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Abstract: A relative position descriptor is a quantitative representation of the relative position of two spatial objects. It 
is a low-level image descriptor, like colour, texture, and shape descriptors. A good amount of work has been 
carried out on relative position description. Application areas include content-based image retrieval, remote 
sensing, medical imaging, robot navigation, and geographic information systems. This paper reviews the 
existing work. It identifies the approaches that have been used as well as the properties that can be expected 
from relative position descriptors. It compares and provides a brief overview of various descriptors, 
including their main properties, strengths and limitations, and it suggests areas for future work.  

1 INTRODUCTION 

Relative position refers to the arrangement of objects 
in space relative to each other. In daily life, 
knowledge about relative positions is conveyed 
through linguistic expressions like, “object A is 
mostly above object B,” “object A is quite far from 
object B,” or “object A almost touches object B.” 
Such qualitative statements use terms that denote 
spatial relationships, which are often categorized 
into directional (e.g., above), distance (e.g., far) and 
topological (e.g., touches) relationships. Relative 
position information is important in various areas of 
image processing and computer vision. However, 
many practical image processing and computer 
vision tasks call for quantitative measurements. 
Quantitative models of relative position have 
therefore been proposed. We call such models 
relative position descriptors. They are visual 
descriptors, like color, texture, and shape 
descriptors, but they also intend to serve as 
containers for spatial relationships. They therefore 
provide a link between low-level spatial data 
features and high-level concepts. The ideal relative 
position descriptor gives a snapshot of the 
arrangement of objects in space relative to each 
other, it encapsulates rich information about all 
kinds of spatial relationships between the objects, 
and it allows this information to be easily extracted. 

Relative position descriptors have received good 
attention in image processing research in recent 

years, as they have applications in object 
recognition, image retrieval and indexing, map-to-
image conflation, linguistic scene description, etc. 
Most of the attention has been focused on finding 
effective approaches to the modeling of relative 
positions and techniques for extracting spatial 
relationship information from relative position 
descriptors. Other topics that have received some 
attention include the design of efficient algorithms; 
the handling of fuzzy objects, objects in vector form, 
and 3D objects; similarity and affine invariance. 

There are several review papers on models of 
spatial relationships (and these models may or may 
not be based on relative position descriptors). See, 
e.g., (Bloch, 2005) (Jaworski and Kucharski, 2010). 
However, to our knowledge, this is the first review 
paper on relative position descriptors. Section 2 
identifies the approaches that have been used as well 
as the properties that can be expected from these 
descriptors. It also provides a summary of the 
properties of various descriptors. Section 3 briefly 
presents each descriptor mentioned in Section 2. 
Conclusions are drawn in Section 4.   

2 APPROACHES & PROPERTIES 

2.1 Approaches 

Table 1 indicates the approaches used to define the 
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relative position descriptors considered in this paper. 
More on the definition of each descriptor can be 
found in Section 3. The information necessary to fully 
understand these table and section is presented below. 

An object is a nonempty, regular closed subset of 
the Cartesian plane. A pixel is a unit square whose 
sides are parallel to the x- and y-axes and whose 
center has integer coordinates. A raster object is the 
union of a finite number of pixels. A vector object is 
an object whose boundary is the union of a finite 
number of line segments. Consider two objects A 
and B. The position of A relative to B is usually 
represented by a histogram HAB, or by a real 
function improperly called a histogram, or by a tuple 
of such functions. A working assumption is that the 
objects may be too close to each other to be 
approximated by their centroids or minimum 
bounding boxes. 

In the pixel-pair-based approach, the relative 
position descriptor is designed with raster objects in 
mind. A histogram value depends on pairs of pixels, 
where each pair is composed of a pixel of A and a 
pixel of B. In the point-pair-based approach, the 
descriptor is designed with both raster and vector 
objects in mind. A histogram value depends on pairs 
of points, where each pair is composed of a point of 
A and a point of B. In the segment-pair-based 

approach, a histogram value depends on pairs of 
aligned segments, where each pair is composed of a 
segment of A and a segment of B. In the core-pair-
based approach, a histogram value depends on pairs 
of aligned cores, where each pair is composed of a 
core of A and a core of B. A core of an object is the 
intersection of that object with a line. 

The ϕ-histogram (Matsakis, Wendling and Ni, 
2010) is a generic relative position descriptor 
defined using the point-pair-based approach. The 
symbol ϕ denotes a function that maps any triple 
like (θ,p,q) to a real number, where p and q are 
points and θ is a direction in the plane, i.e., θ is an 
element of the interval (−π,π]. The histogram value 
ϕAB(θ) is the sum (integral) of all the ϕ(θ,p,q) values, 
where p belongs to A and q to B. The F-histogram is 
defined using the core-pair-based approach. F 
denotes a function that maps any triple like (θ,I,J) to 
a real number, where θ is a direction in the plane and 
I and J are unions of aligned segments. The 
histogram value FAB(θ) is the sum of all the F(θ,I,J) 
values, where I is a core of A and J a core of B 
aligned with I. Likewise, the f-histogram is defined 
using the segment-pair-based approach. f denotes a 
function that maps any triple like (θ,I,J) to a real 
number, where I and J are aligned segments. 

Table 1: Approaches. 
 

DESCRIPTOR 
APPROACH 

pixel/point/segment/core-pair-based 
APPROACH 

boundary/region-based 

generic 

 

ϕ-histogram 
  

point-pair-based region-based 
 

f-histogram 
 

segment-pair-based region-based 
 

F-histogram 
 

core-pair-based region-based 

specific 

 

angle histogram 
 

pixel-pair-based region-based 
 

force histogram 
 

point-pair-based 
(ϕ-histogram) region-based 

 

Allen histograms 
 

core-pair-based 
(F-histogram) region-based 

 

R-histogram 
 

pixel-pair-based boundary-based 
 

R*-histogram 
 

pixel-pair-based region-based 
 

spread histogram 
 

pixel-pair-based region-based 
 

visual area histogram 
 

pixel-pair-based boundary-based 
 

radial line model 
 

core-based region-based 
 

ratio histogram 
 

core-pair-based
(F-function-based) region-based 
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Moreover, a relative position descriptor may be 
defined using a region-based approach (all the 
pixels, or all the points of the objects are considered) 
or a boundary-based approach (only the boundary 
pixels, or the boundary points, are considered). 

2.2 Properties 

Table 2 summarizes the properties and 
characteristics of the relative position descriptors 
considered in this paper. More about the properties 
and characteristics of each descriptor can be found 
in Section 3. The information necessary to fully 
understand these table and section is presented 
below. 

An object as defined in Section 2.1 is a 2D crisp 
object. From now on, unless otherwise specified, 
objects will be assumed to be raster objects. All 
relative position descriptors can handle (2D crisp 
raster) objects without having to vectorize them. 
Likewise, we say that a descriptor can handle (2D 
crisp) vector objects if there is no need to rasterize 
them. We say that a descriptor can handle (2D) 
fuzzy (raster) objects if there is no need for a general 
and computationally expensive approach like the 
double sum or simple sum scheme (Dubois and 
Jaulent, 1987) (Krishnapuram et al., 1993). 

The symbol N refers to the number of pixels in 
the image (case of raster objects), and n is the 
number of directions θ considered (case of 
histograms defined on the set (−π,π] of directions in 
the plane). When dealing with raster objects, n is 
Ο(√N) at worst and Ο(1) at best. Practically, there 
does not seem to be any interest in considering more 
than a few hundred directions, whatever N. 
A relative position descriptor is usually designed so 
that specific spatial relationship information can be 
extracted. The target relationships can be directional, 
topological, or distance relationships. Note that 
topological relationships include set relationships. 
For example, the condition A∩B≠∅ defines the set 
(and hence topological) relationship intersects, 
while A∩B≠∅ and int(A)∩int(B)=∅ define the 
topological (but non-set) relationship touches.  
Surroundedness  is treated  independently. The fact 
that the target relationships are, say, topological, 
does not mean of course that information about every 
possible topological relationship can be extracted, and 
there is no implication about the quality (e.g., 
completeness, meaningfulness) of the extracted 
information. Moreover, a descriptor may allow some 
information about non-target relationships to be 
extracted.

Table 2: Properties. An empty cell means that, to our knowledge, the property has not been investigated, and that, as far as 
we can tell, there is no straightforward evidence towards the property. 
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Affine or similarity invariant descriptors play an 
important role in image processing and computer 
vision. Examples of similarity invariant colour, 
texture, and shape descriptors abound in the 
literature. Consider a geometric transformation t. 
We say that the relative position descriptor H is 
invariant under t if for any objects A and B we have  
Ht(A)t(B) = HAB. If H is not invariant under t, there may 
be a normalization procedure HAB a HAB  such 
that Ht (A)t (B) =  HAB = HA'B' , where the objects A' 
and B' can be derived from A and B using some 
invertible transformation. The normalized descriptor 
is then invariant under t. Note that all the descriptors 
considered in this paper are invariant under 
translations. 

It may be possible to find Ht(A)t(B) knowing t and 
HAB, without having to rely on any computational 
optimization technique. We then say that the 
descriptor offers a solution to the direct problem 
with respect to t, or that the behaviour of the 
descriptor under t is known. It may also be possible 
to find t (up to a translation) knowing HAB and 
Ht(A)t(B). We then say that the descriptor offers a 
solution to the inverse problem with respect to t. 
Finally, it may be possible to find HBA knowing HAB. 
We then say that the descriptor allows semantic 
inverse retrieval. 

3 DESCRIPTORS 

Here, we briefly present the descriptors mentioned 
in Section 2. We also comment on some of their 
properties (which are listed in Table 2). 

3.1 Angle Histogram 

Consider two raster objects A and B (Fig. 1a). For 
any pixels p of A and q of B, with p≠q, let ∠(p,q) be 
the angle between the x-axis and the directed line 
that passes through the center of q and then of p. 
This angle belongs to (−π,π]. Partition (−π,π] into n 
intervals Θ1, Θ2, etc. (the direction bins). The 
histogram value HAB(i) is the number of pixel pairs 
(p,q)∈A×B such that ∠(p,q)∈Θi. See (Krishnapuram 
et al., 1993) (Miyajima and Ralescu, 1994). 
Note  
The histogram of angles may be the first true relative 
position descriptor. The original algorithm runs in 
Ο(N2) time. To shorten processing times, it is of 
course possible to downsize the image before 
computing the histogram. A similar approach is to 

partition each object into rectangular blocks of 
pixels and to consider that the center of any pixel in 
a given block is the center of the block. This is the 
principle of a variant of the histogram of angles 
called the quadtree histogram (Wang, 2013) (Zhang 
et al., 2014). Also note that the histogram of angles 
can be computed in Ο(N log N) time using the same 
Ο(N log N) approach as for force histograms 
(Matsakis, Wendling and Ni, 2010). Nonetheless, 
processing times are usually much longer than for 
other relative position descriptors. 

Directional relationship information can be 
extracted using, e.g., the aggregation (Krishnapuram 
et al., 1993) or the compatibility method (Miyajima 
and Ralescu, 1994). 

At first glance, the behaviour of the histogram 
under similarity transformations seems easy to 
determine and similarity invariance seems easy to 
obtain. This, however, may not be the case. One issue 
is how to choose the number of bins, n. For example, 
if the bins are too narrow then the histogram of 
angles inherits the anisotropy of the grid of pixels. 
Let rot be a π/4-angle rotation. Assume 0∈Θi and 
π/4∈Θj. We should have Hrot(A)rot(B)(j) ≈ HAB(i). 
Instead, we get Hrot(A)rot(B)(j) ≈ HAB(i)/√2. 

 

(a)  

(b)     
Figure 1: Histogram of angles. (a) HAB(i) is the number 
of pixel pairs (p,q) such that θ falls into Θi. (b) Example. 
 
 
 
 

 

i 

HAB(i) 
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3.2 Force Histogram  

The histogram of forces (Matsakis and Wendling, 
1999) is a ϕ-histogram. Consider two objects A and 
B and two points p∈A and q∈B, as in Fig. 2a. Let qp 
be the vector from q to p and let |qp| be its length. A 
function ϕ, denoted by ϕr, is attached to the real 
number r. It maps (θ,p,q) to 1/|qp|r if θ is the 
direction of qp and to 0 otherwise. p and q are seen 
as particles and the vector qp/|qp|r+1 as an 
elementary force exerted by p on q. The histogram 
value ϕr

AB(θ) is then the scalar resultant of all the 
elementary forces in direction θ. 
Note  
When r=2, the forces are gravitational-like. When 
r=0, the forces are distance-independent, and the 
histogram of forces coincides with (but does not 
have the weaknesses of) the histogram of angles. 

The original algorithm runs in Ο(nN√N) time, 
where n is the number of directions θ considered. 
The best case performance (convex objects) is Ο(nN). 
A more recent algorithm (Matsakis, Wendling and 
Ni, 2010) runs in Ο(N log N), but the processing 
times are usually much longer, unless n is very large 
or the objects are fractal-like.  

Directional relationship information can be 
extracted using the same methods as for the 
histogram of angles, or using a method based on 
force categorization (Matsakis, Wendling and Ni, 
2010).  

Fuzzy objects and 3D objects are best handled by 
the Ο(N log N) algorithm. Vector objects can be 
handled as well (Recoskie et al., 2012). However, 
the time complexity of the algorithm has been 
severely underestimated and is Ο(n η3) instead of 
Ο(n η log η), where η is the total number of object 
vertices. The best case performance (convex objects) 
is Ο(n η2). 

The histogram of forces has found many 
applications, including human-robot interaction 
(Skubic et al., 2004), geospatial information retrieval 
and indexing (Shyu et al., 2007), and map-to-image 
conflation (Buck et al., 2013). 

3.3 Allen Histograms 

The Allen histograms are a tuple of 13 F-histograms 
(Malki et al., 2002) (Matsakis and Nikitenko, 2005). 
Allen’s logic considers 13 jointly exhaustive and 
pairwise disjoint relations for convex temporal in- 

 (a)         
 

(b)  
 

Figure 2: Histogram of forces. (a) ϕr
AB(θ) is the sum 

(integral) of all the elementary forces in direction θ. (b) 
Example. 

tervals (Allen, 1983). Each relation r corresponds to 
a topological relationship between two segments on 
a directed line. A function F, denoted by Fr , is 
attached to r. It extends r from pairs of segments to 
pairs of cores, while the Allen histogram Fr

AB  
extends r from pairs of segments to the pair (A,B) of 
objects. Fr

AB(θ)  measures the extent to which r 
holds, in direction θ, between A and B. See Fig. 3. 

First, r is fuzzified. r(I,J), where I and J are two 
segments on a directed line, denotes a real number 
between 0 (it is totally false that r holds between I 
and J) and 1 (it is totally true). For example, if two 
segments are disjoint but very close to each other, 
then we want to be able to say that they almost 
touch. Next, the cores of the objects are fuzzified as 
well. The idea is to consider that if two segments in 
a core are very close, then they should be seen, to a 
certain extent, as a single segment. Now, consider a 
line L in direction θ. Any α-cut of the fuzzy core 
A∩L is the union of pairwise disjoint segments Ii

α . 
Likewise, any α-cut of B∩L is the union of 
segments J j

α . The function Fr  maps (θ, A∩L, B∩L) 

to a weighted average of all the r( Ii
α , J j

α ). 

Note  
The idea of using 13 histograms, 1 per Allen 

p 

q 
θ 

A 

B 

-π/2         0         π/2     
θ 

φAB(θ) 0 
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relation, to describe the relative position of objects 
was first proposed by Malki et al. (2002). Only 
convex objects can be handled, and there is no 
consistency between the histograms⎯which are f-
histograms. The idea was revisited by Matsakis and 
Nikitenko (2005) to address these flaws. The f-
histograms are replaced with F-histograms. The 
worst case performance is Ο(nN2). The best case 
performance (convex objects) is Ο(nN). 

The definition of the Allen F-histograms was 
simplified and adapted to the handling of vector 
objects by Salamat and Zahzah (2012a). However, 
the time complexity of the algorithm was severely 
underestimated. It is Ο(n η3) instead of Ο(n η log η), 
where η is the total number of object vertices. The 
best case performance (convex objects) is Ο(n η2). 

There is a straightforward extension to 3D objects, 
but processing times are prohibitive. 

Meaningful directional and topological 
relationship information can be extracted when the 
objects are convex (Salamat and Zahzah, 2012b), 
but is much harder to extract when the objects are 
concave (Matsakis, Wawrzyniak and Ni, 2010) 
because of the inadequacy of describing 2D spatial 
relationships in terms of Allen’s 1D temporal 
relationships (Cohn et al., 1997). 

The Allen histograms have been used for 
linguistic scene description (Matsakis, Wawrzyniak 
and Ni, 2010), spatio-temporal reasoning (Salamat 
and Zahzah, 2012c) and the modeling of motion 
classes (Salamat and Zahzah, 2012d).  

3.4 R-Histogram 

Consider two raster objects A and B. For any pixels 
p of A and q of B, let ∠(p,q) be the angle between 
the x-axis and the directed line that passes through 
the center of q and then of p, let d(p,q) be the 
distance from p to q, and let l(p,q) be the integer as 
defined in Table 3. See Fig. 4. The angle ∠(p,q) is an 
element of (−π,π] while d(p,q) belongs to some 
interval [0, dmax]. Partition (−π,π] into n intervals Θ1, 
Θ2, etc. (the direction bins), and partition [0, dmax] 
into m intervals D1, D2, etc. (the distance bins). The 
histogram value RAB(i,j,k) is the number of pixel 
pairs (p,q) such that: 

 

p is a boundary pixel of A, 
q is a boundary pixel of B,  
∠(p,q)∈Θi and d(p,q)∈Dj and l(p,q)=k. 

 

See (Wang and Makedon, 2003). 
 
Note  

While the worst case performance is Ο(N2), the best 
case performance (convex objects) is Ο(N). 

The R-histogram obviously supports extraction 
of some directional, set and distance relationship 
information, but extraction methods and models of 
spatial relationships based on the R-histogram have 
not been investigated. 

The R-histogram can only handle objects that are 
homeomorphic to a 2-ball. There are straightforward 
extensions to fuzzy objects and 3D objects, but 
processing times may be prohibitive. 

(a)      
 

 (b)     
 

(c)  
Figure 3: Allen histograms. (a) A pair of objects. (b) The 
Allen relations f (finishes) and d (during). (c) The 13 Allen 
histograms associated with (A,B) and stacked on top of 
each other. 

The behaviour of the R-histogram under similarity 
transformations seems easy to determine and 
similarity invariance seems easy to obtain. However, 
see last paragraph of Section 3.1.  

Table 3: The label l(p,q). 

p is a pixel of B q is a pixel of A l(p,q) 
false false 0 
true false 1 
false true 2 
true true 3 

The R-Histogram has been applied to similarity-
based image retrieval. 

B 

A 

d 
f 
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3.5 R*-Histograms 

Consider two raster objects A and B and an element 
θ of the interval (−π,π]. The image is partitioned into 
raster lines running in direction θ, as shown in Fig. 
5. For any pixels p of A and q of B, let d(p,q) be the 
distance from p to q, and let l(p,q) be the integer as 
in Table 3. The distance d(p,q) belongs to some 
interval [0,dmax]. Partition [0,dmax] into m intervals 
D1, D2, etc. (the distance bins). The histogram value 
R*AB(θ,j,k) is the number of pixel pairs (p,q)∈A×B 
such that: 

 

q is before p on the same raster line, 
d(p,q)∈Dj and l(p,q)=k. 

 

See (Wang et al., 2004). 
Note  
A first algorithm runs in Ο(n N √N) time, where n is 
the number of directions θ considered. A second 
algorithm runs in Ο(n N log N). No comparative 
study of the two algorithms is available. 

Extension to vector objects may be possible. 
There are straightforward extensions to fuzzy 
objects and 3D objects, but processing times may be 
prohibitive. 

The R*-histogram obviously supports extraction 
of some directional, set and distance relationship 
information, but extraction methods and models of 
spatial relationships based on the R*-histogram have 
not been investigated. 

The R*-histogram probably offers a solution to 
the direct and inverse problems with respect to affine 
transformations (as long as the distance dmax is 
determined independently for each direction θ and 
recorded). A normalization procedure should then 
allow affinity invariance. These issues deserve further 
investigation. 

3.6 Spread Histogram 

Consider two raster objects A and B, as in Fig. 6. For 
any pixel p of A, the half-lines originating from the 
centre of p and passing through the centres of the 
pixels of B divide the plane into sectors. Let ∠(p,B) 
be the central angle of the largest sector. This angle 
belongs to [0,2π]. Now, partition [0,2π] into n 
intervals Θ1, Θ2, etc. The value HAB(i) is the number 
of pixels p∈A such that ∠(p,B)∈Θi. See (Kwasnicka 
and Paradowski, 2005). 
 

    (a)                
 

(b)  
Figure 4: R-histogram. (a) RAB(i,j,k) is the number of 
boundary pixel pairs (p,q) such that the angle θ falls into 
the bin Θi, the distance d(p,q) falls into the bin Dj and 
l(p,q)=k. (b) Representation. 

 
Figure 5: R*-histogram. The image is partitioned into 
raster lines running in direction θ. Here, the pixels p and q 
are on the same raster line, and q is before p. 

Note 
The spread histogram is meant to be used along with 
the histogram of angles. The two can be computed 
simultaneously in Ο(N2) time and allow extraction 
of directional relationship information as well as 
information on the relationships inside (A⊆B), 
outside (A∩B=∅) and surround. Note that, here, 
surroundedness should be understood as visual 
surroundedness (Rosenfeld and Klette, 1984), not as 
topological surroundedness. See Fig. 7. 

The behaviour of the spread histogram under 
similarity transformations seems easy to determine 

q 

p 

B 

A 

θ 

k=2 

k=3 
k=0 

k=1 

i 

i j 
j 

θ p 
q 
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and similarity invariance seems easy to obtain. 
However, see last paragraph of Section 3.1. 

3.7 Visual Area Histogram 

Consider two disjoint raster objects A and B, as in 
Fig. 8. For any pixels p of A and q of B, if a raster 
segment whose endpoints are p and q does not 
contain any other pixel of A or B then p is a 
boundary pixel of A visible from B and q is a 
boundary pixel of B visible from A. Let ∠(p,q) be 
the angle between the x-axis and the directed line 
that passes through the center of q and then of p. 
This angle belongs to (−π,π]. Partition (−π,π] into n 
intervals Θ1, Θ2, etc. The histogram value HAB(i) is 
the number of pixel pairs (p,q) such that 

 

p is a boundary pixel of A visible from B, 
q is a boundary pixel of B visible from A, 
and ∠(p,q)∈Θi. 

 

There is, however, a more general definition. Instead 
of contributing 1 unit to HAB(i), a pair (p,q) as above 
may contribute [dmin / d(p,q)]r, where r is a real 
number, d(p,q) is the distance from p to q, and dmin is 
the minimum distance over all pairs. See (Zhang et 
al., 2010). 

Note  
The visual area histogram can only handle disjoint 
objects. The algorithm runs in Ο(N2) time. In most 
cases, however, computing a visual area histogram is 
expected to be much faster than computing a 
histogram of angles, since many fewer pixel pairs 
are considered. 

There is a straightforward extension to 3D objects, 
but processing times may be prohibitive. 

The behaviour of the visual area histogram under  

 
Figure 6: Spread histogram. The half-lines originating from 
the centre of p and passing through the centres of the pixels 
of B divide the plane into sectors. Here, the central angle 
∠(p,B) of the largest sector is θ. 

(a)      (b)  

Figure 7: Visual surroundedness. (a) A is completely 
surrounded by B. (b) A is partially surrounded by B. 

 
Figure 8: Visual area histogram. p is a boundary pixel of A 
visible from B and q is a boundary pixel of B visible from A. 
Here, ∠(p,q)=θ. 

similarity transformations seems easy to determine 
and similarity invariance seems easy to obtain. 
However, see last paragraph of Section 3.1. 

3.8 Radial Line Model 

Consider two objects A and B, and a reference point 
p determined by the minimum bounding rectangles 
of the objects, as suggested in Fig. 9. Partition 
(−π,π] into n intervals Θ1, Θ2, etc. (the direction 
bins). The unbounded sector extending from p and 
defined by Θi intersects A (resp. B) in some region Ai 
(resp. Bi). The histogram value HA(i) (resp. HB(i)) is 
the area of Ai (resp. Bi) over the area of A (resp. B). 
The position of A relative to B is represented by the 
pair (HA, HB ). See (Santosh et al., 2010). 
Note  
The Radial Line Model (RLM) targets directional 
and set relationships. However, extraction methods 
and models of such relationships based on the RLM 
have not been investigated. Besides, the RLM does 
not always allow us to determine whether two 
objects overlap, or whether one includes the other. 

The behaviour of the RLM under similarity 
transformations is unknown, and similarity 
invariance cannot be obtained. These two properties 
would hold, however, if the model was defined as 

A 

B 

p θ 

A 

B 

A 

B 

A 

B 

p 

q 
θ 
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follows: choose p as the centroid of A∪B; the half-
line that extends from p in direction θ intersects A 
(resp. B) in a union (possibly empty) of pairwise 
disjoint segments (Fig. 9); set the histogram value 
HA(θ) (resp. HB(θ)) to the total length of these 
segments, and represent the position of A relative to 
B by the pair (HA, HB ). 

The RLM has been used for graphical symbol 
retrieval.  

3.9 Ratio Histogram 

Consider two objects A and B with distinct centroids 
a and b. Any real number x can be mapped to a line 
L(x) as shown in Fig. 10. This line L(x) is parallel to 
the line that passes though a and b, it does not 
intersect both objects if x is less than 0 or greater 
than 1, and it does intersect both objects if x is 0 or 
1. The core A∩L(x) is the union of a finite number of 
pairwise disjoint segments. Let |A∩L(x)| be the total 
length of these segments. The ratio histogram HAB is 
the function x a |A∩L(x)| / |B∩L(x)|. See (Wang et 
al., 2012). 

 
Figure 9: Radial Line Model. HA(i) is the total area of the 
two darker regions in A, divided by the area of A. Another 
option is to define HA(θ) as the total length of the two black 
segments. 

 
Figure 10: Ratio histogram. The line L(x). 

 

Note  
The centroids of the two objects must be distinct. 

The ratio histogram is designed to be invariant 
to affine transformations. As a result, it offers a 
trivial solution to the direct problem with respect to 
affinities, and there is no solution to the inverse 
problem with respect to similarities.  

The ratio histogram has been used for shape 
matching and object recognition. 

4 CONCLUSIONS 

Various relative position descriptors have been 
considered in this review. They illustrate various 
approaches to relative position description, and are 
of interest for various reasons. For example, the 
Allen histograms are the only ones that really target 
topological relationships; the spread histogram is the 
only one that targets surrounds; the ratio histogram 
is the only one that is affine invariant. Every 
descriptor has its strengths, and its limitations: 
meaningful topological relationship information 
cannot be easily extracted from Allen histograms 
when the objects are concave; the spread histogram 
is computationally expensive; the discriminating 
power of the ratio histogram is low. There is a need 
for a more versatile descriptor, that targets all types 
of spatial relationships. Moreover, there is no 
descriptor that offers a solution to the inverse 
problem with respect to affine transformations, and 
there is no descriptor that offers a solution to the 
recovery problem (i.e., given a relative position 
descriptor, find all the pairs of objects that receive 
the same description). All these are potential areas 
for future work. 

REFERENCES 

J. F. Allen, 1983. “Maintaining Knowledge About 
Temporal Intervals,” Communications of the ACM, 
26(11): 832-43.  

I. Bloch, 2005. “Fuzzy Spatial Relationships for Image 
Processing and Interpretation: A Review,” Image and 
Vision Computing, 23(2):89-110. 

A. Buck, J. Keller, M. Skubic, 2013. “A Memetic 
Algorithm for Matching Spatial Configurations with 
the Histograms of Forces,” IEEE Trans. on 
Evolutionary Computation, 17(4):588-604. 

A. G. Cohn, B. Bennett, J. Gooday, N. M. Gotts, 1997. 
“Qualitative Spatial Representation and Reasoning 
with the Region Connection Calculus,” 
GeoInformatica, 1(3):275-316. 

D. Dubois, M.-C. Jaulent, 1987. “A General Approach to 

A 
B 

a 

0 

b 

1 

x 

L(x) 

ICPRAM�2015�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

294



Parameter Evaluation in Fuzzy Digital Pictures,” 
Pattern Recognition Letters, 6:251-59. 

T. Jaworski, J. Kucharski, 2010. “The Use of Fuzzy Logic 
for Description of Spatial Relations between Objects,” 
Automatyka, 14:563-80. 

R. Krishnapuram, J. M. Keller, Y. Ma, 1993. “Quantitative 
Analysis of Properties and Spatial Relations of Fuzzy 
Image Regions,” IEEE Trans. on Fuzzy Systems, 1(3): 
222-33. 

H. Kwasnicka, M. Paradowski, 2005. “Spread Histogram 
⎯ A Method for Calculating Spatial Relations 
Between Objects,” 4th Int. Conf. on Computer 
Recognition Systems (CORES), Proceedings, 30:249-
56. 

J. Malki, E.-H. Zahzah, L. Mascarilla, 2002. “Indexation 
et recherche d'image fondées sur les relations spatiales 
entre objets,” Traitement du Signal, 18(4):235-51. 

P. Matsakis, D. Nikitenko, 2005. “Combined Extraction of 
Directional and Topological Relationship Information 
from 2D Concave Objects,” in M. Cobb, F. Petry, V. 
Robinson (Eds.), Fuzzy Modeling with Spatial 
Information for Geographic Problems, Springer-
Verlag, 15-40. 

P. Matsakis, L. Wawrzyniak, J. Ni, 2010. “Relative 
Positions in Words: A System that Builds Descriptions 
Around Allen Relations,” Int. J. of Geographical 
Information Science, 24(1):1-23. 

P. Matsakis, L. Wendling, 1999. “A New Way to 
Represent the Relative Position of Areal Objects,” 
IEEE Trans. on Pattern Analysis and Machine 
Intelligence, 21(7):634-43.  

P. Matsakis, L. Wendling, J. Ni, 2010. “A General 
Approach to the Fuzzy Modeling of Spatial 
Relationships,” in R. Jeansoulin, O. Papini, H. Prade, 
S. Schockaert (Eds.), Methods for Handling Imperfect 
Spatial Information, Springer-Verlag, 49-74. 

K. Miyajima, A. Ralescu, 1994. “Spatial Organization in 
2D Segmented Images: Representation and 
Recognition of Primitive Spatial Relations,” Fuzzy 
Sets and Systems, 65(2-3):225-36. 

D. Recoskie, T. Xu, P. Matsakis, 2012. “A General 
Algorithm for Calculating Force Histograms using 
Vector. 

Data,” 1st Int. Conf. on Pattern Recognition Applications 
and Methods (ICPRAM), Proceedings, 86-92. 

A. Rosenfeld, R. Klette, 1984. Degree of Adjacency or 
Surroundedness, University of Maryland, 30 pages. 

N. Salamat, E.-H. Zahzah, 2012a. “On the Improvement 
of Combined Fuzzy Topological and Directional 
Relations Information,” Pattern Recognition, 
45(4):1559-68. 

N. Salamat, E.-H. Zahzah, 2012b. “Two-Dimensional 
Fuzzy Spatial Relations: A New Way of Computing 
and Representation,” Advances in Fuzzy Systems, 
2012:1-15. 

N. Salamat, E.-H. Zahzah, 2012c. “Spatio-Temporal 
Reasoning by Combined Topological and Directional 
Relations Information,” Int. J. of Artificial Intelligence 
and Soft Computing, 3(2):185-201. 

N. Salamat, E.-H. Zahzah, 2012d. “Spatiotemporal 

Relations and Modeling Motion Classes by Combined 
Topological and Directional Relations Method,” ISRN 
Machine Vision, 12 pages. 

K.C. Santosh, L. Wendling, B. Lamiroy, 2010. “Unified 
Pairwise Spatial Relations: An Application to 
Graphical Symbol Retrieval”, in J.-M. Ogier, W. Liu, 
J. Llados (Eds.), Graphics Recognition. 
Achievements, Challenges, and Evolution, Springer-
Verlag, 163-74. 

C.-R. Shyu, M. Klaric, G. J. Scott, A. S. Barb, C. H. Davis, 
K. Palaniappan, 2007. “GeoIRIS: Geospatial 
Information Retrieval and Indexing System ⎯ Content 
Mining, Semantics Modeling, and Complex Queries,” 
IEEE Trans. on Geoscience and Remote Sensing, 
45(4):839-52. 

M. Skubic, D. Perzanowski, S. Blisard, A. Schultz, W. 
Adams, M. Bugajska, D. Brock, 2004. “Spatial 
Language for Human-Robot Dialogs,” IEEE Trans. on 
Systems, Man, and Cybernetics (Part C), 34(2):154-67. 

Z. Wang, 2013. “A New Quadtree Histogram-Based Spatial. 
Modeling Based on Cloud Model,” Int. J. of Hybrid 

Information Technology, 6(6):31-40. 
Y. Wang, F. Makedon, 2003. “R-Histogram: Quantitative 

Representation of Spatial Relations for Similarity-
Based Image Retrieval,” ACM Int. Multimedia Conf. 
and Exhibition (MM), Proceedings, 323-6. 

Y. Wang, F. Makedon, A. Chakrabarti, 2004. “R*-
Histograms: Efficient Representation of Spatial 
Relations between Objects of Arbitrary Topology,” 
12th Annual Int. Conf. on Multimedia (MM), 
Proceedings, 356-9. 

W. Wang, B. Xiong, H. Sun, H. Cai, Y. Jiang, G. Kuang, 
2012. “An Affine Invariant Relative Attitude 
Relationship Descriptor for Shape Matching Based on 
Ratio Histograms,” EURASIP J. on Advances in 
Signal Processing, 2012(1):1-10. 

K. Zhang, T. Liu, Z. Li, W. Zhao, 2014. “A New 
Directional Relation Model,” Int. J. of Signal 
Processing, Image Processing & Pattern Recognition, 
7(2):237-48. 

K. Zhang, K. Wang, X. Wang, Y. Zhong, 2010. “Spatial 
Relations Modeling Based on Visual Area Histo-
gram,” 11th ACIS Int. Conf. on Software Engineering 
Artificial Intelligence Networking and Parallel/Dis-
tributed Computing (SNPD), Proceedings, 97-101. 

Relative�Position�Descriptors�-�A�Review

295


