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Abstract: Analysis of NMR spectra is a multi-stage computational process performed with the use of appropriately 
chosen sequence of algorithms. Initial stages of this process, called pre-processing, including filtering, base-
line correction, phase correction and removal of unwanted components, are aimed at improving the quality 
of NMR spectral signal by rejection of noise, removing unnecessary spectral components and irregularities. 
After pre-processing the basic operations on NMR spectra are aimed at estimation of levels of certain 
metabolites by analysis of appropriate structural properties of NMR spectral signals. In this paper authors 
present design and implementation of two signals modelling methods. The first one is based on singular 
value decomposition of the induction decay signal. The second is done with use of mixture model 
constructed for frequency spectrum. Authors present all assumption that need to be satisfied and processing 
steps that must be performed before final analysis. The methods studied in the paper are implemented under 
the black - box assumption; i.e., prior knowledge of parameters of metabolites in the spectra is not used. As 
a second part of the project authors present a comparison of obtained result with popular modelling 
techniques and software LCmodel and Tarquin, based on experimental phantom dataset. Comparisons 
between different methods are based on the commonly used quality indexes, mean squared errors 
corresponding to levels of detected metabolites and specificities and sensitivities of the process of detection 
of metabolites. Using the presented comparisons we authors are able to characterize advantages and 
drawbacks of the studied approaches. 

1 INTRODUCTION 

Magnetic Resonance Spectroscopy (MRS) is 
commonly used as an experimental technique in 
current biochemistry and medicine (Behar, 1994). 
Nuclear Magnetic Resonance (NMR), which is a 
physical background for MRS, is an effect relying 
on magnetic properties of atomic nuclei. NMR is a 
base for two diagnostic methods – Magnetic 
Resonance Imaging (MRI) and Magnetic Resonance 
Spectroscopy (MRS) G. MRI – gives detailed 
visualization of spatial structures of tissues, used in 
medical diagnostics, to distinguish pathologically 
changed tissues from normal. MRS provides 

information on the biochemical (metabolite) 
composition of samples (Jacobsen, 2007). 

Methods for computational analyses of NMR 
spectra can be most generally categorized into two 
classes; black box methods and basis set methods. 
Black box methods involve analyses of NMR 
signals, which do not incorporate any prior 
knowledge on structural properties of spectra, given 
their possible metabolites components and settings 
of the experimental setup. In contrast, basis set 
methods incorporate prior knowledge into 
modelling. This knowledge includes such elements 
as positions of peaks corresponding to metabolites, 
ratios between peaks, data on shapes of signals 

57
Staniszewski M., Binczyk F., Skorupa A., Boguszewicz L., Sokol M., Polanska J. and Polanski A..
Comparison of Black Box Implementations of Two Algorithms of Processing of NMR Spectra, Gaussian Mixture Model and Singular Value Decomposi-
tion.
DOI: 10.5220/0005210300570065
In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS-2015), pages 57-65
ISBN: 978-989-758-069-7
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



(peaks) corresponding to metabolites, dependences 
between structural properties of spectral signals and 
experimental parameters (echo and repetition time). 
Major efforts in the research on modelling NMR 
spectra have, so far, been paid to developing basis 
sets approaches and comparisons of their 
efficiencies .(Krone et al., 2011) 

This tendency is motivated by the fact that basis 
set algorithms are most important in massive routine 
analyses of NMR spectra in laboratory experiments.  
Nevertheless, black box methods have also 
important areas of applications, including e.g., 
analyses of NMR spectral signals with possible 
unknown metabolite components or analyses of 
NMR spectra of special character (sparse, long echo 
(Gunther, 1992)). Therefore there is a need to 
evaluate efficiency and to compare methods for 
black box NMR spectral analysis. It is also of 
interest, how black box methods compare to basis 
sets methods in terms of the possible loss of 
accuracy. It seems, however, that such 
comparisons/analyses are lacking (sparse) in the 
literature. Therefore the aim of this paper was the 
implementation of two black box methods of NMR 
spectra analyses, HSVD and Gaussian mixture, and 
their comparisons to each other and to two 
implementations of basis set methods. Evaluations 
of accuracy and comparisons were done on the basis 
of experimental metabolite amount estimation for a 
phantom dataset. 

The contribution of the paper include black box 
implementations and comparisons of two methods 
for processing NMR spectra Hankel singular value 
decomposition (HSVD), which operates on the time 
domain free induction decay signal and Gaussian 
mixture decomposition (GMM) of the frequency 
spectrum of the NMR signal. A study, efficiency 
evaluations and comparisons concerning precision of 
the modelling of the FID signal and accuracy 
validation study based on the recovery of metabolite 
components in an experimental phantom study with 
known metabolite concentrations. A part of the 
project was also an additional validation of the 
obtained modelling solutions by comparison to 
widely used software platforms LC Model 
Provencher et al (Provencher, 1995) and Tarquin 
(Wilson et al., 2010). 

2 SIGNAL PREPARATION AND 
PRE-PROCESSING 

The signal measured in the receiving coil of an MR 

spectrometer is called free induction decay (FID) 
signal and it contains components corresponding the 
resonant time responses of the atom nuclei in the 
analysed sample. FID signal consists of two parts – 
real and imaginary part of FID, which correspond 
respectively to x and y components of the rotating 
magnetization vector M. Magnetization vector 
represents a wave emitted from signal in a process 
called Larmor precession (Millar, 2006). Complex 
notation commonly used to represent FID signal is 
feasible for all further mathematical operations. The 
real and imaginary parts of FID correspond to axes 
(x-axis and y-axis) of the plane perpendicular to the 
axis of rotation of magnetization vector M (z-axis) 
in the 3D space. 

NMR spectrometers provide output signals in 
different formats, all of which contain useful 
information for analyses of data. In the pre-
processing steps of or algorithms we use two FID 
signals. FID ref is called a reference FID signal. It 
corresponds to the raw NMR measurements before 
the water suppression procedure. FID act is the 
‘actual’ signal, which is a basis for further analyses, 
where the water component has been removed by 
hardware – implemented filter.  
Quantification of NMR signal is performed after 
appropriate sequence of pre-processing steps. These 
may include signal smoothing and noise filtration 
(Müller, 2006), phase correction (Weinreb et al., 
1985), baseline correction (Hofmann et al., 2001) 
and Eddy currents correction (Graff, 2007). 

3 METHODS OF METABOLITE 
AMOUNT EVALUATION IN 
NMR EXPERIMENTS 

3.1 Hankel Matrix Singular Value 
Decomposition 

The first black box method of modelling 
(decomposition) of FID signals implemented in this 
paper is Hankel singular value decomposition 
HSVD, which belongs to the group of time-domain 
algorithms for quantification of NMS signals. HSVD 
algorithm approach analyses of NMR spectra was 
described in several papers in the literature (Lupu 
and Todor, 1995). There are also several variants of 
its application. Each component of the FID signal is 
described by 4 parameters, as depicted in equation 
(1) below.  

௡ݖ ൌ ௡ݔ ൅ ௡ݕ݆ ൌ ∑ ܽ௞
௄
௞ୀଵ ݁ሺିௗೖା௝ଶగ௙ೖሻ௧೙ା௝ఝೖ (1)
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Parameters of FID signal components: ak- 
amplitude of a single component, dk- damping factor 
of a single component, fk- frequency of a single 
component, tn- sampling time, φk- phase of single 
component, j –imaginary unit. 

HSVD uses singular value decomposition (SVD) 
- a computational technique of factorization of a 
rectangular complex m x n matrix M. SVD 
factorization of M has the following form: (Graff, 
2007) 

ܯ ൌ ܷƩܸ∗ (2)

In the above formula:  
U - unitary matrix of size m×m 
Σ – diagonal matrix of size m×n with nonnegative 
diagonal 
V* - n×n unitary matrix created as the conjugate 
transpose of V 

FID signal (1) can be generated as a linear state-
space model and the HSVD method is derived from 
the Ho-Kalman algorithm for identification of the 
state matrix given the output signal of the model. 
For the sake of simplicity at the beginning 
assumption that data are noiseless is taken. HSVD 
starts with arranging data in the form of an L×M 
matrix called Hankel, SH where elements are 
arranged as follows 

ܵு ൌ ൥
଴ݖ … ெିଵݖ
⋮ ⋱ ⋮

௅ିଵݖ … ேିଵݖ
൩ (3)

Values of L and M should be chosen greater than 
number of expected exponentially damped sinusoids 
K. The sum of L and M should be equal to the 
number of data points N increased by one. It has 
been proven (Graff, 2007) that the best results 
method gives when relation is in the range 0.5≤ L/M 
≤ 2.0. Values outside that region may cause increase 
of statistical error. It can be noticed also that it is 
recommended to chose such parameters L and M to 
get matrix SH as square as it is possible. In the next 
step data matrix S is decomposed into a product of 
three matrices by application of SVD 

ܵு ൌ ܵ௅௫ெ ൌ ௅ܷ௫௅Ʃ௅௫ெ ெܸ௫ெ
ு  (4)

Analogously to (2) ௅ܷ௫௅ and ெܸ௫ெ
ு  are unitary 

matrices whose columns are singular vectors and the 
superscript H denotes Hermitian conjugation. Σ is a 
diagonal matrix whose entries on the main diagonal 
are singular values of ܵு. In the noise-free case the 
number of non-zero singular valus is equal to the 
number of components in the FID signal (1). 
However, when noise is present in the signal all 
singular values become nonzero and the designer of 
the algorithm must specify a threshold value for 

discriminating signal components from components 
resulting from noise. Signal-to-noise-ratio of 
singular values related to noise are (significantly) 
smaller then signal-related singular values. On the 
basis of the assumed threshed, nn the next step of the 
procedure matrix SH is truncated into matrix SK, 

ܵ௄ ൌ ܷ௄Ʃ௄ ௄ܸ
ு. (5)

By K, in the above formula, we denote the number 
of sinusoids, which is assumed necessary for 
describing the measured signal. It corresponds to the 
number of rows of the matrix UK and columns of the 
matrix VK. In (5) ΣK denotes K×K diagonal matrix 
with non-zero elements in the upper-left diagonal. 
The task for now is to find the matrix that can 
transform one into another. By application of the 
Ho-Kalman approach we use (5) to estimate 
eigenvalues of the state matrix EH corresponding to 
the model of (1). Let us denote by V(t) and V(b) 
matrices resulting from VK by omitting the first and 
the last row respectively. Then the system of linear 
equations for estimation of the state matrix are 
(Lupu, 1995) 

௄ܸ
ሺ௧ሻܧு ൎ ௄ܸ

ሺ௕ሻ (6)

When the equation (6) is solved in the least squares 
sense, K eigenvalues of EH lead to estimates of the 
damping coefficients dk and frequencies fk. 

௡ݖ̂ ൌ ݁ሺିௗ෢಼ ା௝ଶగ௙෢಼ ሻ௧೙ (7)

In the next step, estimates zk can be filled in model 
equation and by the least squares fit of the model (1) 
to the measured NMR signal, the remaining 
parameters of the model (1), amplitudes ak and 
phases Φk, can be calculated. To obtain these 
estimates we denote by 

ܿ௞ෝ ൌ ܽ௞ෞ݁௝ఝೖෞ , (8)

and we substitute (8) in (1)  

௡ݖ ൎ෍ܿ௞

௄

௞ୀଵ

௞ݖ
௡෢ (9)

The most time expensive part of HSVD is the 
computation of the SVD of L×M matrix, which time 
complexity is even of 3rd order. The least square 
solution algorithm by applying correct methods can 
be computed efficiently. From that paper it can be 
noticed that full SVD is not required since only first 
K columns of matrices are necessary. Therefore 
improvements of HSVD are based on alternative 
matrix decomposition. Modification of HSVD was 
introduced thanks to Lanczos algorithm(Beer et al., 
1992). HLSVD computes only those singular values 
and vectors that represents the signal, ignore all 
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others and exploit the Hankel structure of the data 
matrix. By invoking HLSVD the execution time of 
SVD can be reduced. Algorithm has the 
disadvantage that it can slow down in case of 
repeated or close singular value.  

In figure 1 and figure 2 we present examples of 
results of modelling the NMR signal by using 
HSVD decomposition method. The number of 
components K in (10) through (14) was set K=35. 
This estimate was taken as equal to the number of 
Gaussian components in the GMM method, 
described in the next section, obtained by using the 
Bayesian information criterion (BIC). In figure 1 we 
show real and imaginary parts of the FID signal and 
its HSVD model with K=35 components, while in 
figure 2 we show real and imaginary parts of the 
Fourier spectra of the FID signal and its HSVD 
model. 

 

Figure 1: FID signal for exemplary NMR data and its 
HSVD model with K=35 components. Upper plot – real 
part of the FID, lower plot – imaginary part of FID. 
Colors: red, original signal- blue. 

 

Figure 2: Fourier transforms (spectra) of a FID signal of 
an exemplary NMR data and its HSVD model with K=35 
components. Upper plot – real part of the spectrum, lower 
plot – imaginary part of the spectrum. Colors: red, original 
signal- blue. 

3.2 Gaussian Mixture Model 

The second black box approach for quantification of 
NMR spectra involves modelling in the frequency 
domain. The frequency domain analysis is based on 
the application of the Fourier transform to the FID 
signal (1). Quantitative information about metabolite 
amount in tissue under investigation is done on the 
basis of the real part of the frequency spectrum of 
the FID signal (Gunther, 1992). 

Since black box modelling assumes no prior 
knowledge on the structure of the frequency 
spectrum then the decomposition must be 
performed, such that components will correspond to 
hypothetical species present in the analysed tissue 
(sample). The possible solution to the problem is to 
use a mixture model (McLachlan and Peel, 2000), 
where the amplitude spectrum corresponding to the 
FID signal is represented as a sum of components 
detected in the amplitude spectrum. Analytical 
computations imply that damped sinusoidal signals 
in the time domain correspond to Lorenzian 
components in the frequency domain. However, due 
to finite range of frequencies and due to existence of 
the noise in the signal Gaussian mixture model 
(GMM) can be a reasonable approximation for 
amplitude spectrum of the FID signal (Jacobsen, 
2007),  GMM is constructed under the hypothesis 
that there is K Gaussian components in the 
amplitude spectrum. Each of these components is 
represented by a Gaussian distribution function 
described by a formula 

݂ሺݔ, ,ߤ ሻߪ ൌ
1

ଶߪߨ2√
exp ቆ

െሺݖ െ ሻଶߤ

ଶߪ2
ቇ (10)

and a mixture distribution composed of Gaussian 
components (10) has the form: 

݂௠௜௫ሺݖ, ଵߙ , …… , ,௞ߙ ,ଵߤ … . , ,௄ߤ …,ଵߪ . , ௄ሻߪ

ൌ ෍ߙ௞ ௞݂ሺݔ, ,௞ߤ ௞ሻߪ

௄

௄ୀଵ

 
(11)

In the above formulae (10) and (11) x denotes a data 
point – a value of an amplitude of the frequency 
spectrum, ߤ௞ and ߪ௞are means and standard 
deviations of mixture distribution functions and ߙ௞ 
are componentsweights. Component weights must 
satisfy the normalization criterion 

෍ߙ௞ ൌ 1.

௄

ଵ

 (12)

The model (10)-(12) must be additionally scaled in 
order to properly represent the amplitude spectrum 
of the FID signal (Polanski and Kimmel, 2007)ห�௡

ிห. 
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For simplicity we drop superscript symbol and 
absolute value operator and we formulate the scaled 
mixture model as follows 

௡ݔ ൌ ௞ߙ෍ߴ ௞݂ሺݔ௡, ,௞ߤ ௞ሻߪ

௄

௄ୀଵ

 (13)

In the above ߴ is a scale parameter and	ݖ௡ is a 
simplified notation for ห�௡

ிห. 
A most commonly used computational iterative 
algorithm for fitting GMM model parameters to data 
is Expectation Maximization (EM) (Dempster, 
1977). Due to application of the scaled form of the 
mixture model appropriate formulation (variant) of 
the EM algorithm is necessary, as described below. 
EM for mixture parameters estimation relies on a 
latent variable describing the hypothetical identity of 
the component, which generated the observation x. 
At the beginning a parameter guess is taken  

ଵߙ
௢௟ௗ, … , ௄ߙ

௢௟ௗ, ଵߤ
௢௟ௗ, … , ௄ߤ

௢௟ௗ, ଵߪ
௢௟ௗ, … , ௄ߪ

௢௟ௗ. (14)

Then two main steps of the iterations expectation (E) 
and maximization (M) are alternately executed. In 
the E step conditional probabilities for the latent 
variable are calculated according to the formula (15) 
(Polanski and Kimmel, 2007). 

,௡ݔ|ሺ݇݌ ௢௟ௗሻ݌

ൌ
௞ߙ
௢௟ௗexp	ሾ

ିቀ௫೙ିఙೖ
೚೗೏ቁ

మ

ଶ൫ఙೖ
೚೗೏൯

మ ሿ

∑ ௞ߙ
௢௟ௗexp	ሾ

ି൫௫೙ିఓೖ
೚೗೏൯

మ

ଶ൫ఙೖ
೚೗೏൯

మ ሿ௄
௞ୀଵ

 
(15)

In the M step the expectation of the logarithmic 
likelihood function is maximized with respect to 
parameters. This leads to the following updates of 
parameter values 

௞ߙ
௡௘௪ ൌ

∑ ௣ሺ௞|௫೙,௣೚೗೏ሻ
ಿ
೙సభ

∑ ௭೙ಿ
೙సభ

, (16)

௞ߤ
௡௘௪ ൌ

∑ ௫೙௭೙௣ሺ௞|௫೙,௣೚೗೏ሻ
ಿ
೙సభ

∑ ௭೙௣ሺ௞|௫೙,௣೚೗೏ሻ
ಿ
೙సభ

, (17)

ሺߪ௞
௡௘௪ሻଶ ൌ

∑ ሺ௫೙ିఓೖ
೙೐ೢሻమ௭೙௣ሺ௞|௫೙,௣೚೗೏ሻ

ಿ
೙సభ

∑ ௭೙௣ሺ௞|௫೙,௣೚೗೏ሻ
ಿ
೙సభ

. (18)

In order to efficiently use the EM algorithm with 
given NMR spectroscopy data several further 
adjustments are necessary (Binczyk et al., 2010). 

1. Initial values of parameters are drawn 
randomly. Mean values are drawn on the basis 
of uniform sampling distribution defined by the 
ranges of the frequency values. Component 
weights from the Dirichlet distribution. 
Component standard deviations are assumed 
constant. 

2. In order to better explore possible multiple 

local maxima of the log likelihood function the 
process of iterations is repeated for about 150 
times, each with different guess for initial 
values of mixture model components 
parameters. 

3. The number of components of the mixture K is 
successively incremented and for each value 
the Bayesian information criterion (BIC) is 
calculated according formula   

ܥܫܤ ൌ െ2 lnሺܮሻ ൅ ሺ3ܭ െ
1ሻ lnሺ∑ ௡ݖ

ே
௡ୀଵ ሻ. (19)

The number of components corresponding the 
largest value of BIC obtained is chosen as the 
estimate of the true value of K (Millar, 2006). 

When computed for successive values of K, the 
plot BIC versus K shows a minimum point, which 
corresponds to estimate of the values fore each 
mixture component. Exemplary mixture model 
scaled to original signal is presented on the figure 3. 

 

Figure 3: Real part of the frequency spectrum of the 
exemplary NMR signal versus its GMM model with K=35 
components. Colours: real part of the spectrum of the 
original NMR signal – blue, GMM model of the spectrum 
– red. 

4 EXPERIMENT AND RESULTS 

The data set used during experiments consists of 
series of NMR spectra obtained for one phantom 
data using NMR GE 1.5T Signal Echo Speed 
scanner. The primary goal of scheduling the 
experiment performed with the use of GE scanner 
was to verify repeatability of the device for the same 
data set. The series of experimental phantom 
measurements was repeated each week through 4 
months. The phantom sample contained metabolites: 
12.5 mM of NAA, 10 mM of creatine, 3 mM of 
choline (Cho), 7.5 mM of myo-inositol, 5 mM of 
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lactate, 50 mM of potassium, 12.5 mM of sodium 
hydroxide and 1ml/L of magnevist.  

The original study measured in LC Model 
consists of metabolite concentration and relation of 
metabolites with respect to creatine. Authors for 
further analysis used such ratios. For all of the data 
sets were available measured water signals, which 
were used in pre-processing techniques. 

4.1 Comparisons of the Accuracy of 
Modelling NMR Signals 

 

Figure 4: Error of modelling NMR signal, calculated for 
both methods: GMM (Y axis) and HSVD (X axis). 

To compare ability of whole signal reconstruction, 
results given by both methods: GMM and HSVD 
were compared in interval 0.5-4.5 ppm. The overall 
modelled signals were subtracted from original one 
and error was calculated. The results are presented in 
a form of scatter plot in which each point represents 
an error calculated for a spectrum from set of 27 in a 
coordination set spanned by error values for 2 
modelling algorithms: HSVD on axis x and GMM 
on axis y. 

From above one can notice that there is 
Pearson’s correlation equal to: 0,61, between result 
of two proposed methods. It means that one of them 
is slightly better from the other. To determine which 
one is it basic statistics were calculated and shown in 
Table 1. 

Table 1: Mean value of error of overall signal modelling 
and its 95 % CI calculated for both signal modelling 
methods: HSVD and GMM. 

Method Mean value of error  
[Counts] 

95 % CI 
[Counts] 

SVD 1.076 0.028 
GMM 1.118 0.024 

From above table it is easy to notice that HSVD 
technique gives slightly better results in analysis of 
whole signal (all possible peaks). 

4.2 Comparisons of the Accuracy of 
Estimation of Metabolite 
Concentrations 

Constructed GMM is then used to obtain 
information about metabolite dispersion and amount 
in tested specimen. To do so authors proposed to use 
a convolution of chosen mixture model component 
(or group of peaks- dependent on metabolite) and a 
signal. 

Each component of proposed model may be 
understood as an independent peak from the 
spectrum. Parameters of Gaussian component are 
responsible for peak description: weight of 
component- peak height, mean value of the 
component- peak position in spectrum or frequency 
and component variance – peak width. Authors 
decided to use set of 27 spectra while for all of them 
it was possible to use results obtained with use of 
commercial solution LC Model developed by 
Proventure (Provencher, 1993; Provencher, 1995). 
Additionally data were analysed by Tarquin 
software, which is free to use. All of obtained results 
were compared with LC model reports. For such a 
report it was possible to retrieve results for each 
chosen metabolite and its relation with respect to 
creatine. Results of all 4 algorithms (including LC 
Model and Tarquin) were compared in means of 
boxplots. Authors proposed to present recurrence of 
results with use of relation true values. In order to 
present them in clear and understandable way, the 
results are shown on the separate plots for each 
chosen metabolite by means of their main peak. 
Authors did not have enough data to calculate 
correction coefficient for transverse and longitude 
relaxation. Therefore for comparison authors 
decided to correct results with use of derived 
coefficient of correction based on known value of 
metabolite amount in the phantom. Such a 
methodology implies division of the 27 spectra 
dataset into two subsets: training and validating. The 
training subject was decided to contain 12 spectra 
and the others were used to verify estimated 
correction coefficient. 
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Figure 5: Comparison of 4 methods in terms of 
concentration of metabolite. 

 

 

 

 

Figure 6: Comparison of 4 methods in terms of relation to 
Creatine. 

Table 2: Comparison of Approximation error of 
metabolites. 

Relative error [%] 
 Creatine Naa Choline Lactate Inositol 

LC 
Model 1,940 2,760 2,167 3,440 2,960 
Tarqu

in 4,290 6,872 11,533 8,940 5,400 
HSVD 3,180 3,256 2,800 4,500 3,653 
GMM 1,010 0,928 1,733 2,080 1,453 
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Table 2a: Comparison of Approximation error of relations. 

Relative error [%] 
 Naa Choline Lactate Inositol 

LC Model 1,360 1,333 2,600 2,000 
Tarquin 3,120 11,000 5,600 5,867 
HSVD 1,520 2,000 3,600 2,533 
GMM 0,640 1,333 2,000 1,467 

5 DISCUSSION AND 
CONCLUSIONS 

Data set that was used during experiments was 
originally used to verify recurrence of newly bought 
GE scanner. Such results were tested in each week 
in few months time for the same phantom to check if 
obtained results are comparable. For the comparison 
authors took main peaks of 5 metabolites: Naa, 
Creatine, Choline. Lactate, Myoinositol and checked 
relations of metabolite with respect to Creatine (such 
ratio is commonly used in oncology). The main idea 
for this study was application of black box methods 
without any additional prior knowledge. It was 
decided to implement and compare two different 
methods of signal analysis. One that is focused in 
time domain analysis and on the other hand on 
frequency domain. According to authors experience 
and performed literature study there are few methods 
basing on Singular Value Decomposition however 
HSVD seems to be more accurate. In case of 
frequency domain it was observed that peaks poses 
Gaussian shape. It was then decided to use Gaussian 
Mixture Model. Both methods were implemented in 
Matlab-Simulink software as two separated tools for 
NMR spectra analysis. 

Authors decided to verify recurrence of obtained 
results, which gave an answer for the question, 
whether proposed methods could give reliable 
results. Results obtained with use of two 
implemented and tuned modelling methods were 
compared to already existing solution - LC Model. 
Results look reliable. After analysis of obtained 
boxplots, authors may conclude that obtained 
modelling algorithms are not worse than already 
used- LC Model. What is more in some cases they 
were even better. However HSVD technique gives 
better results during analysis of whole signal with all 
possible peaks. (Table 1) 

First method applied to the phantom data was 
method based on Gaussian mixture model. Authors 
observed that in comparison to LC Model data, 
which were treated as a reference values, its result is 
satisfactory. It is so, because the aim of the method 
is construction of a good fitted model of the data. 

However authors observed that for some cases result 
obtained by calculating the convolution of specific 
Gaussian component and a signal differs from the 
reference one. It might be caused by additional 
components that are present in the data. Such a 
components are: phase error, baseline and noise. The 
study under consideration was a phantom 
measurement so authors decided to neglect influence 
of phase error and baseline. Signal noise is not only 
visible as additional low amplitude peaks in 
frequency spectrum, but also influences peak height. 
In such a case peak and noise component are easily 
recognized as just one component of mixture model. 
To deal with the problem author’s decided to use 
Savitzky-Golay approach while result was 
satisfactory and the amplitude of filtered signal was 
not damped. Such a filtering technique was applied 
to the data in frequency domain- spectrum. It is 
author’s suspicion that LC Model may use filters 
that deal with FID instead of signal in frequency 
domain.  What is worth to notice, original idea of 
GMM application to NMR spectroscopy data was to 
analyse signals from many voxels instead of just 
one. In such a case noise component that still 
remains in the signal after application of Savitzky-
Golay [14] technique might be neglected. What is 
more such an approach tells more about spatial 
dependencies between metabolites instead of just 
simple semi-quantification for each. 

Methods based on SVD can be used in many pre-
processing techniques. Thanks to the fact that after 
SVD decomposition singular values are arranged in 
descending order one can notice that noise is present 
always at the end of singular values. Such feature 
can be applied in filtering of signal. Another 
approach is connected to phase correction, which 
relies on finding and correcting particular 
component of FID. HSVD can model signal with 
high precision depending on number of components 
that is expected in result. In comparison to EM it 
processes on FID in time domain and it strongly 
depends on number of points that generates time 
consumption. Many modifications of calculating 
SVD have been proposed such as for example 
Lanczos algorithm.  

In order to calculate correct metabolites 
concentration by means of SVD proper pre-
processing has to be done. In the next step method 
should calculate components parameters and one 
should identify metabolites that are searched and 
build them from obtained components. The 
concentration is based on calculating area under 
peak present in spectrum by used of trapezoidal rule. 
It has to be mentioned that before metabolites 
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analysis optimal pre-processing has to be performed, 
otherwise results may be incorrect. 

As authors shown both of mentioned methods 
gave satisfactory result, according to the reference 
and what is more widely used software solution. 
Taking into account all experiments performed by 
authors it was proven that both methods might be 
successfully used for analysis of NMR spectroscopy 
data. Authors observed that crucial points is 
sensitivity of both methods for unwanted 
components such as noise that might not be 
completely removed with advance techniques. 
Authors decide to focus on improvement of that 
crucial part in their future research. 
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