
Test-Driven Migration Towards a Hardware-Abstracted Platform

Wolfgang Raschke1, Massimiliano Zilli1, Johannes Loinig2, Reinhold Weiss1, Christian Steger1

and Christian Kreiner1

1Institute for Technical Informatics, Graz University of Technology, Inffeldgasse 16/I, Graz, Austria
2Business Unit Identification, NXP Semiconductors Austria GmbH, Gratkorn, Austria

Keywords: Software Reusability, Test-Driven Development.

Abstract: Platform-based development is one of the most successful paradigms in software engineering. In embedded
systems, the reuse of software on several processor families is often abandoned due to the multitude of compil-
ers, processor architectures and instruction sets. In practice, we experienced that a lack of hardware abstraction
leads to non-reusable test cases. We will demonstrate a re-engineering process that follows test-driven devel-
opment practices which fits perfectly for migration activities. Moreover, we will introduce a process that
provides trust for the test cases on a new hardware.

1 INTRODUCTION

Engineering in the field of Smart Card development
faces several challenges, such as the demand for a
high level of security (Mostowski and Poll, 2008),
low memory footprint, power consumption and run-
time performance (Rankl and Effing, 2003). All these
requirements are interrelated and in fact, the multi-
tude of dependencies hinders Smart Card suppliers
and issuers from deploying a great deal of diversified
customizable products. Rather, there are only a few
standard products available on the market. These do
not meet the needs of today’s customers who are in-
creasingly demanding tailor-made products.
Principles of platform-based development and Soft-
ware Product Line Engineering (SPLE) (Pohl et al.,
2005)(Clements and Northrop, 2002) are a success-
ful paradigm in software engineering. SPLE aims at
systematic reuse where possible and provides a con-
ceptual framework for the diversification of products.
In the domain engineering process the purpose is not
to develop single products but to develop a base of
related systems in respect to the product family. Ded-
icated rules of composition are defined. In the appli-
cation engineering process, the engineers assemble a
product out of the product familythat corresponds to
these rules of composition.
Products are based on several processor families (PF)
which have different implications regarding compil-
ers, byte endianness and architecture. Test cases are
not platform-independent per se, even if they are writ-

ten in Junit1, a Java based unit test framework.
The migration to a product line has to be accom-
plished during operation: a Smart Card system is un-
der construction on PF A. The plan to transition to-
wards a hardware-abstracted software is to track the
development of the Smart Card system on a second
PF B as a proof of concept. The way of working
is as follows: first, take existing test cases and ab-
stract them from PF A. Second, build confidence for
platform-abstracted test cases. Third, use test cases
on PF B in order to port the software in a test-driven
development process.

2 REQUIREMENTS

2.1 Requirements in the Industrial
Context

It is intended to port as many software components
as possible to several PF. Initially, it was deemed
appropriate to elicit a set of coding guidelines in
order to keep the source code platform-abstracted.
Once a pilot project had been conducted to validate
our approach, it became apparent that the tests, in
particular, create a bottleneck. Porting the source
code has worked without much refactoring of the
code. Unfortunately, it turned out that most of the

1http://junit.org/

261
Raschke W., Zilli M., Loinig J., Weiss R., Steger C. and Kreiner C..
Test-Driven Migration Towards a Hardware-Abstracted Platform.
DOI: 10.5220/0005216302610267
In Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS-2015), pages
261-267
ISBN: 978-989-758-084-0
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



test cases needed to be refactored manually. This was
not acceptable for the following reasons: first, the
Software Product Line is intended to run on several
PF. Industrial embedded systems are usually tested
by several thousands of test cases. So, porting test
cases manually is not economically feasible in the
long run.
Second, manual porting activities are a source of
possible defects. The test cases inhibit a high amount
of memory dumps. Manually processing this data
is error-prone to some degree. Thus, the test cases
introduce an additional risk for each migration to a
new hardware.
Third, in order to achieve platform-abstraction, we
decided to allow no code change for different PF,
neither in source code nor in test code. A code
change for a specific PF would significantly decrease
the reusability of the code.

2.2 Requirements Due to Variability
Drivers

The Java Card (Oracle, 2011b)(Oracle, 2011a) oper-
ating system under analysis is basically built up as
depicted in Figure 1. At the bottom of the system, the
variability stems from the utilization of the different
PF A or B. Both of them introduce several facets of
variability: first, each PF enforces the utilization of a
separate tool chain which usually includes compiler,
linker and simulator. This facet of variability propa-
gates to the hardware abstraction layer. A consider-
able portion of it has to be written in assembler and
code which is not ANSI-C compliant.
Second, each PF may have a different byte endian-
ness and pointer size. For instance, a 32 bit pointer on
processor A corresponds to a 16 bit pointer on proces-
sor B. We experienced these factors as the major im-
pediments for test case reuse over several PF. These
drivers affect the process in all layers except for the
Java Card application layer.

Figure 1: Variability Drivers for Test Cases.

2.3 Platform Lifecycle: Product 1 -
Reengineering - Platform, Product 2

The major constraint of the refactoring process is that
the industrial product development for PF A may not
be disturbed. The continuing industrial development
is shown as phase 1 in Figure 2. The pilot study is
intended to demonstrate and prove the feasibility of a
platform-abstracted SPL. If the study is a success we
will transform the development to a platform. In or-
der to fullfill the dedicated requirements, the process
is structured as follows:
Phase 1 is the ongoing industrial product develop-
ment process which may not be disturbed.
Phase 2 is intended to refactor the tests to be
hardware-abstracted.
Phase 3 is a dedicated phase where confidence of the
tests on all PF must be demonstrated.
Phase 4 uses the abstracted tests to refactor the code
base. Daily test runs keep the feedback cycle accu-
rate for early detection of defects. This will help to
mitigate the influence of the hardware abstraction ac-
tivities on the industrial product development process.

Figure 2: Test Refactoring and Proof of Confidence are the
Precondition for Test-Driven Migration.

3 TECHNICAL BACKGROUND

The existing test infrastructure is basically split up
into two parts: off-card and on-card. Off-card, Ju-
nit is used as a test framework.
Junit launches a test case which then has the responsi-
bility to serialize the test data within a transmit buffer.
This buffer is then transmitted via packets to the on-
card side.

On-card, the In System Test Framework (ISTF)
stores the test data within a receive buffer. The dis-
patcher then analyzes the address which denotes the
intended caller stub. Then, the caller stub is launched.
It has access to the receive buffer. The test data has to
be de-serialized, which means that it is retrieved from
the buffer and stored in variables. These variables are
used as parameters for calling functions of the Mod-
ule Under Test (MUT). The response is collected by
the stub module and propagated to the ISTF and then

PECCS�2015�-�5th�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

262



Figure 3: The Test System is Contains Two Parts: The Junit
Test Bench and the In System Test Framework (ISTF).

to the Junit test bench. At that point, the test response
is evaluated and a corresponding test report is gener-
ated. The callee stub is not connected directly to the
Junit test bench. It substitutes the other modules the
MUT usually calls but which are not present in unit
testing. This stub has to provide the MUT with the
appropriate responses.

4 METHOD

The method of handling hardware dependencies
within tests is similar to that of Model-Based Testing
(MBT) (Pretschner and Philipps, 2005). The latter
methodology aims to abstract the system to a model
in order to generate abstract tests and test specifica-
tions. Nevertheless, the goal of MBT is different to
Test-Driven Development (TDD). In TDD, tests basi-
cally represent pure functional requirements.
A reasonable synthesis between MBT and TDD is
to raise the level of functional test cases to an ab-
straction where the following conditions are fullfilled:
first, developers are easily able to formulate the test
cases without the need of a formal model. Second,
the tests need to abstract all hardware specifics that
impede portability.

4.1 Abstraction Method

Abstract test cases need to abstract two issues: first,
the endianness of the target PF has to be abstracted.
This is accomplished by defining big endianness as a
rule for implementing abstract test cases. Fortunately,
the Java byte endianness is big endian, by definition.
Second, the data (usually a memory dump) has to be
abstracted in order to be reusable for several PF. Com-
plementing the data with data types is a reasonable
abstraction of a binary representation and meets the
previously stated requirements.
The basic methodology of test case abstraction is

shown in Figure 4. The methodology constitutes of
4 states and 3 transitions.

Figure 4: The Method of Handling Tests on Different Pro-
cessors Contains 4 States and 3 Transitions.

The process starts at State 1, where the data is
bound to types. These types are Java classes. When
they are instantiated by objects they are initialized
with the test data. In order to send these objects to the
Java Card, they have to be serialized which is shown
in Figure 4 as a transition. Afterwards, the data is
stored without any type information in a Java Byte
Array in State 2. The serialized data is organized in
the buffer with big endianness. In the next transition
the data is transmitted from the Junit framework to the
Java Card. Thereafter, in State 3 the data is available
in a buffer. Here, the byte order is still big endian,
regardless of the processor. In the following transi-
tion the data has to be de-serialized. Finally, in State
4 the endianness is resolved and the data is stored in
variables. These variables are usually parameters for
calling the MUT. The test case is now determined and
executable.

4.2 Traditional TDD Process

The traditional red-green-refactor process (Beck,
2002) for TDD is shown in Figure 5. Basically, a
test is first written which covers a certain functional
feature. In the red step, this test is executed without
the implementation of this feature. This then results
in the test failing, which shall be demonstrated in this
step. If the test does not fail, it indicates that there is
something wrong. Then follows the green step where
code is written in order to allow the test to pass. If
this is achieved, the next phase is refactoring. Here
the code is rewritten until it also meets the defined
non-functional requirements, such as maintainability,
reliability and the like.

Test-Driven�Migration�Towards�a�Hardware-Abstracted�Platform

263



Figure 5: Red-Green-Refactor Process of Test-Driven De-
velopment (Beck, 2002).

4.3 Inverted U Process

Due to the high number of test cases, it is not eco-
nomically feasible to review each and every test case.
Thus, we developed a dedicated process (Figure 6) for
providing confidence in the abstracted test cases.

Figure 6: Inverted U Process to Provide Confidence for Ab-
stract Test Cases on PF A and B.

The inverted U process is used to port the tests and
provide confidence in them. Because this process em-
braces two processors, it has a right and a left branch.
The process has a dedicated starting point on the left
hand side. A green (passed) test case on processor A
is the starting condition. If it has passed once, it can
be abstracted, as described previously. After the ab-
straction, the test case needs to pass again to show that
no flaws have been introduced. There is now evidence
that the test case is correct on processor A. Still there
needs to be assurance that it also works on processor
B. Thus, the next step is a review, where the abstracted
test case is investigated for potential pitfalls, such as
the utilization of pointers.
In the white step the test case passes on processor A
and there is some confidence for it on processor B.
Nevertheless, the level of confidence here is not high
enough, so the process continues on the right hand
side.
Here, the test first enters the red phase. Until the test
passes, there remains uncertainty about its correct-
ness. So, in the green step, the code is ported to run on
processor B. If the test did not go green before, con-

sideration is given to investigating and rewriting the
test. After the test has turned green for the first time,
there is confidence that the test makes sense on pro-
cessor B. Nevertheless, it should always be checked
that the test is compatible with other hardware plat-
forms.
From now on, on the right branch the process is in the
traditional TDD refactoring loop, as described previ-
ously.

5 IMPLEMENTATION

In the following, we will explain the implementation
of our method with a sample test case at hand. This
test case sets the Java Card program counter pc to a
certain value. For the explanantion, we will follow
the abstraction reference process which we defined in
Section 4.1 and in Figure 4.

5.1 Implementation of the Test Case
and the Test Stub

The previously mentioned reference process starts in
the Junit test case implementation which is shown
in Figure 7 and continues in the C test stub (see
Figure 8). The states and transitions of the reference
process are indicated within the comments. In the
following, we will describe the implementation of the
states and transitions.

State 1: In State 1 (see line 3-8 in Figure 7) first, a
new object of the type pointer is created. In line 5 the
pointer address is set to this object. In the next step,
the buffer is allocated with the correct length (see line
7).

Transition - Serialize: In line 10-11 the object is
serialized and stored within the buffer. Each class
which can be serialized has to implement its own
serialize function.

State 2: After the serialization, the objects data is
now stored within the buffer in big endianness. This
state is indicated by comments in line 13-15.

Transition - Transmit: In line 18 the send function
transmits the buffer to the Java Card.

State 3: In State 3 (see line 3-5 in Figure 8), the
In System Test Framework has already stored the
transmitted data in a buffer, which is located on-card.

PECCS�2015�-�5th�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

264



01 public void setPC(address addr)
02 {
03 //State 1
04 pointer pc = new pointer();
05 pc.setAddress(addr);
07 ByteBuffer txBuffer = ByteBuffer
08 .allocate(pc.getLength());
09
10 //Transition: Serialize
11 txBuffer.put(pc.serialize());
12
13 //State 2
14 //serialized data are now stored
15 //off-card in the buffer
16
17 //Transition: Transmit
18 send(txBuffer.array());
19 ...
20 }

Figure 7: Junit Test Case: It Sets the Java Card Program
Counter (pc) to a Value.

00 static ErrorCode StubJvmSetPc(void)
01 {
02 ...
03 //State 3
04 //serialized data are now stored
05 //on-card in the buffer
06
07 //Transition: De-Serialize
08 pc = GET_INT_PTR
09
10 //State 4
11 //Data are now stored
12 // in the variable pc
13
14 //increment buffer index
15 // by pointer length
16 idx += PTR_INT_LEN;
17
18 // call module function
19 returnCode = setJvmPC(pc);
20 ...
21 }

Figure 8: C Test Stub: It Sets the Java Card Program
Counter (pc) to a Value.

Transition - De-Serialize: In line 8 a de-serializion
macro is used to retrieve the pointer and store it
in a variable. The de-serialization method will be
explained in more detail in Section 5.2.

State 4: In State 4, the buffer index idx is incremented

by the pointer size (line 16). Finally the function
of the MUT is called with the currently calculated
pointer. The MUT returns a value which can be used
to evaluate the test response.

5.2 Implementation of the
De-serialization Macro

The de-serialization macro is called in line 8 in Fig-
ure 8. For each PF, there is a separate implementation
of it. Figure 9 is a variant for an architecture with
3 byte integer pointers and big endianness. First, in
line 0, the constant PRT INT LEN is set to 3 accord-
ing to the pointer size. The pointer is reconstructed
by shifting and concatenating the bytes with an or in
the appropriate order. It can be seen that the first byte
is not shifted. So, the first byte is the smallest which
is the case for little endian byte order. The following
bytes are then shifted by increments of 8. Finally, the
resulting value has to be casted to the relevant pointer.

00 #define PTR_INT_LEN 3
01
02 //Get Little Endian Pointer
03 #define GET_INT_PTR (uint8_t *)(
04 (uint32_t)(rxBuffer[0 + idx]) |
05 (uint32_t)(rxBuffer[1 + idx]) << 8 |
06 (uint32_t)(rxBuffer[2 + idx]) << 16);

Figure 9: De-Serialization Macro for Resolving 3 Byte
Pointers From the Buffer.

In Figure 10 the same principle is applied for a
processor with 4 byte integer pointers and big endian-
ness. The principle is the same but in contrast, in line
0 the PRT INT LEN is set to 4. Regarding the recon-
struction of the pointer, the lowest byte is shifted by
24 bits. Thus, the first byte is the highest which is true
for big endian byte order. The next bytes are shifted
by increments of -8.

00 #define PTR_INT_LEN 4
01
02 //Get Big Endian Pointer
03 #define GET_INT_PTR (uint8_t *)(
04 (uint32_t)(rxBuffer[0 + idx]) << 24 |
05 (uint32_t)(rxBuffer[1 + idx]) << 16 |
06 (uint32_t)(rxBuffer[2 + idx]) << 8 |
07 (uint32_t)(rxBuffer[3 + idx]));

Figure 10: De-Serialization Macro for Resolving 4 Byte
Pointers From the Buffer.

Test-Driven�Migration�Towards�a�Hardware-Abstracted�Platform

265



6 RESULTS

6.1 Identification of Variability Within
Junit Tests

When we started the porting of the software, we were
not aware that Junit tests incorporate that high a de-
gree of variability. Most of the tests have not been
written with portability in mind which, in the begin-
ning, made our approach difficult.

6.2 Initiative Came from a Programmer

The initiative for changing the legacy testing system
came from a programmer who was involved in the
porting of the software. For those who were involved
in these activities it was initially almost impossible to
keep up with the porting of the test cases. The guide-
lines for writing test cases which we developed helped
a lot.

6.3 There is a Need for Training

We experienced that the appropriate coding of test
cases requires the training of programmers. Other-
wise they are not aware of the problems and do not
create platform-independent tests. We created a set
of guidelines and provided training to the program-
mers. The resulting awareness mitigated many prob-
lems during the porting.

6.4 Low Overhead

The overhead of the methodology is low, if it is ad-
justed at the start of a project. The overhead is then
limited to training programmers and keeping to the
coding guidelines. If the methodology is introduced
at a later stage, the additional work is higher because
all tests have to be refactored and it usually takes some
time for people to become familiar with it.

6.5 High Benefit

If the embedded software is used on more than one
hardware platform, the benefit of the methodology is
high. In embedded systems, there are usually several
hundred or thousand tests that could be reused. With
the number of supported PF the benefit also increases
with comparably little overhead.

7 RELATED WORK

Software Product Line Engineering (Pohl et al.,
2005)(Clements and Northrop, 2002) aims at system-
atically reusing software. For this purpose, a base
of reusable software components, the product family
is maintained. Rules of aggregation are explicitly
defined for code and tests.
Platform-based methodologies for embedded systems
are given in (Sangiovanni-Vincentelli and Martin,
2001). The authors discuss the specific reuqirements
of a reuse strategy for embedded systems, including
hardware and software. They provide a vision and a
conceptual framework for platform-based software
which starts with a high-level system description.
This description is then refined incrementally.
TDD is part of agile development practices (Cock-
burn, 2006) which are lightweight processes
that make use of feedback methodologies.
Greene (Greene, 2004) gives insight to the ap-
plication and requirements of agile practices on
embedded systems development. He discusses
several facets of XP and Scrum and their adoption of
embedded systems design. He concludes that there is
a positive effect of most of the applied practices.
Grenning (Grenning, 2007) describes special chal-
lenges of TDD in embedded systems. These
challenges are addressed with the embedded TDD
cycle that embraces several stages of testing which
are applied with different frequency. The five stages
range from testing on a workstation to manual testing
in the target. This approach has the benefit that the
most simple testing approaches are applied most fre-
quently. Finally, Greening discusses issues regarding
compiler compatibility and hardware dependencies
and possible solutions regarding TDD.
Karlesky et al. (Karlesky et al., 2007) present the
so-called Model-Conductor-Hardware design pattern
in order to facilitate testing in hardware-dependent
software. This design pattern is adopted from the
Model-View-Presenter (MVP) and the Model-View-
Controller (MVC) patterns. Both patterns address
issues regarding the development and interaction
with Graphical User Interfaces (GUI). A GUI has
similar challenges for programming and testing as
hardware (event-handling, asynchronous communi-
cation and accessibility). Furthermore, a four-tier
testing strategy is presented which deals with issues
in automation, hardware and communication testing.
In (Bohnet and Meszaros, 2005) a case study of
porting software using TDD is presented. The legacy
application is a business software which was ported
to adapt to a new database system. In order to port
the system, the test cases served as a template and

PECCS�2015�-�5th�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

266



specification for the required functionality. It turned
out that the application of TDD resulted in less code
on the target platform because unused code was not
ported. Moreover, the authors showed that defect
test cases are a severe problem because the process
suggests searching for problems within the code and
not within the tests.

8 CONCLUSION AND FUTURE
WORK

We challenged the problem of porting a legacy system
to a new hardware platform. In order to do this eco-
nomically, a high number of tests had to be rewritten
to be platform-independent. We experienced that this
is possible with a relatively low overhead. A major
problem of the proposed test-driven migration process
is that the correctness of the tests on the new hardware
needs to be shown. A dedicated process helps to es-
tablish the necesary confidence. The challenges can
only be addressed successfully, if the technical real-
ization of the porting parallels the proposed process.
Additional training and guidelines for programmers
are neccessary.
For further work, it would be interesting to add type-
specific information to the serialized data which can
be reused during the de-serialization. Going further, a
domain-specific language for testing would allow the
generation of both, the Junit tests and the C test stubs
from one description of a test case.

ACKNOWLEDGEMENTS

Project partners are NXP Semiconductors Austria
GmbH and TU Graz. The project is funded by
the Austrian Federal Ministry for Transport, Innova-
tion, and Technology under the FIT-IT contract FFG
832171. The authors would like to thank pure systems
GmbH for support.

REFERENCES

Beck, K. (2002). Test-driven Development. Addison-
Wesley Professional.

Bohnet, R. and Meszaros, G. (2005). Test-Driven Porting.
In AGILE, pages 259–266. IEEE Computer Society.

Clements, P. C. and Northrop, L. (2002). Software Product
Lines: Practices and Patterns. SEI Series in Software
Engineering. Addison-Wesley.

Cockburn, A. (2006). Agile Software Development. Pearson
Education.

Greene, B. (2004). Agile methods applied to embedded
firmware development. In Agile Development Con-
ference, pages 71–77.

Grenning, J. (2007). Applying test driven development to
embedded software. Instrumentation & Measurement
Magazine, IEEE, 10(6):20–25.

Karlesky, M., Williams, G., Bereza, W., and Fletcher, M.
(2007). Mocking the embedded world: Test-driven
development, continuous integration, and design pat-
terns. In Proc. Emb. Systems Conf, CA, USA.

Mostowski, W. and Poll, E. (2008). Malicious Code on
Java Card Smartcards: Attacks and Countermeasures.
pages 1–16. Springer.

Oracle (2011a). Runtime Environment Specification. Java
Card Platform, Version 3.0.4, Classic Edition.

Oracle (2011b). Virtual Machine Specification. Java Card
Platform, Version 3.0.4, Classic Edition.

Pohl, K., Böckle, G., and van der Linden, F. J. (2005). Soft-
ware Product Line Engineering: Foundations, Princi-
ples and Techniques. Springer.

Pretschner, A. and Philipps, J. (2005). 10 Methodological
Issues in Model-Based Testing. In Model-Based Test-
ing of Reactive Systems, pages 281–291. Springer.

Rankl, W. and Effing, W. (2003). Smart Card Handbook.
John Wiley & Sons, Inc., 3 edition.

Sangiovanni-Vincentelli, A. and Martin, G. (2001).
Platform-based design and software design methodol-
ogy for embedded systems. Design Test of Computers,
IEEE, 18(6):23–33.

Test-Driven�Migration�Towards�a�Hardware-Abstracted�Platform

267


