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Abstract: Spatial prepositions, like above, inside, near, denote spatial relationships. A relative position descriptor is a 
basis from which quantitative models of spatial relationships can be derived. It is an image descriptor, like 
colour, texture, and shape descriptors. Various relative position descriptors can be found in the literature. In 
this paper, we introduce a new relative position descriptorthe -descriptorthat has about all the strengths of 
each and every one of its competitors, and none of the weaknesses. Our approach is based on the concept of 
the F-histogram and on an original categorization of pairs of consecutive boundary points on a line. 

1 INTRODUCTION 

The position of an object relative to another is an 
important feature people rely on to understand and 
communicate about space. In daily conversation, 
relative positions are described through the use of 
spatial prepositions, e.g., the apple in the bowl, the 
bowl near the vase, the vase in front of the window. 
These prepositions denote spatial relationships, which 
can be categorized into topological (e.g., in), distance 
(e.g., near) and directional (e.g., in front of) 
relationships. From a mathematical perspective, an 
object is a subset of the 2D or 3D space, and 
topological relationships include set relationships. 
For example, the condition AB= defines the set 
(and hence topological) relationship disjoint, while 
AB  and int(A)int(B)= (disjoint interiors) 
define the topological (but non-set) relationship 
touch. 

Models of spatial relationships have been 
investigated in many disciplines, including cognitive 
science, linguistics, geography, and artificial 
intelligence. In the qualitative approach (and contrary 
to the quantitative approach), the set of relationships 
is discrete (not continuous); a relationship either 
holds or does not hold (it cannot hold to some degree); 
spatial relationship information is decoupled from the 
individual features of the objects (like shape and 
size). For example, in the qualitative approach, one 
might consider the set {east, northeast, north, 
northwest, west, southwest, south, southeast} of 

directional relationships; say that the playground is 
northeast of the building; argue that the exact shape 
of the playground is of no importance. In the 
quantitative approach, one may want to specify that 
the playground is 37° east of north of the building; 
allow partial truth when considering whether the 
playground is northeast of the building; argue that the 
shape of the playground might have an impact on the 
degree to which this relationship holds. The 
qualitative approach has been used extensively for 
spatial reasoning, and qualitative models are by far 
the most common models. However, many practical 
image processing and computer vision tasks call for 
quantitative models. Moreover, qualitative measures 
can easily be derived from quantitative measures, 
while the converse does not hold.  

A relative position descriptor is an image 
descriptor, and it is a basis from which quantitative 
models of spatial relationships can be derived. As 
such, it provides a link between low-level spatial data 
features and high-level concepts. Moreover, it is a 
natural complement to colour, texture, and shape 
descriptors. Applications include human-robot 
interaction (Skubic et al., 2004), semantic metadata 
generation for image digital libraries (Wang, 
Makedon, Ford et al., 2004), suspected minefield risk 
estimation (Chan et al., 2005), melanocytic image 
analysis and recognition (Kwasnicka and 
Paradowski, 2005), geospatial information retrieval 
and indexing (Shyu et al., 2007), scene matching 
(Sjahputera and Keller, 2007), land cover classification 
(Vaduva et al., 2010), graphical symbol retrieval 

87Matsakis P., Naeem M. and Rahbarnia F..
Introducing the �-Descriptor - A Most Versatile Relative Position Descriptor.
DOI: 10.5220/0005210200870098
In Proceedings of the International Conference on Pattern Recognition Applications and Methods (ICPRAM-2015), pages 87-98
ISBN: 978-989-758-076-5
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



(Santosh et al., 2010), shape matching (Wang et al., 
2012), spatiotemporal reasoning (Salamat and 
Zahzah, 2012a), and map-to-image conflation (Buck 
et al., 2013).  

In the light of these and other publications, here 
are what seem to be the most important properties that 
may be expected from a relative position descriptor. 
P1  The descriptor can handle raster objects, 
whatever their topology (e.g., connected or 
disconnected, without or with holes), and whether 
they are disjoint or not. P2  The descriptor can 
handle these objects efficiently (e.g., in linear time 
with respect to the number of pixels in the image). P3 
 The descriptor can handle vector objects. P4  
The descriptor can handle distance relationships, i.e., 
meaningful distance relationship information can be 
extracted in no time from the descriptor. P5  The 
descriptor can handle set relationships; at the very 
least, it can be used to determine whether two objects 
intersect, and whether one object includes the other. 
P6  The descriptor can handle topological, non-set 
relationships; at the very least, it can be used to 
determine whether the boundaries of two objects 
intersect, and whether the interiors intersect. P7  
The descriptor can handle directional relationships; at 
the very least, it can be used to assess relationships 
like to the right of, to the left of, above and below. P8 
 The descriptor can handle the relationship 
surround. P9  Relative positions (as defined by the 
descriptor) can be somehow compared, and similar 
positions detected, regardless of which relationships 
hold. P10  Given two objects A and B, the position 
of B relative to A can be derived from the position of 
A relative to B. P11  Given an affine transformation 
t and two objects A and B, the position of t(A) relative 
to t(B) can be derived from t and the position of A 
relative to B. P12  Given an affine transformation t 
and two objects A and B, the transformation t can be 
derived from the position of A relative to B and the 
position of t(A) relative to t(B). P13  Consider four 
objects A, B, A' and B' ; whether there exists an affine 
transformation t such that A'=t(A) and B'=t(B) can be 
derived from the position of A relative to B and the 
position of A' relative to B'. 

Various relative position descriptors can be found 
in the literature. Most of them are histogram-based 
descriptors. Each one meets a few of the above 
properties. As far as we know, however, none of 
them meets P1 to P13, or even P4 to P8, or P12 
(Naeem and Matsakis, 2015). For example, the 
histogram of forces (Matsakis and Wendling, 1999), 
which is probably the relative position descriptor 
backed up with the most theoretical and applied 

results (Matsakis et al., 2010), does not satisfy P4-6, 
P8, P12-13; the R*-histogram (Wang et al., 2004) 
does not satisfy P3, P6, P8, P11-13; the spread 
histogram (Kwasnicka and Paradowski, 2005) does 
not satisfy P2-4, P6-7, P10-13; the radial line model 
(Santosh et al., 2010) does not satisfy P4-6, P8, P11-
13; the Allen histograms (Malki et al., 2002) (Matsakis 
and Nikitenko, 2005) (Salamat and Zahzah, 2012b) do 
not satisfy P2, P4, P8, P12-13; the ratio histogram 
(Wang et al., 2012) does not satisfy P4-8, P12.  

In this paper, we introduce a histogram-based 
relative position descriptorthe -descriptor that 
meets each and every one of the 13 properties. 
Necessary background information is provided in 
Section 2. A detailed definition of the -descriptor is 
presented in Section 3. In Section 4, we briefly 
explain why each property holds. Conclusions and 
future work are discussed in Section 5. 

2 BACKGROUND 

The -descriptor is based on the concept of the F-
histogram, which is briefly reviewed in Section 2.1. 
The relative position descriptor it is the closest to may 
be the one defined by the Allen histograms. These 
histograms are reviewed in Section 2.2 with the intent 
to help the reader understand the rationale behind our 
approach (Section 3). 

2.1 The F-Histogram 

Notation and terminology are as follows. See also 
Fig. 1. The symbol S denotes the Euclidean space. 
The origin  is an arbitrary point of S. A direction  
is a unit vector. (p) is the line in direction  that 
passes through the point p, and (p) is the subspace 
orthogonal to  that passes through p. Note that (p) 
is a line if S is of dimension 2 and is a plane if S is of 
dimension 3. Now, consider a nonempty bounded 
subset A of S. The intersection A(p) is a core of A. 
If any core of A is a closed set with a finite number of 
connected components, i.e., if it is the union of a finite 
number of pairwise disjoint segments, then A is an 
object. Consider a real function F that takes inputs 
of the form (, S1, S2), where  is a direction and S1 and 
S2 are two subsets of S. The F-histogram associated 
with the pair (A, B) of objects is the function FAB 
defined by: 
 

   (1) 

  

FAB()  F(, A(p), B(p)) dp
p ()
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Its intended purpose is to represent, in some way, the 
position of A (the argument) with respect to B (the 
referent). 

 

Figure 1: Notation: a direction , the origin , a point p, the 
line (p), the orthogonal line (or plane) (), and two 
objects A and B. 

The idea and assumption behind the concept of the F-
histogram (Matsakis and Wendling, 1999) (Matsakis 
et al., 2010) are that acceptable representations of 
relative positions can be obtained by reducing the 
handling of multidimensional objects to the handling 
of 1D entities. The force histogram, the R*-histogram, 
the ratio histogram and the Allen histograms 
mentioned in Section 1 are based on this concept. 

2.2 The 13 Allen Histograms 

The F-histogram naturally conveys directional 
information. It is therefore tempting to use a fuzzy 
approach and choose the function F such that the real 
number F(, A(p), B(p)) measures the extent to 
which a given topological relationship holds 
between A(p) and B(p). If there are n possible 
topological relationships between two such cores, n 
histograms (one per relationship) should convey com- 
prehensive quantitative information on the directional 
and topological relationships between the two objects 

A and B. Unfortunately, there are infinitely many 
binary relations definable in the algebra generated by 
unions of segments on a directed line (Ladkin, 1986). 
In the simple case of a segment and the union of two 
disjoint segments, there are already over 40 
topological relationships (Egenhofer, 2007). It seems 
wise to avoid a combinatorial explosion and rely on 
the very well known 13 Allen relations between two 
segments (Allen, 1983). See Fig. 2. For every 
segment (i.e., connected component) I of A(p) 
and for every segment J of B(p), the value F(, I, 
J) then measures the extent to which a given 
(fuzzified) Allen relation holds between I and J; as for 
F(, A(p), B(p)), it is some aggregate of all the 
F(, I, J) values.  

There are several issues with this approach, which 
has been explored in various publications (Malki et 
al., 2002) (Matsakis and Nikitenko, 2005) (Salamat 
and Zahzah, 2012b). For example, it is hard to extract 
meaningful 2D topological relationship information 
from the 13 histograms of 1D fuzzy Allen relations, 
especially when the objects are not convex. This is 
apparent in (Matsakis et al., 2010) (Salamat and 
Zahzah, 2012c). Moreover, it is often impossible to 
extract crisp topological relationship information. To 
illustrate this, let FP and FM be the functions F 
attached to the Allen relations P (precedes) and M 

(meets). Assume FP
AB()  0 and FM

AB()  0. It may 

be because the statements “A(p1) precedes 
B(p1)” and “A(p2) meets B(p2)” are both 
totally true (and AB). However, since P and M 
are conceptual neighbours and have been fuzzified, it 
may also be because the statements “A(p) precedes 
B(p)” and “A(p) meets B(p)” are both 
partially true (and AB=). As a result, one cannot 
answer with ‘yes’ or ‘no’ the question: “Are these 
objects disjoint?” 

 

Figure 2: The 13 relations between two aligned segments (Allen, 1983). In each case, the argument is the light gray segment 
and the referent is the dark gray segment. P=Precedes, M=Meets, O=Overlaps, S=Starts, D=During, F=Finishes, E=Equals, 
Pi=P-inverse=Preceded by, Mi=Met by, Oi=Overlapped by, Si=Started by, Di=Contains, Fi=Finished by. 
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3 DEFINITION 

The -descriptor is built upon 13 F-histograms. Each 
histogram value corresponds to the area (in dimension 
2) or volume (in dimension 3) of a region delimited 
by parallel lines and the boundaries of the objects in 
hand (Fig. 3). The outline of this section is as follows: 
a directed straight line intersects the boundaries of 
two objects in several points; these points fall into 12 
categories, and the pairs of consecutive points fall into 
36 categories (Section 3.1) divided into 10 groups 
(Section 3.2); a function is attached to each group and 
maps each pair to a real number; the 10 functions and 
3 others are used to define the 13 F-histograms 
(Section 3.3) that are the basis of the -descriptor 
(Section 3.4). 

3.1 Boundary Points and Categories 

Let A and B be two objects and let  be a direction. 
Consider a line L in direction . Its intersection with 
A has a finite number of connected components, and 
each component is a line segment. Let p and q be the 
endpoints of one of these segments. If pq and 
pq/|pq|=, where pq denotes the vector from p to q 
and |pq| denotes its length, then p is an A-entry (on L, 
in direction ) and q is an A-exit. Now, consider the 
set {p1, p2, …, pn} of all A-entries, A-exits, B-entries 
and B-exits on L and in direction . Assume that for 
any i we have pipi+1/|pipi+1|=. The point pi+1 is then 
the successor of pi. See Fig. 4. Consider two elements 
p and q of {p1, p2, …, pn} such that q is the successor 
of p. The point p falls into one of 12 categories, which 
can be named and represented as in Fig. 5. The same 
applies to q. As a result, the pair (p,q) falls into one of 
36 categories. These categories, numbered from 1 to 
36, are shown in Fig. 6. They may remind the reader 
of the Allen’s relations. The two concepts are, in a 
sense, the reverse of each other: an Allen relation 
involves 2 segments, and up to 4 distinct points are 
the endpoints of these segments (Fig. 2); on the other 
hand, a point pair category involves 2 distinct points, 
and up to 4 segments have these points as endpoints. 

3.2 Grouping the Point Pair Categories  

In Fig. 6, the 36 point pair categories are divided into 
9 groups (A-A, B-B, A-B, etc.). The division was 
convenient when trying to list all the categories. In 
this section, however, other groups are considered. 
Seven are labeled with a verb (third person singular 
form in the simple present tense): trails, overlaps, 
covers, uncovers, follows, leads, or starts. See Fig. 7. 

 

Figure 3: A glimpse into the area F-histograms. Each 
histogram value corresponds to the area of a region. Ten 
such regions are represented here (medium gray, dark gray, 
and dotted regions). 

 

Figure 4: Entry and exit points. On L, in direction , the 
point p1 is a B-entry not in A, the point p2 is an A-entry in B, 
etc. (see Fig. 5); the pair (p1,p2) falls into the category 13, 
the pair (p2, p3) into the category 11, etc. (see Fig. 6). 

 

Figure 5: The 12 point categories. In each case, the 
argument is the light gray segment and the referent is the 
dark gray segment. 

Each verb indicates a particular relationship between 
a segment of the argument A and a segment of the 
referent B. For example, in categories 10, 18, 32 and 
36 a segment of A (left) is far behind (i.e., trails) a 
segment of B (right), while in categories 26, 30 and 
34 a segment of A (left) is right behind (i.e., follows) 
a segment of B (center). Note that the terms overlaps, 
follows and starts are commonly used to denote the 
Allen relations O, F and S (Fig. 2). The reader should 
assume their meaning here is unrelated. Three 
groups of categories are labeled with a noun: void, 
argument, or referent. See Fig. 8. In these categories, 
there is no useful  relationship  between  a segment  of 
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Figure 6: The 36 point pair categories. They are here divided into 9 groups of 4 categories. For example, AB-B means that 
the first point p is an A-entry or A-exit and a B-entry or B-exit, while its successor q is a B-entry or B-exit only. In each case, 
the argument is the light gray segment and the referent is the dark gray segment. 
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Figure 7: Nonzero values for the functions ft, fo, fc, fu, ff, f

 and fs. 

 

Figure 8: Nonzero values for the functions fv, fa and fr. 

 

Figure 9: Nonzero values for the functions fe, fd and fw. Examples. 
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A and a segment of B. Each noun refers to the object 
(if any) that occupies the space between p and q. 
Finally, note that the 10 groups shown in Figs. 7 and 
8 include 24 categories only (instead of 36). Twelve 
are ignored to avoid redundancy and keep 
information directional; in Fig. 6, these categories are 
labeled with names in brackets. For example, 
category 9 is ignored because it is the directional 
inverse of category 16: if p is a B-exit and q an A-exit 
on line L and in direction  (category 16), then q is an 
A-entry and p a B-entry on line L and in direction  
(category 9).  

3.3 Area and Volume F-Histograms  

Consider two objects A and B. First, we define 10 real 
functions ft, fo, fc, fu, ff, f, fs, fv, fa and fr (the subscript 

t stands for trails, o for overlaps, c for covers, etc.). 
These functions take inputs of the form (,p,q), where 
 is a direction and p and q are two points. Let L be 
the line in direction  that passes through p. Assume 
{p1, p2, …, pn} is the set of all A-entries, A-exits, B-
entries and B-exits on L and in direction , as in 
Section 3.1. Each function f maps (,p,q) to 0 unless 
(p,q) is a pair (pi,pi+1) that falls into a category f is 
attached to. In that case, we have f(,p,q)=|pq| (and 
f(,q,p)=0) if the category is not its own directional 
inverse; we have f(,p,q)=|pq|/2 (and 
f(,q,p)=|pq|/2) otherwise. See Figs. 7 and 8. In a 
nutshell, the greater the distance between p and q, the 
more a segment of A trails, or overlaps, covers, etc., 
a segment of B. 

We now define 3 more functions: fe, fd and fw. The 
reason for this will be clarified later. The value 
fe(,p,q) is 0 unless (p,q) is a pair (pi,pj) with j>i, the 
point pi is an A-exit, pj is an A-entry, and for any k in 
the integer interval i+1..j1 the point pk is neither an 
A-exit nor an A-entry; in that case, fe(,p,q) is the total 
length of B[pi,pj]. The value fd(,p,q) is 0 unless 
(p,q) is a pair (pi,pj) with j>i, the point pi is a B-exit, 
pj is a B-entry, and for any k in i+1..j1 the point pk is 
neither a B-exit nor a B-entry; in that case, fd(,p,q) is 
the total length of A[pi,pj]. Finally, the value 
fw(,p,q) is 0 unless (p,q) is the pair (p1,pn); in that 
case, fw(,p,q)=|p1pn|. See Fig. 9. 

The next step is to define 13 other functions Ft , 
Fo , Fc , Fu , Ff , Fl , Fs , Fv , Fa , Fr , Fe , Fd and Fw . Each 

one maps (, AL, BL) to 0 if the set of all A-entries, 
A-exits, B-entries and B-exits on L and in direction  
is empty. Otherwise: 

Ft (, A L, B L)  ft (,pi,pi+1)
i1

n1   (2) 

Fo(, A L, B L)  fo(,pi,pi+1)
i1

n1   (3) 

…   (4-10) 

Fr (, A L,B L)  fr (,pi,pi+1)
i1

n1   (11) 

Fe(, A L, B L)  fe(,pi,p j)ji1

ni1

n1   (12) 

Fd(, A L, B L)  fd(,pi,p j)ji1

ni1

n1   (13) 

Fw(,A L, B L)  fw(,p1,pn )   (14) 

These functions F and (1) allow us to define 13 F-
histograms: 

Ft
AB , Fo

AB , Fc
AB , Fu

AB , Ff
AB , F 

A B , Fs
AB , 

  Fv
AB , Fa

AB , Fr
AB , Fe

AB , Fd
AB , Fw

AB . 
 

Each histogram value corresponds to an area (in 
dimension 2) or volume (in dimension 3). See Fig. 10. 

Note that Fw
AB()  is the area or volume of the region 

of interaction in direction .  

3.4 Length Histograms and the 
-Descriptor 

Let  be the real function of a real variable defined by 

(0)=0 and (x)=1 if x0. The length histogram Fw
AB  

is the real function defined by Equation (15).  

    Fw
AB()  

=

 

Fw
AB()

(Fw (, A(p), B(p))) dp
p ( )            

(15)

 

Fw
AB()  is the average width of the region of 

interaction in direction . We may also say that it is 
the average nonzero fw value in direction . Note that 

Fw
AB  is undefined at  if Fw

AB()= 0. Likewise, we 

can define the length histograms Ft
AB , Fo

AB , etc. For 

example, Ft
AB()  is the average nonzero ft value in 

direction .  
We can now introduce the -descriptor associated 

with the pair (A, B) of objects. It is a tuple AB of area 
(dimension 2) or volume (dimension 3) F-
histograms and of length histograms. Its intended 
purpose is to represent the position of A relative to B. 
One possible definition is given by Equation (16), 
although more length histograms may be considered. 
measure(A) denotes the area (dimension 2) or the 
volume  (dimension 3) of A. Note that Fw

AB can 

actually be derived from Ft
AB, Fo

AB, …, Fr
AB . 
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 
AB = ( Ft

AB , Fo
AB , Fc

AB , Fu
AB , Ff

AB , F 
A B, Fs

AB , 

            Fv
AB , Fa

AB , Fr
AB , Fe

AB , Fd
AB , Fw

AB , Fw
AB ,  

       measure(A),  measure(B) ) (16) 

4 PROPERTIES 

The -descriptor satisfies each and every one of the 
properties P1 to P13 (Section 1). In this section, we 
briefly explain why. Complete proofs are given in 
separate papers, including (Matsakis and Naeem, 
submitted). Although the definition of the -
descriptor holds in any Euclidean space, it is assumed 
here that S is of dimension 2. 

4.1 P1 to P3, P9 and P10 (Basics) 

P1 and P2  In the case of raster objects, the -
descriptor, which has obviously been designed with 
arbitrary objects in mind, can be computed in a very 
efficient way. For every direction , the image is 
partitioned into parallel raster lines. The pixels in a 
line are examined one by one and all the FAB()  and 

FAB()  values are updated on the fly; basically, it is 
just a matter of counting the number of pixels 
between every two consecutive entry or exit points 
(i.e., boundary pixels). In the end, the -descriptor is 
computed in (KN) time, where N is the number of 

pixels in the image and K is the number of directions 
 considered. Note that the higher K, the more 
complete the collected histogram data, but the longer 
the processing time. Practically, there does not seem 
to be any interest in considering more than a few 
hundred directions when computing F-histograms, 
and K is chosen between 4 and 360 (Matsakis et al. 
2010).  

P3  In the case of vector objects, updating the 
FAB()  and FAB() values comes down to calculating 
the areas of polygons delimited by the boundaries of 
the objects and lines in direction . The -descriptor 
is computed in (K 3) time, where  is the total 

number of object vertices. However, this worst-case 
performance falls to (K 2) when the objects 

intersect in  points or less, which is typical in 
practice. 

P9  A simple way to compare two relative 
positions  

AB and  
A’B’ is to compare their 

corresponding elements, i.e., Ft
AB

 
with Ft

A' B', Fo
AB

 
with 

Fo
A' B', etc. For example, the similarity between two 

histograms h1 and h2 can be calculated using a 

measure introduced by Pappis and Karacapilidis 
(1993): 
 

   

min{h1(),h2 ()}

max{h1(),h2 ()}

  

(17)

 
 

Likewise, the similarity between two object areas a1 
and a2 can be evaluated as: 
 

   

min{a1,a2}

max{a1,a2}  
(18) 

 

The similarity, sim, between  
AB and  

A’B’ can then 
be defined as the minimum similarity between 
corresponding histograms and object areas.  

 (a)  
 

(b)  

(c)  

Figure 10: Area F-histogram values. For example, Fr
AB()is 

half the total area of the two regions in (a) labeled r, and 

Fr
AB() = Fr

AB(); the value Fu
AB()is 0, but Fu

AB() is the 

area of the region in (b) labeled u; the value Fw
AB()is the 

area of the region in (c) filled with diagonal lines, and 

Fw
AB()  Fw

AB(). 
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P10  Each FBA  or FBA  histogram can be 

derived from an FAB  or FAB  histogram. For 

example, for any direction , we have 

Ft
BA()  Ft

AB() and Fc
BA()  Fu

AB(). As a 

result, the position of B relative to A can be derived 
from the position of A relative to B. 

4.2 P4 to P8 (Spatial Relationships) 

A great amount of spatial (including topological, 
directional and distance) relationship information 
can be extracted from the -descriptor. For example, 
consider Fig. 11. Figure 11a is a world view of a robot 
in an environment with corridors and doorways. The 

robot is a mobile Nomad 200 with 16 sonar sensors 
evenly distributed along its circumference. The 
sensor readings were used to build an approximate 
polygonal representation of the surrounding 
obstacles. The experiment was done using the 
Nomadic simulator. Figure 11b shows an egocentric 
robot view of the scene. The position of A (the robot) 
relative to B (the perceived environment) is 
described using the -descriptor. See Figs. 11cd. 
Since Fo

AB= Fs
AB=0 (everywhere zero histograms), 

the interiors of A and B do not intersect (this is good 

news for the robot). Moreover, since Ff
AB=F 

A B
 =0, 

the objects A and B do not even touch; they are 
disjoint (the robot is not leaning against the wall). The 
average distance, in direction ,  between A  and  B  is 

         (a)                (b)  
 

(c)       (d)  

       
Robot to Human:  “I am partially surrounded by obstacles. 

      The closest obstacle is on my rear‐left. 
      There is an opening on my rear‐right.” 

Figure 11: (a) A robot with sonar sensors, its environment, and its perception of the environment (Skubic et al., 2003). (b) An 

egocentric robot view of the scene. (c) The corresponding area histograms (w for Fw
AB , t for Ft

AB , etc.), and (d) the 
corresponding length histograms. On the vertical axes, area(A) denotes the area of A while diam(A) denotes its diameter. 
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Ft
AB() ; it is minimum when =3/4 (on the robot’s 

rear-left). The object A would be totally surrounded 
by B if we had Fd

AB()= area(A) for all , but this is 

not the case. However, A is partially surrounded by 
B, since Fd

AB()= area(A) for all  in the interval 

[0,/2] and Fd
AB() 0 for all  in [/8, 5/8]. There 

is a /8-wide opening in direction /4 (on the robot’s 
rear-right), since Fd

AB and Ft
AB are 0 on [/4,/8].  

Note that Fig. 11b may be seen as an illustration 
of one of the RCC23 spatial relationships (Cohn et al. 
1997): the objects A and B do not intersect (AB =), 
the convex hull of A does not intersect B 
(conv(A)B=), and the convex hull of B includes A 
(conv(B)A=A). The -descriptor is able to identify 
every single one of the RCC23 relationships (and 
many, many more). In other words, it is able to 
provide crisp information and indicate whether yes or 
no a given relationship holds. With all the numerical 
histogram values available, it is also able, of course, 
to provide fuzzy information and indicate to what 
extent one may say that the relationship holds.  

4.3 P11 to P13 (Affine Transformations) 

Consider Fig. 12. Figures 12ab show two RGB 
pictures taken with a commercial digital camera, 
while Figs. 12cd show the pictures after 
segmentation. Segmentation was achieved by 
choosing the color channel with the best contrast (red 
channel), running an optimum thresholding algorithm 
(like Otsu’s) on the corresponding gray-level 
histogram, and performing 7x7 median filtering on 
the thresholded image. Are the RGB pictures two 
pictures of the same scene? If so, which can (Figs. 
12ac) is which (Figs. 12bd)? Color, texture, and shape 
descriptors would clearly not be very helpful in 
answering these questions. Later in this section, we 
focus on the two cans A1 and A2, and we use this 
matching problem to illustrate the affine 
transformation properties of the -descriptor. 

Affine invariant descriptors play an important role 
in computer vision. Examples of affine invariant 
colour, texture, and shape descriptors abound in the 
literature. The -descriptor can be normalized to 
obtain affine invariance and has many interesting 
related properties. Let aff be an invertible affine 
transformation. Areas under an affine transformation 
are scaled by the absolute value of the determinant of 
the matrix that represents the linear part of the affine 
transformation. As a result, aff(A)aff(B) can be easily 
derived from aff and AB. In other words, the 

behaviour of the -descriptor under affine 
transformations is known. 

We have developed a normalization procedure 
AB  AB  with the two following properties. 
Except for particular object pairs (i.e., object pairs 
that are not well-behaved), there exists a unique 
invertible linear transformation lin such that: 
 

   AB =  lin(A)lin(B) (19) 
 

Moreover, for any well-behaved object pair and for 
any invertible affine transformation aff we have: 
  

 

 

Figure 12: (a)(b) Two RGB pictures. (c)(d) The pictures 
after segmentation. According to the -descriptor, the best 
match for (A1,A2) is (B3,B4), and the linear transformation that 
best changes (A1,A2) into (B3,B4) is lin. 

    aff (A) aff (B) =AB
 (20) 

In other words, the normalized -descriptor is affine 
invariant. The idea behind -descriptor 

ΦA  A 1   2 

lin(A1) 

lin(A2) 

A1 

A2 A3 

A4 
A5 

B1 

B2 B3 

B4 

B5 

ΦB  B 3   4 

B3 

B4 

Φlin  (A  ) lin  (A  ) = A     1      
    
A     2 

linA 

ΦA  A 1   2 Φlin  (B  ) lin  (B  ) = B    3       
 
B     4 ΦB  B 3   4 

linB lin 

sim 

(a)   (b) 

(c)   (d) 
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normalization is to derive from AB a vector basis 
intrinsic to the pair (A,B). The uniqueness of lin 
comes from the uniqueness of the transformation used 
to change a vector basis into another. Note that the 
normalization procedure involves the length 
histogram Fw

AB  and uses the fact that the behaviour 

of the -descriptor under affine transformations is 
known. Consider Fig. 12 again: A1A2  is derived from 
A1 and A2; then, linA is derived from A1A2 ; finally, 
A1A2  is derived from linA and A1A2 . 

Now, let (A,B) and (A',B') be two well-behaved 
object pairs. If there exists an invertible affine 
transformation aff such that 
 

   A' = aff(A)  and  B' = aff(B) (21) 
 

then aff can be easily retrieved (up to a translation) 
from AB and A’B’, using the normalization 
procedure. Moreover, if there exists an invertible 
transformation t (not necessarily affine) such that 
 

   A' = t(A)  and  B' = t(B) (22) 
 

then the linear transformation that best approximates 
t (up to a translation) can be found, and the quality of 
the approximation can be assessed. Consider Fig. 12 
once again: linA is derived from A1A2  and linB is 
derived from B3B4 ; then lin is derived from linA and 
linB. In this case, however, (A1,A2) and (B3,B4) are not 
affine-related (although they are matching pairs): in 
photography, the image formation process involves 
projective transformations instead of affine 
transformations; besides, A1, A2, B3 and B4 are 2D 
representations of 3D cans. The linear transformation 
lin is, therefore, only an approximation of the non-
affine transformation that changes (A1,A2) into 
(B3,B4). Compare (lin(A1),lin(A2)) with (B3,B4). To 
assess the quality of the approximation, one must 
compare the two normalized descriptors A1A2  and 
B3B4 , i.e., calculate their similarity sim (see Section 
4.1, Property P9). Note that the similarity between 

A1A2  and Bi Bj , where i and j belong to {1,2,3,4,5}, 
was found to be maximum for i=3 and j=4. 

5 CONCLUSIONS 

What are the most important properties that may be 
expected from a relative position descriptor? In the 
light of articles on these descriptors and their 
applications, we have identified 13 properties. Taken 
individually, the current descriptors meet only a few 
of them. In this paper, we have introduced a relative 

position descriptorthe -descriptorthat meets 
each and every one of the 13 properties. 

While most descriptors reduce the study of the 
relative position between two objects to the study of 
the relative positions between elementary 
components of the objects (e.g., pixels, points, 
segments), the -descriptor uses an original approach 
based on the categorization of pairs of consecutive 
boundary points on a line. Moreover, the -descriptor 
consists of raw data that are easy to acquire and 
interpret. There is no time-consuming pre-
processing, like force calculation, or membership 
degree calculation. More spatial relationship 
information is preserved and can be extracted. 

We are now developing a library of crisp and 
fuzzy models of spatial relationships based on the -
descriptor. The next step will be to focus on 3D 
objects; the definition of the -descriptor holds in any 
Euclidean space, but only 2D objects have been 
considered so far. As for fuzzy objects, they can be 
handled using, e.g., the double sum scheme by Dubois 
and Jaulent (1987), or the simple sum scheme by 
Krishnapuram et al. (1993). However, such generic 
schemes are computationally expensive. Since the 
elementary values of the -descriptor are areas, there 
should be a much simpler and more efficient way to 
process fuzzy objects, based on the concept of the area 
of a fuzzy set. The idea will have to be validated.  
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