joints, obtained from 20 patients, 
suggest improved diagnostic performance using the automatic approach in comparison to human-based 
evaluation.  

1 INTRODUCTION 

Imaging can play a critical role in developing 
effectively and timely therapeutic approaches for 
treating rheumatoid arthritis (RA) by the way of 
early detection of synovitis (Emery and Quinn, 
2003, Ostergaard et al., 2005). Synovitis is the 
condition of the inflammation of the synovial lining 
surrounding the joint and marks the onset of RA. 
Conventionally, X-ray computed tomography (CT) 
has been employed to image bone and joint damage 
resulting from joint inflammation (Backhaus et al., 
1999). In this sense CT is often applicable in the 
later stages of RA development. Other anatomical 
modalities, particularly magnetic resonance imaging 
(MRI) in conjunction with MR contrast agents and 
ultrasound have been employed for early detection 
of RA (Emery et al., 2007). Nevertheless, such 
methods are often limited by factors such as operator 
dependency for ultrasound (Delle Sedie et al., 2008) 
and high costs for the MRI, (Emery et al., 2007)). 

As an alternative, cost-effective approach, 

optical imaging (OI) has been proposed for imaging 
RA (Chen et al., 2005, Hielscher et al., 2004, Fischer 
et al., 2010, Mohajerani et al., 2013, Mohajerani et 
al., 2014, Meier et al., 2012, Gompels et al., 2010). 
Several planar and tomographic approaches have 
been proposed, relying on the physiological changes 
in joint tissue as a source of optical contrast 
(Hielscher et al., 2011, Klose et al., 1999).  

The application of fluorescence has been also 
recently proposed for imaging RA in both planar 
(Meier et al., 2012, Werner et al., 2012) and 
tomographic (Mohajerani et al., 2014) modes. These 
approaches use the organic, near-infrared 
fluorescence dye indocynine green (ICG) to create 
optical contrast in affected tissue. Specifically, the 
intravenously injected ICG tends to accumulate in 
inflamed synovial tissue, a feature which enables 
differentiation of the inflamed joints from healthy 
joints using measured fluorescence signals. In 
particular, planar imaging operating in epi-
illumination mode offers the ability to image all 
hand joints in both hands simultaneously (Meier et 
al., 2012, Meier et al., 2014, Werner et al., 2012). 
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The acquired fluorescence images are examined 
by a trained human reader, who assigns semi-
quantitative inflammation scores to different joints 
upon examining the entire acquired image sequence. 
An example an acquired fluorescence image in 
comparison to the corresponding MRI scan is 
presented in Figure 1. 

Planar, ICG-enhanced imaging of RA is a 
promising approach which has been applied for both 
diagnostic (Thomas Dziekan et al., 2011, Meier et 
al., 2012) as well as therapy monitoring purposes 
(Meier et al., 2014). While offering a cost-effective 
and rapid imaging alternative, the diagnostic 
accuracy of the method is compromised, in 
particular in comparison with contrast-enhanced 
MRI, which serves as the gold standard in evaluation 
studies (Meier et al., 2012).  

One reason for the relatively (compared to MRI) 
low diagnostic accuracy of OI, is the presence of 
strong signal interference (Meier et al., 2012). 
Specifically, the fluorescence signal emanating from 
the underlying synovitis is strongly coupled to other 
signals originating from the dorsal veins as well as 
other tissues. This interference occurs in both spatial 
and temporal dimensions and complicates the 
inference process as performed by a human reader. 
We have previously reported a spatiotemporal 
analysis approach for decoupling the signal 
components in the acquired image sequence using 
principal component analysis (PCA) (Mohajerani et 
al., 2013).   

In this paper, we present automatic detection of 
the synovitis, as an alternative to the human-based 
detection. We further evaluate and compare the 
automatic detection method with the human-based 
detection for a cohort consisting of 20 patients. 

2 IMAGING METHODOLOGY 

Fluorescence imaging was performed with a planar, 
near-infrared fluorescence imaging system (Xiralite 
X4, Mivenion GmbH, Berlin, Germany. This system 
enables real-time image acquisition at the 
fluorescence wavelength of ICG (around 830 nm) 
simultaneously from both of the hands after epi-
illumination excitation applied to the dorsal hand 
sides. The patients received a bolus injection pf ICG 
at a dosage of 0.1 mg per kg body weight. A total of 
360 images were obtained at the fluorescence 
wavelength of ICG, with a frame rate of 1 fps.  

 
Figure 1: Optical imaging of rheumatoid arthritis shown in 
the left panel for the left hand of a 42 year old male 
patient. This patient exhibited severe arthritis in the 3rd 
metacarpophalangeal (MCP) joint. The right panel depicts 
the corresponding transversal slice of the T1-weighted fat-
saturated contrast-enhanced MRI image in the MCP 
region. The higher accumulation of the contrast agents in 
the MCP 3 joint have resulted in higher signal intensities 
in both MRI and optical images.  

3 SPATIOTEMPORAL ANALYSIS  

Non-specific fluorescence signal interfering with the 
target fluorescence emanating from synovitis 
complicated the diagnosis. The interference takes 
place both in the intra-frame domain (spatial 
interference) as well as in the inter-frame domain 
(temporal interference).  Decoupling such signal 
components in both spatial and temporal domains 
might therefore help with more accurate diagnosis.  

We have recently presented spatiotemporal 
analysis for decomposing the signal components in 
the fluorescence image sequences (Mohajerani et al., 
2013). This method makes use of the principal 
component analysis (PCA) (Jolliffe, 2002), as an 
orthogonal de-correlating transformation, to covert 
the original sequence into a group of sequences, 
each bearing distinct spatiotemporal components. 
Herein we briefly review this approach.  

Specifically, consider a set of fluorescence 
images Ip for p = 1 … P, where each image has a 
size of M1 × M2 pixel size (P was equal to 360). 
Prior to the PCA analysis, two levels of localization 
were performed on the raw image sequence Ip. The 
first step limits the processing to a specific region 
within each image, achieved via a region of interest 
defined accordingly for each of the joints, as shown 
in Figure 2. The second localization step confines he 
PCA processing to windowed subsequence of the 
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Figure 2: The proposed methodology of automatic detection of rheumatoid arthritis (a) partitioning the fluorescence image 
into 7 regions for the carpus, MCP region and each of the fingers. (b) PCA-based processing and segmentation-based 
detection within each ROI (here, the carpus ROI). The results of the PCA processing are to then fed to the segmentation 
approach. The metric values assigned by the segmentation method to different signal components are then classified to 
achieve diagnostic information regarding each joint. 

images within each ROI. These two localization 
steps were performed to improve the performance of 
PCA in decoupling image components, as the signal 
dynamics change significantly across time and 
space. For each of the 7 ROIs shown, a 2-D 
subsequence of images Jp is defined from the 
original sequence. Next, K successive images were 
taken from the subsequence Jp. This subsequence is 
defined as Hi, i = 1 to K. The PCA was then applied 
to this image sequence by first vectorising and 
stacking the images Hi, to achieve a K × M1M2 
matrix X. Next, singular value decomposition 
(SVD) of the covariance matrix of X was obtained. 
and the resulting unitary matrix of its eigenvectors 
was applied as the PCA transformation matrix. The 
3 components with the largest singular values were 
then retained and the rest of modes were discarded. 
These 3 retained components were then mapped to 
the blue, red and green channels of an output color 
sequence, according to their descending singular 
values. Further details of the PCA processing can be 
found in (Mohajerani et al., 2013). A summary of 
the steps involved can be further seen in figure 2. 

The results of the spatiotemporal analysis for a 
specific joint of patient suffering severe 
inflammation in the 3rd MCP joint are presented in 
figure 3. As observed, the PCA-based method has 
successfully separated the synovitis signal from the 

background and vein signals into distinct PCA 
channels.  

4 AUTOMATIC DETECTION OF 
RHEUMATOID ARTHRITIS  

As previously noted, the synovitis signal is often 
coupled in time and space to interfering signals 
emanating from background tissue or dorsal veins. 
However, the synovitis signal is likely to appear as a 
distinct component in one of the PCA channels.  

Here, we propose automatic detection of 
synovitis by searching through the PCA channels for 
a signal component attributable to synovitis. To this 
end, we use a segmentation approach previously 
proposed in (Mohajerani et al., 2013).  

Specifically, for a specific joint, first an elliptical 
ROI is defined surrounding this joint. This ROI is 
denoted by the binary image R. The segmentation 
approach then applies a threshold to each PCA 
image. The thresholding results in a binary image J. 
Within the image J, the connected component with 
the largest overlap with R is found and denoted by 
K. A metric is defined then to quantify the likelihood 
of the signal in the region K to be due to synovitis. 
Specifically, S(K,R) is defined as 
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where J(K, R) and d(K, R) denote respectively the 
Jaccard   (Michael Levandowsky and Winter, 1971) 
and Hausdorff (Huttenlocher et al., 1993) distances 
between K and R and E(K) is the energy of the 
image I within the label in K (Mohajerani et al., 
2013).  
 

 

Figure 3: An example of the PCA-based spatiotemporal 
processing applied to the MCP-region of a patient with 
severe synovitis in the MCP 3 joint of the right hand. (a) 
Shows the measured raw fluorescence image, where the 
synovitis signal is coupled with background and dorsal 
vein signals. (b) The decomposed image obtained using 
the PCA-based approach, where the synovitis signal is 
mapped to the blue channel and is clearly distinct from the 
vein signals mapped to the green and red channels. 

The metric S(K,R)  has a value between 0 and 3, 
where a higher value denotes a higher likelihood that 
the contours of K delineate the synovitis signal in the 
corresponding PCA channel.  

The automatic detection of the synovitis then 
operates as follows. All PCA images for all the blue, 
red and green channels are then processed with the 
segmentation method presented and the 
corresponding metric values are found. The 
component K with the highest value of S(K,R) across 
all channels in then designated as the synovitis 
signal. A summary of this approach is presented in 
figure 2. Figure 4 shows the results of the automatic 
detection method for a specific case of a patient with 
moderate synovitis in the left carpus. In this specific 
case, the component with the highest metric value 
appeared in the red channels, as shown by the black 
contour in figure 4(b).  

 

 
Figure 4: Case study of the automatic detection method 
proposed herein for the left carpus joint of a 49 year old 
female patient with moderate synovitis. (a) The blue and 
red PCA components for the carpus ROI, where the black 
contours denotes the detected synovitis signal in the red 
channel. The vein signal was mapped to the blue channel 
and there was no conspicuous signal in the green channel. 
(b) The corresponding raw fluorescence image. The scores 
assigned by the 4 human readers to this joint consisted of 
0, 0, 0 and 1.  

5 CLINICAL EXAMINATION 
AND COHORT INFORMATION 

The development presented and performed in this 
paper have been conducted in the context of a recent 
study carried out at the Klinikum rechts der Isar, 
Munich, Germany, which aimed at of evaluating the 
diagnostic performance of ICG-aided imaging of RA 
(Meier et al., 2012). 

The automatic detection method proposed herein 
was applied to fluorescence image sequences 
 
Table 1: Distribution of inflammation severity among the 
600 hand joints of the 20 patients recruited in this study. 

 Healthy Mild Moderate Severe 
Carpus 16 16 5 3 
MCP 93 90 16 1 
PIP/DIP 326 28 5 1 
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obtained from a group of 20 patients (14 females, 6 
males, aged 41±16). The patients were examined 
and imaged with contrast-enhanced MRI using a 3T 
MR machine (Verio, Siemens Erlangen, Germany) 
and a protocol described in (Meier et al., 2012). MR-
based synovitis scores of 0 to 3 (healthy to severe) 
were assigned to each of the 600 joints.  

Three radiologists scored the degree of 
inflammation in a total of 30 joints of both hands 
using the MR scans. Synovitis scores on a 4-point-
ordinate scale (0: no inflammation, 1: mild, 2: 
moderate, 3: severe) were assigned to each joint 
according to the semi-quantitative assessment 
system suggested by the OMERACT MRI group 
(Ostergaard et al., 2003). The MR scores constitute 
the true diagnostic information, as explained in the 
next section. 

Similarly, the fluorescence images were scores 
by the 3 radiologists, with a repeated 4th scoring 
performed after 4 weeks, as explained in (Meier et 
al., 2012). As such, 4 scores between 0 and 3, are 
obtained for each of the 30 hand joints for each 
patient. These scores are then used to evaluate 
human-based evaluation of the optical images, in 
comparison to the proposed, automatic method. The 
distributions of synovitis severity within different 
joint groups (interphalangeal, metacarpophalangeal 
and carpal) are shown in Table 1, according to the 
examination results of the MR scans.  

6 EVALUATION METHODOLOGY 

The localization metric devised in Section 4 yields a 
value between 0 and 100 (with 100 designating 
highly likelihood of being an inflammation signal) to 
each signal component. A threshold can be applied 
to this localization metric toward making a decision 
about synovitis severity of a given joint. The results 
can be demonstrated using the so-called receiver 
operating characteristic (ROC) curves, denoting as 
sensitivity vs specificity.  

ROC curves denote the classification 
performance of a binary classifier (Zou et al., 2007). 
It should be noted that the x = y on the ROC plane 
corresponds to random classification. Therefore, any 
curve above this line is desirable. The optimal 
performance corresponds to the upper-left corner 
(sensitivity = specificity = 100%). One way to 
compare different ROC curves is to compare the 
area under curve (AUC). The AUC is a measure of a 
classifier’s quality (Fawcett, 2006). The optimal 
classifier has an AUC of 1. 

To achieve a binary classifier, we consider two 
modes of classification. In classification 1, the 
threshold is applied to the segmentation metric to 
make a decision between healthy and affected (mild, 
moderate or severe synovitis) joints. In classification 
II, a decision was made between joints with “no or 
mild synovitis” and joints with “moderate or severe 
synovitis”. 

Three diagnosis methods are examined and 
evaluated in this work: 
• Method A: Human evaluation of raw images 
• Method B: Automatic evaluation of raw images 
• Method C: Automatic evaluation of PCA images  

 
Method A is the conventional method used 

currently in the clinic (Meier et al., 2012). Method C 
constitutes the proposed method. We have already 
shown using a cohort of 15 patients that the method 
C outperforms method B (Mohajerani et al., 2013).  
 

 

Figure 5: Receiver operator characteristic (ROC) curves 
for classification I: healthy joints versus affected joints 
(mild, moderate or severe synovitis). The ROC curves are 
shown using three methods: segmentation of the raw 
images (blue curve), segmentation of the PCA components 
(red curve, the proposed method) and the human-based 
evaluation (black curve). The green, dotted vertical line 
denotes a detection specificity of 60%. For this value, the 
proposed approach outperforms the human evaluation by 
achieving a sensitivity of more than 70% (human 
evaluation had a sensitivity of around 55%). For higher 
values of specificity (more than 70%), all methods showed 
poor sensitivity of less than 50%.  

In this paper, we examine the performance of the 
proposed method (method C), in comparison with 
the human-based read (method A), for the first time. 
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The results are presented in the next section. For 
method A, the synovitis score was taken as the 
medium of the 4 scores obtained by the 4 readers (as 
explained in Section 2). For methods B and C, the 
synovitis score was the metric S, shown in Eq. 1. 

7 DIAGNOSTIC PERFORMANCE 
RESUTLS 

Figure 5 shows the ROC curves for classification I, 
as defined in the previous section. The proposed 
method (method C, red curve) showed slightly better 
performance than the other two methods for the 
specificity value of 60% (marked with filled circles). 
Over all, both automatic and human-based detection 
had an equal performance in terms of the AUC 
values, as shown in Table 2. 

Table 2: Area under curve (AUC) values for the three 
detection methods for classification I (healthy vs. affected) 
and for classification II (healthy or mild synovitis vs. 
moderate or severe synovitis). 

 Method A Method B Method C
Classification I 0.65 0.57 0.65 
Classification II 0.77 0.73 0.82 

 

 

Figure 6: ROC curves for classification II: (healthy joint 
or mild synovitis) versus (moderate or severe synovitis), 
presented similar to the results presented for classification 
I in Figure 5. The green, dotted vertical line denotes a 
detection specificity of 60%. For this value, the proposed 
approach outperforms the human evaluation by achieving 
a sensitivity of more than 95% (human evaluation had a 
sensitivity of around 75%). 

Figure 6 presents similar results for classification 
II. In this case, all methods perform better than the 
corresponding curves in classification I. This is 
justified as the signal difference between moderate 
synovitis and healthy or mild synovitis is generally 
larger than between healthy and mild synovitis. The 
proposed method C in this case has a markedly 
better performance than human reading. This 
improved performance can be seen examining the 
sensitivity values for a medium specificity value of 
60% (as marked with filled circles on figure 6) or 
examining the AUC values, presented in Table 2. 

8 DISCUSSION AND 
CONCLUSION 

In this paper we presented automatic detection and 
characterization of synovitis in human hand joints 
using fluorescence images obtained in epi-
illumination geometry post intravenous injection of 
ICG. The proposed method scores the principal 
components obtained from spatiotemporal analysis 
of the raw image sequences. The scores are then 
used to classify the synovitis in a binary fashion. 

Two classification modes were examined: 
classification I (differentiating between healthy and 
affected joints) and classification II (differentiating 
between healthy or mild synovitis vs. moderate or 
severe synovitis). The automatic evaluation of 
fluorescence images was compared with the current 
methodology of human-based evaluation of images 
for both classification scenarios using ROC curves, 
as shown in Figures 5 and 6. The comparison of the 
proposed method with human-based reading was 
performed for a cohort consisting of 20 patients. 

For classification I, as can be seen in Figure 5, 
all three methods A, B, and C have relatively low 
sensitivity. The reason is that in classification I we 
differentiate between healthy and affected joints. 
Around 22% (according to Table 2) of all joints have 
mild arthritis. However, mild joints exhibit only very 
low signal contrast relative to the healthy joints. This 
issue lowers the sensitivity of all methods. However, 
the proposed method has better sensitivity than the 
human detection for medium specificity levels. For 
classification II, however, the proposed method 
outperformed human detection in both sensitivity 
and AUC terms.  

It should be noted that for both classification I 
and II, the methods A and B have higher sensitivity 
than the proposed method, for very high specificity 
values (> ~80%), as seen in Figures 5 and 6. 
However, these higher sensitivity values are 
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generally lower than 50%, which translate to a high 
count of missed positives for the respective 
threshold values.  

The results generally show improved or 
comparable diagnostic performance achieved using 
the proposed, automatic method in comparison to 
the human-based evaluation. It is foreseeable that 
better and more intelligent classification methods 
making use of all signal properties (and not just the 
extracted segmentation metric S) could lead to 
definitively better performance than human reading. 
Such improved detection can not only lead to better 
detection but can also improve the therapy 
monitoring utility of optical imaging by reducing 
operator dependency. Such improved classification 
is being currently researched. Furthermore, semi-
quantitative scoring of synovitis using optical 
images as well as further development of the 
proposed method in conjunction with larger cohorts 
are subjects of ongoing work.  
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