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Abstract: Feature extraction and learning is critical for object recognition and detection. By embedding context cue of 
image attributes into the kernel descriptors, we propose a set of novel kernel descriptors called context 
kernel descriptors (CKD). The motivation of CKD is to use the spatial consistency of image attributes or 
features defined within a neighboring region to improve the robustness of descriptor matching in kernel 
space. For feature learning, we develop a novel codebook learning method, based on the Cauchy-Schwarz 
Quadratic Mutual Information (CSQMI) measure, to learn a compact and discriminative CKD codebook 
from a rich and redundant CKD dictionary. Projecting the original full-dimensional CKD onto the 
codebook, we reduce the dimensionality of CKD without losing its discriminability. CSQMI derived from 
Rényi quadratic entropy can be efficiently estimated using a Parzen window estimator even in high-
dimensional space. In addition, the latent connection between Rényi quadratic entropy and the mapping data 
in kernel feature space further facilitates us to capture the geometric structure as well as the information 
about the underlying labels of the CKD using CSQMI. Thus the resulting codebook and reduced CKD are 
discriminative. We report superior performance of our algorithm for object recognition on benchmark 
datasets like Caltech-101 and CIFAR-10, as well as for detection on a challenging chicken feet dataset.

1 INTRODUCTION 

Recognition and detection of real-world objects is 
challenging. Currently local-based image models 
(Bo et al. 2010, Bo et al. 2011, Bo et al. 2009, Wang 
et al. 2013, Jégou et al. 2009, Cao et al. 2010,  
Lazebnik et al. 2006, Lowe 2004, Bay et al. 2008, 
Ojala et al. 2002, Dalal and Triggs 2005, Pedersen et 
al. 2013, Alcantarilla et al. 2012, Alcantarilla et al. 
2013) dominate the state-of-the-art object 
recognition and detection methods. These 
representations follow the bag-of-features model 
(Jégou et al. 2009, Cao et al. 2010) that firstly 
extracts low-level patch descriptors over a dense 
grid or salient points, then encodes them into 
middle-level features unsupervised, and finally 
derives the image-level representation using spatial 
pooling schemes (Jégou et al. 2009, Cao et al. 2010,  
Lazebnik et al. 2006). Usually, carefully designed 
descriptors such as SIFT (Lowe 2004) and HOG 
(Dalal and Triggs 2005) are used as the low-level 
descriptor to gather statistics of pixel attributes 

within local patches. However, design of hand-
crafted descriptors is non-trivial as it require 
sufficient prior knowledge and well-tuned 
parameters to achieve a good performance. Besides, 
we still lack a deep understanding on the design 
rules behind them. Recently, Bo et al. (Bo et al. 
2010, Bo et al. 2011) tried to answer how SIFT and 
HOG measure the similarity between image patches 
and interpret the design philosophy behind them 
from a kernel’s view. They showed that the inner 
product of orientation histogram applied in SIFT and 
HOG is a particular match kernel over image 
patches. Based on that, they provided a general way 
to turn pixel-level attributes into patch-level features 
and designed a set of low-level descriptors called 
kernel descriptors (KDES). To reduce the 
dimensionality of KDES, they applied Kernel 
Principal Component Analysis (KPCA). However, 
KPCA only captures second-order statistics of 
KDES and cannot preserve its high-order statistics. 
It inevitably degrades the distinctiveness of KDES 
for nonlinear clustering and recognition where high-
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order statistics are needed. Wang et al. (Wang et al. 
2013) merged the image label into the design of 
patch-level KDES and derived a variant KDES 
called supervised kernel descriptors (SKDES). 
Guiding KDES under a supervised framework with 
the large margin nearest neighbor criterion and low-
rank regularization, SKDES reported an improved 
performance on object recognition. 

In this work, we focus on improving the KDES 
by embedding extra context cues and further 
learning a compact and discriminative CKD 
codebook for object representation using 
information theoretic learning techniques. In 
particular, for feature extraction, we develop a set of 
CKD that enhance the KDES with embedded spatial 
context. Context cues enforce some degree of spatial 
consistency which improves the robustness of CKD. 
For feature learning, we adopt the Rényi entropy-
based CSQMI as an information theoretic measure 
to learn a compact and discriminative codebook 
from a rich and redundant CKD dictionary. Our 
codebook learning involves two steps including the 
codebook selection and refinement. In the first step, 
a group of compact and discriminative basis vectors 
are selected from all available basis vectors to 
construct the codebook. By maximizing the CSQMI 
between the selected basis vectors in the codebook 
and the remaining basis vectors in the dictionary, we 
obtain a compact CKD codebook. By maximizing 
the CSQMI between the low-dimensional CKD 
generated from the codebook and their class labels, 
we also boost the discriminability of the learned 
codebook. In the second step, we further refine the 
codebook for improved discriminability and low 
approximation error with a gradient ascent method 
that maximizes the CSQMI between the low-
dimensional CKD and their class labels, given the 
constraint on a sufficient approximation accuracy. 
Projecting the full-dimensional CKD onto the 
learned CKD codebook, we derive the final low-
dimensional discriminative CKD for feature 
representation. Evaluation results on standard 
recognition benchmark, and a challenging chicken 
feet dataset show that our proposed CKD model 
outperforms the original KDES as well as carefully 
tuned SIFT descriptor. 

2 FEATURE EXTRACTION 
USING CKD 

We enhance the original match kernel (Bo et al. 
2010) by embedding extra neighborhood constraints 

into it. As neighborhood defines an adjacent set of 
pixels surrounding the center pixel, these 
neighborhood information can be regarded as spatial 
context of the center pixel. So we refer to this 
enhanced match kernel as Context Match Kernel 
(CMK) and the resulting descriptors as Context 
Kernel Descriptors. Intuition behind CMK is that 
pixels with similar attributes from two patches 
should have a high probability to have neighboring 
pixels whose attributes are also similar. Considering 
the spatial co-occurrence constraint, our CMK 
significantly improve the matching accuracy. CMK 
can be conveniently applied to develop a set of local 
descriptors from any pixel attributes, such as 
gradient, color, texture, and shape, etc. 

2.1 Formulation of CMK 

An image patch can be modelled as a set of pixels
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X , where xi is the coordinate of the ith 

pixel. Let ai be attribute vector at the ith pixel xi. The 
k-neighborhood Nk

i of pixel xi in X is defined as a 
group of pixels (including itself) that are closest to 
it. Mathematically, Nk

i = {xj∈X | ∥xiെxj∥≤k; k≥1}. To 
eliminate the image noise, we smooth the image 
using a Haar wavelet filter and compute the local 
gradient in the k-neighborhood. For the k-
neighborhood centered at xp, we first normalize the 
neighborhood’s attribute by voting the pixel’s 
attribute in Nk

p with its gradient magnitude weighted 
by a Gaussian function centered at xp. The width of 
Gaussian function, which normalizes the attributes 
contributed from off-center pixels, is controlled by 
the neighborhood size k. Similarly, we can also 
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(1)

where mu and mv are the gradient magnitudes at 
pixels xu and xv, respectively; pa and qa are the 

normalized image attributes in k-neighborhoods 
centered at xp and xq, respectively; 

2( , ) exp( || || )p q a p qa a a a  aκ
T( ) ( )a p a qa a  is a 
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Gaussian kernel measuring the similarity of 
normalized attributes pa and qa . The context kernel 

κcon provides a normalized measure of the attribute 
similarity between two k-neighborhoods centered at 
pixels xp and xq. Merging κcon into match kernels (Bo 
et al. 2010) and replacing the attribute a in Eq.(1) 
with specific attributes, we can derive a set of ad hoc 
attribute-based CMKs.  

For example, let θ'p and m'p be normalized 
orientation and normalized magnitude of the image 
gradient at pixel xp, such that θ'p = (sinθp, cosθp) and  

2
p p pp P

m m m 


    , with τ being a small 

positive number. To compare the similarity of 
gradients between patches P and Q from two 
different images, the gradient CMK Kgck can be 
defined as 
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where κo(θ'p, θ'q) = exp(-γo∥θ'p−θ'q∥
2) = ߮o(θ'p)

T߮o(θ'q) 
is the orientation kernel measuring the similarity of 
normalized orientations at two pixels xp and xq ; 
κs(xp, xq) = exp(-γs∥xp−xq∥

2) = ߮s(xp)
T߮s(xq) is the 

spatial kernel measuring how close two pixels are 
spatially; and κcon[(xp, θ'p), (xq, θ'q)] is given by 
Eq.(1). Similarly, to measure the similarity of color 
attributes between P and Q, color CMK Kcck can be 
defined as 
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where κc(cp, cq)=exp(-γc∥cp−cq∥
2)= ߮c(cp)

T߮c(cq) is 
the color kernel measuring the similarity of color 
values cp and cq. For color images, we use 
normalized rgb vector as color value, whereas 
intensity value is used for grayscale images.  

For the texture attribute, the texture CMK, Klbpck, 
is derived based on Local Binary Patterns (lbp) 
(Ojala et al. 2002) 
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where
3

2
p p pp N

   


   is the normalized 

standard deviation of pixel values within a 3×3 
window around xp; κlbp(lbpp, lbpq) = exp(-γlbp 
∥lbpp−lbpq∥

2) is a Gaussian match kernel for lbp 
operator. 

As shown in Eq.(2)-(4), each attribute-based 
CMK consists of four terms: 1) normalized linear 

kernel, e.g. m'p m'q for Kgck; 1 for Kcck and ߪ'p ߪ'q for 
Klbpck, weighting the contribution of each pixel to the 
final attribute-based CMK; 2) attribute kernel 
evaluating the similarity of pixel attributes; 3) spatial 
kernel κs measuring the relative distance between 
two pixels; 4) context kernel κcon comparing the 
spatial co-occurrence of pixel attributes. In this 
sense, we formulate these attribute CMKs, defined 
in Eq.(2)-(4), in a unified way as 
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where wpwq and κa correspond to normalized linear 
weighting kernel and attribute kernel, respectively.  

2.2 Approximation of CMK 

Using the inner product representation, we rewrite K 
as K(P,Q) = <ψ(Q), ψ(P)> = ψ(P)Tψ(Q), with ( ) ψ   

( ) ( ) ( , )a s conw a x x a    , where ⨂ is the 

tensor product; ψ(·) gives the mapping features in 
kernel space, namely the CKD. To obtain an 
accurate approximation of the match kernel matrix K, 
we have to uniformly sample on a dense grid along 
sufficient basis vectors. In particular, for ߮a and ߮con, 
we discretize a into G bins and approximate them 
with their projections onto subspaces spanned by the 
G basis vectors 1{ ( )}g G

a ga  . For space vector x, we 

discretize spatial basis vectors into L bins and 
sample along the L basis vectors spatially. Finally, 
ψ(·) can be approximated by projections onto the 
G×L×G joint basis vectors: {ϕl} = {߮a(a

1)⨂	 ߮s(x
1)⨂	

߮con(a
1),…, ߮a(a

G)⨂	 ߮s(x
L)⨂	

߮con(a
G)}(l=1,⋯,GൈLൈG), i.e. 

1

( )
G L G

l l
l

f 
 



 ψ  (6)

where fl is the projection coefficient onto the lth joint 
basis vector ϕl. Thus, dimensionality of the resulting 
CKD ψ is G×L×G. Uniform sampling provides a set 
of representative joint basis vectors, but does not 
guarantee their compactness. Projections onto the 
basis vectors usually yield a group of redundant 
CKD. Next, we show how to learn a compact and 
discriminative CKD codebook using a CSQMI-
based information theoretic feature learning scheme. 
Projecting the original CKD ψ onto the codebook 
reduces the redundancy of ψ and gives a low-
dimensional discriminative CKD representation.
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3 FEATURE LEARNING USING 
CSQMI 

Shannon entropy and its related measures, such as 
mutual information and Kullback-Leibler divergence 
(KLD) are widely used in feature learning (Battiti 
1994, Peng et al. 2005, Yang and Moody 1999, 
Kwak and Choi 2002, Zhang and Hancock 2011, Liu 
and Shum 2003, Qiu et al. 2014, Brown et al. 2012, 
Leiva-Murillo and Artes-Rodriguez 2012, Hild II et 
al. 2006, Hild II and Torkkola et al. 2006). However, 
Shannon entropy-based feature learning methods 
share the common weakness of high evaluation 
complexity involved in the estimation of probability 
density function (pdf) in Shannon entropy (Battiti 
1994). Recently, Rényi entropy (Rényi 1961, 
Principe 2010) has attracted more attentions in 
information theoretic learning. The most impressive 
advantage of Rényi entropy is its moderate 
computational complexity because the estimate of 
Rényi entropy can be efficiently implemented by the 
kernel density estimation (Parzen 1962) (e.g. the 
Parzen windowing). Several novel information 
theoretic metrics derived from Rényi entropy are 
introduced in feature learning (Jenssen 2010, 
Jenssen 2008, Gómez -Chova et al. 2012, Zhong and 
Hancock 2012). 

3.1 Rényi Entropy and CSQMI 

Given a data set S = {s} (s∈࣬d) generated from a pdf 
of p(s), then its Rényi entropy (Principe 2010) is 

defined as 2( ) 1 (1 )log ( )H p d
   S s s . Standard 

Shannon entropy can be treated as a special case of 
Rényi entropy as α→1. Rényi entropy of order α = 2, 
given in Eq.(7), is called Rényi quadratic entropy 
H2(S) (Principe 2010) 

2
2 2( ) log ( )H p d  S s s  (7)

Similar to KLD defined using Shannon entropy, 
Cauchy-Schwarz divergence (CSD) based on Rényi 
quadratic entropy also defines a measure of 
divergence between different pdfs. Given two data 
set S1 and S2, with S1having M1 samples generated 
from a pdf of p1(s) and S2 having M2 samples 
generated from a pdf of p2(s), the CSD (Principe 
2010, Jenssen 2008) of p1 and p2 is given by 
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where 2 2 1 2( , ) log ( ) ( )H p p d  1 2S S s s s  measuring 

the similarity between two pdfs can be considered as 
the Rényi quadratic cross entropy. We can interpret 
H2(S1, S2) as the information gain from 
observing one density with respect to the “true” 
other density. Hence, the CSD derived from Rényi 
quadratic entropy is semantically similar to 
Shannon’s mutual information. Based on CSD (p1; 
p2), the CSQMI between S1 and S2 is defined as 
(Principe 2010) 
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where p12(s1, s2) is the joint pdf of (S1, S2), and p1(s1) 
and p2(s2) are marginal pdf of S1 and S2. ICSD(S1; S2) 
≥ 0 meets the equality if and only if S1 and S2 are 
independent. So ICSD(S1; S2) is a measure of 
independence that reflects the information shared 
between S1 and S2. In other words, it measures how 
much knowing S1 reduces the uncertainty about S2, 
and vice versa. 

Principe (Principe 2010) showed that, using a 
Parzen window estimator (Parzen 1962), Rényi 
quadratic entropy and its induced measures like CSD 
and ICSD can be efficiently and accurately estimated 
with a sample-based estimator involving no 
approximations or assumptions besides the density 
estimation itself, even in high-dimensional feature 
space like our CKD. Whereas, it is not possible for 
Shannon entropy (Principe 2010). This explains why 
we choose Rényi quadratic entropy based CSQMI, 
instead of Shannon entropy based mutual 
information, as the feature learning criterion in our 
algorithm.  Principe (Principe 2010) provided the 
approximation of CSQMI using a Gaussian Parzen 
window estimator.  

In addition, Jenssen (Jenssen 2010) illustrated 
that, when applying a Gaussian Parzen window 
estimator, Rényi quadratic entropy estimator relates 
to the squared Euclidean length of mean vector of 
the mapping data in kernel feature space. Whereas, 
CSD estimator relates to the angle between the mean 
vectors of mapping data clusters, associated with 
p1(s) and p2(s), in kernel feature space. Thus CSQMI, 
measuring the CSD between a joint pdf and the 
product of two marginal pdfs, also relates to the 
cluster structure in kernel feature space. The 
relationships between Rényi quadratic entropy, 
CSD/CSQMI and the mean vector of mapped 
features in kernel space provide us the geometric 
interpretation behind H2(S) and CSD/ CSQMI. It 
means that the Rényi quadratic entropy-based 
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measures are very suitable to analyze nonlinear data 
(even in high-dimensional space) and capture the 
geometric structure of the data. In contrast, the 
Shannon entropy and KLD do not have such good 
properties. 

3.2 Codebook Selection and 
Refinement using CSQMI 

As mentioned in Sec.2.2, we approximate the 
original CKD ψ with a redundant group of joint 

basis vectors 1{ }G L G
l l  

 .We define these joint basis 

vectors as dictionary, and represent it as Φ (Φ has a 
cardinality of G×L×G). Assuming we are given 
CKD, શ	 = [ψ 1 ,⋯, ψ M], of M samples from C 
classes, for each class c (c = 1,⋯,C), it has Mc 
samples and their CKD are denoted as શc = [ψc

1,⋯, 
ψc

Mc]. We rewrite CKD of all samples as 1{ }C
c cΨ Ψ . 

Similarly, we denote F 1{ }C
c cF , where Fc = 

[Fc
1,⋯,Fc

Mc] = 1 1 T
1[( , , ) ,c cG L Gf f    

T
1, ( , , ) ]c cM M

c cG L Gf f    . Then, Eq.(6) can be 

represented as શ = ઴F, where ઴	 = [ϕ1,⋯, ϕG×L×G] 

and 

1
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F


 


 is the projection 

coefficients matrix. Given a CKD ψ from a random 
sample, we measure the uncertainty of its class label 
L in terms of class prior probability by H2(L), given 
in Eq.(7). Whereas, CSQMI ICSD(ψ; L) defined in 
Eq.(9) measures the decrease in uncertainty of the 
pattern ψ due to the knowledge of the underlying 
class label L. 

Givenશ and an initial dictionary Φ, we aim to 
learn a compact and discriminative subset of joint 
basis vectors Φ* from Φ, such that cardinality (Φ*) 
< cardinality (Φ). We refer to Φ* as codebook. 
Projecting the original CKD શ onto the codebook 
઴*gives a low-dimensional CKD, શ*=઴*F*. We 
expect શ* should be compact and discriminative. To 
learn a compact codebook, we maximize the CSQMI 
between ઴* and the unselected basis vectors ઴−઴* 
in ઴, i.e. ICSD(઴*; ઴−઴*). As ICSD(઴*; ઴−઴*) 
signifies how compact the codebook Φ*is, a higher 
value of ICSD(઴*; ઴−઴*) means a more compact 
codebook. However, that codebook may not be 
discriminative, because it does not give any 
information regarding the new CKD શ* from their 
class label L. Therefore, we also need to maximize 
the CSQMI between શ* and L, i.e. ICSD(શ*; L), 
which provides the discriminability of the new CKD 
generated from the codebook ઴*. To this end, the 

codebook learning problem can be mathematically 
formulated as 

( ; ) ( ; )arg max CSD CSDI I L   
*

* * *

Φ

Φ Φ Φ Ψ  (10)

where λ is the weight parameter to make a tradeoff 
between the compactness and discriminability terms. 
We use a two-step strategy to optimize the 
compactness and discriminability of the codebook 
simultaneously. In the first step (Codebook 
Selection), the codebook that maximizes Eq.(10) is 
selected from the initial dictionary in a greedy 
search manner. In the second step (Codebook 
Refinement), the selected codebook is refined via a 
gradient ascent method to further maximize the 
discriminability term ICSD(શ*; L) while keeping the 
approximation error as low as possible. 

3.2.1 Codebook Selection 

The first term in Eq.(10), i.e. ICSD(઴*; ઴−઴*), is a 
compactness term which measures the the 
compactness of the codebook ઴*. The second term, 
i.e. ICSD(શ*; L), measures the discriminability of the 
codebook	 ઴*. Based on [33], the probability of 
Bayes classification error resulted from the final 
CKD શ*, i.e. P(eશ*), has its upper bound given by 

 2

1
( ) ( ) ( ; )

2 CSDe H L I LP  
*Ψ *Ψ . Thus, the selected 

discriminative codebook ઴* corresponding to the 
minimal Bayes classification error bound should 
maximize the ICSD(શ*; L). During the codebook 
selection, we start with an empty set of ઴* and 
iteratively select the next best basis vector ϕ * from 
the remaining set ઴−઴*, such that the mutual 
information gain between the new codebook ઴*∪ ϕ * 

and the remaining set, as well as the mutual 
information gain between the CKD derived from 
new codebook and the class label, are maximized 

 
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3.2.2 Codebook Refinement 

We refine the codebook ઴* to further enhance its 
discriminability by maximizing the discriminability 
term in Eq.(10), i.e.  max ;CSDI L

*

*

Φ
Ψ . To 

guarantee a compact codebook, we assume that 
cardinality (઴*) ≪ cardinality (઴). Under such an 
assumption, the projection coefficient is solved by 
F* = ઴†શ	 which minimizes the approximation error 
e = ∥શ−	 ઴*F*∥2, where ઴† = pinv(઴*) = (઴*T઴*)-
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1઴*T is a pseudo-inverse of ઴*. Thus, the problem of 
refining ઴* for improving the discriminability of 
codebook while keeping its approximation accuracy 
is converted to search for ઴* that maximizes ICSD(શ*; 
L), subject to F* = ઴†શ. Since ICSD(·;·) is a quadratic 
symmetric measure, the objective function ICSD(શ*; 
L) is differentiable. We use the gradient ascend 
method to iteratively refine	 ઴* such that ICSD (શ*; L) 
is maximized. In each iteration, ઴* is updated with a 
step size υ. After k-th iteration, ઴*

k
 becomes 
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1 1 1 1
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Once ઴* is refined, we update the projection 
coefficients F* and the low-dimensional 
discriminative CKD શ* according to F* = ઴†શ and 
શ* = ઴*F*, respectively. 

4 EXPERIMENTS 

We test our method on Caltech-101(Li et al. 2006) 
and CIFAR-10 (Torralba et al. 2008) for recognition 
and on our own chicken feet dataset for detection. 
We also compare our result with the original KDES 
(Bo et al. 2010), SKDES (Wang et al. 2013), and 
dense SIFT features (Lazebnik et al. 2006, Lowe 
2004). We adopt the code from 
www.cs.washington.edu/ robotics/projects/kdes/ to 
implement the original KDES. To make a fair 
comparison, in all experiments, except for the final 
feature dimensionality, we follow the setting of (Bo 
et al. 2010) for common parameters used in our 
model. Namely, basis vectors for κo, κc, and κs are 
sampled using 25, 5×5×5, and 5×5 uniform grids, 
respectively.  For κlbp, we choose all 256 basis 
vectors. κcon share the same basis vectors with their 
attribute kernels κa. We use a three-level spatial 
pyramid for pooling CKD at different levels. The 
pyramid level is set as 1×1, 2×2 and 4×4. Gaussian 
Parzen window is used to approximate CSQMI, and 
the width parameter σ is tuned following a grid 
search in the range [0.01σd, 100σd], where σd is the 
median distance of all training samples. The best 
window width is selected by cross-validation. The 
optimal neighborhood distance parameter, k, is 
decided via a grid search between 1 and 8. The 
weight parameter λ in Eq.(10) is decided by cross-
validation. To select CKD codebook with a desirable 
codebook size, we try different parameters and 
select the best codebook in a cross-validation 
manner such that its size is no higher than the 

expected codebook size. Linear SVM classifiers 
implemented with the LIBlinear (www.csie.ntu.edu. 
tw/~cjlin/liblinear/) are used in all experiments.  

4.1 Evaluation of Object Recognition 

Caltech-101: It collects 9144 images from 101 
object categories and a background category. Each 
category has 31 to 800 images with significant color, 
pose and lighting variations. We use this dataset for 
a comprehensive comparison on the recognition 
performance of KDES, SKDES and our CKD. A 4-
neighborhood which achieves the best performance 
is used to evaluate the context information for CKD. 
For each category, we train one-vs-all linear SVM 
classifiers on 30 images and test on no more than 80 
images for KDES and our method. We run five 
rounds of testing for a confident evaluation. Results 
of SKDES are obtained from (Wang et al. 2013). 
Table 1 lists the average recognition accuracy and 
standard deviation of different options of kernel 
descriptors. Some recently reported results are also 
provided for comparison.  

From table 1, we observe that our CKD 
consistently outperforms KDES and SKDES, for 
both individual and combined version. Except for 
the gradient CKD (G_CKD), both color CKD 
(C_CKD) and texture CKD (LBP_CKD) are 
significantly better than their original KDES. In 
particular, compared with the original color and 
texture KDES, the recognition accuracy of C_CKD 
and LBP_CKD is increased by 62.97% and 5.69%, 
respectively. For the combined version, the accuracy 
of combined CKD is 83.3%, which is 6.90% higher 
than the original KDES combination and 4.10% 
higher than the SKDES combination. We notice the 
smaller standard errors of our results compared with 
SKDES. It means CKD is more robust than SKDES, 
thanks to the extra embedded spatial co-occurrence 
constraints.  

To investigate the impact of codebook size on 
the recognition performance, we train classifiers 
using different codebook sizes and compare the 
recognition accuracy of the combined CKD 
(COM_CKD) and combined KDES (COM_KDES) 
in Fig.1(a). As expected, COM_CKD outperforms 
COM_KDES consistently over all codebook sizes. 
We also note a relative small performance drop 
(14%) of COM_ CKD when codebook size 
decreases from 500 to 50, whereas for COM_KDES 
the accuracy drop is 26%. This verifies the 
effectiveness of our codebook learning model, which 
can select discriminative CKD codebook even in 
low-dimensional   cases.     We    also   compare   the  
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(a) recognition performance at different codebook sizes (b) recognition performance at different neighborhood distances

Figure 1: Performance comparison at different codebook sizes and neighborhood distances on Caltech-101. 

Table 1: Comparison of mean recognition accuracy (%) and standard deviation of KDES, SKDES and CKD on Caltech-
101. 

Features 
KDES(Bo et 

al. 2010) 
SKDES (Wang et al. 2013) CKD 

gradient 75.2±0.4 77.3±0.7 77.8±0.6 
color 42.4±0.5 68.4±1.4 69.1±0.9 

texture(lbp) 70.3±0.6 71.6±1.3 74.3±0.8 
combination 76.4±0.7 79.2±0.6 83.3±0.6 

Method Accuracy Method Accuracy 
Jia et al. 2012 75.3±0.7 Feng et al. 2011  82.60 

SLC (McCann and Lowe 2012) 81±0.2 SDL (Jiang et al. 2012) 75.3±0.4 
Adaptive deconvolutional net (Zeiler et al. 2011) 71.0±1.0 SSC (Oliveira et al. 2012) 80.02±0.36 

Boureau et al. 2011 77.3±0.6 M-HMP (Bo et al. 2013) 82.5±0.5 
LSAQ (Liu et al. 2011) 74.21±0.8 SPM_SIFT(Lazebnik et al. 2006) 64.6±0.8 

Pyramid SIFT (P-SIFT) (Seidenari et al. 2014) 80.13 PHOW(Bosch et al. 2007) 81.3±0.8 

 
recognition performance of CKD yielded under 
different neighborhood distances. As shown in 
Fig.1(b), neighborhoods with medium distances 
perform better than neighborhoods with small 
distances, and recognition accuracy tends to drop for 
neighborhoods with large distances. This can be 
understood by the fact that the discriminability of 
descriptors defined within a local patch tends to be 
smoothed as more noises and outlier data included 
when the neighborhood distance becomes larger. 
CIFAR-10: This dataset consists of 60000 tiny 
images with 32×32 pixels. It has 10 categories, with 
5000 training images and 1000 test images per 
category. We choose this dataset to test the 
performance of our method on recognition of tiny 
objects. Similar to [1], we calculate CKD around 8 × 
8 image patches on a dense grid with a spacing of 2 
pixels. A 3-neighborhood which gives the best 
performance is applied to calculate CKD. The whole 
training images are split into 10,000/40,000 
training/validation set, and the validation set is used 
to optimize the kernel parameters of γs, γo, γc, and γlbp 
using a grid search. Finally, a linear SVM classifier 
is trained on the whole training set using the 
optimized kernel parameters. 

We compare the performance of COM_CKD with 
several recent feature learning approaches using deep 
learning (stochastic pooling based Deep 
Convolutional Neural Network−spDCNN (Zeiler and 
Fergus, 2013), tiled Convolutional Neural 
Networks−tCNN (Le et al. 2010), Multi-column 
Deep Neural Networks−MDNN (Ciresan et al. 
2012)), sparse coding (improved local Coordinate 
Coding−iLCC (Yu and Zhang, 2010), spike-and-slab 
Sparse Coding− ssSC (Goodfellow et al. 2011), 
hierarchical kernel descriptor (HKDES) (Bo et al. 
2011) and spatial pyramid dense SIFT (SPM_SIFT) 
(Lazebnik et al. 2006). For SPM_SIFT, we use a 3-
layer spatial pyramid structure and calculate dense 
SIFT feature in an 8×8 patch over a regular grid with 
a spacing of 2 pixels. Table 2 reports the recognition 
accuracy of various methods. As we see, COM_CKD 
and MDNN defeat other methods by a large margin. 
Compared with MDNN, COM_CKD achieves a 
comparable performance with only a 0.37% deficit in 
classification rate. However, our method is much 
more simple and efficient than MDNN model. For 
example, for a 32×32 pixel image, our method takes 
0.224s to calculate the full-dimensional 3-
neighborhood COM_CKD and 320.21s to learn a 
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200-dimensional discriminative codebook using 
CSQMI on average on a platform with Intel Core i7 
2.7GHz CPU and 16G RAM. Merging different 
pixel attributes in the kernel space, CKD tune low-
level complementary cues into image-level 
discriminative descriptors. Even coupled with simple 
linear SVM classifier, our method still achieves 
superior performance compared with other 
sophisticated models. 

Table 2: Comparison of recognition accuracy (%) of 
various methods on CIFAR-10. 

Method Accuracy Method Accuracy 
spDCNN 84.88 SPM_SIFT 65.60 

tCNN 73.10 HKDES 80.00 
iLCC 74.50 MDNN 88.79 
ssSC 78.80 COM_CKD 88.42 

4.2 Evaluation of Object Detection 

To adapt our method for object detection, we train a 
two-class linear SVM classifier as the detector using 
COM_CKD features. For an instance image, we 
decompose it into several scales and detect possible 
locations of all candidate objects using a sliding 
window at each scale. Finally, we merge detection 
results at different scales and remove the duplicate 
detections at the same location. We test our detector 
on a chicken feet dataset collected in a chicken 
slaughter house. The aim of our detector is to find 
and localize chicken feet. As illustrated in Fig.3, this 
chicken feet dataset is very challenging due to the 
following facts: chicken feet are very small 
compared with other parts of the body, usually more 
than forty chickens are squeezed in a box, multiple 
chicken feet may appear in one image, in many cases 
feet are severely occluded (most part of feet are 
hidden under feather), the appearance of feet changes 
drastically due to different poses, and finally the 
color of the feet is very similar to feather and chest. 

We crop a total of 717 image patches containing 
chicken feet as positive training examples, and 2000 
patches without chicken feet as negative training 
examples. Another set of 318 images containing 
chicken feet patches never occurred in the training 
set are used as test set. Since chicken feet are also 
tiny, we use the same patch size and sampling grid 
for the CIFAR-10 dataset to evaluate CKD. The 
parameters of CKD and SVM are tuned by the 10-
fold cross-validation on training set. To judge the 
correctness of detections, we adopt standards of the 
PASCAL Challenge criterion (Everingham et al. 
2010), i.e. a detection is considered as correct only if 
the predicted bounding box overlaps at least half area 

with the ground-truth bounding box. All other 
detections of the same object are counted as false 
positives. We compare the detection performance of 
our model with the HKDES model (Bo et al. 2011) 
and a 3-level SPM _SIFT (Lazebnik et al. 2006) in 
terms of the Equal Error Rate (EER) on the 
Precision-Recall (PR) curves, i.e. PR-EER. PR-EER 
defines the point on the PR curve, where the recall 
rate equals the precision rate.  

Fig.2 plots the Precision-Recall curves for all 
methods. As we see, among all tested models, 
COM_CKD achieves the best overall performance 
(EER=78.53%), followed by the HKDES model 
(EER=75.61%) that combines gradient, color and 
shape cues into KDES. This further confirms that 
merging different visual cues into object 
representation can significantly boost the 
performance of the classifier. One interesting 
observation is that, expect for C_CKD, results from 
our single CKD models are better than the 
sophisticated SIFT method. In particular, EERs of 
LBP_CKD and G_CKD model are 71.23% and 
69.55%, respectively, whereas EER of SPM_SIFT is 
only 59.41%. Considering individual CKD, C_CKD 
gives the worst result with EER=44.10%. Both 
LBP_CKD and G_CKD perform well, with LBP_ 
CKD achieving a slightly better average accuracy. 
This is not surprising. Color difference between 
chicken feet and other parts (feather and chest) is 
marginal (refer to Fig.3). Color distributions of 
chicken feet and other parts overlap quite much. In 
particular, the color distribution of feet and chest can 
hardly allow an acceptable separation based on color 
cue alone.  In contrast, feet show a moderate 
difference in texture structures from feature and 
chest. Hence, texture based LBP_CKD outperforms 
other single feature for this dataset. Fig.3 shows 
some detection examples resulting from the best 
COM_CKD feature. Due to the influence of shadow 
caused by the box boundary and severe occlusions, 
some small chicken feet under the box shadow (in 
left images) or hidden by the feather (in right 
images) are missed by the detector, which give the 
false negative detections. But for these images no 
false positive detections appear.  

5 CONCLUSIONS 

Based on the context cue and Rényi quadratic 
entropy based CSQMI, we propose a set of novel 
kernel descriptors called context kernel descriptors 
and an information theoretic feature learning method 
to select a compact and discriminative  codebook  for  
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Figure 2: Precision-Recall curves of all methods tested on the chicken feet dataset. 

 

Figure 3: Detection examples resulting from COM_CKD feature. 

object representation. We evaluate our method in 
object recognition and detection applications. The 
contributions of our work lie in 1) the new CKD 
enhances the original KDES by adding extra spatial 
co-occurrence constraints to reduce the mismatch of 
image attributes (features) in kernel space; 2) instead 
of using traditional KPCA for feature reduction, we 
apply CSQMI criterion to learn a subset of compact 
and discriminative CKD codebook that captures the 
cluster structure of input samples as well as the 
information about their underlying labels. Evaluation 
results on both popular benchmark and our own 

datasets show the effectiveness of our method for 
generic (especially tiny) object recognition and 
detection. 
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