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Standard assumption of pattern recognition problem is that processed elements belong to recognized classes.

However, in practice, we are often faced with elements presented to recognizers, which do not belong to
such classes. For instance, paper-to-computer recognition technologies (e.g. character or music recognition
technologies, both printed and handwritten) must cope with garbage elements produced at segmentation level.
In this paper we distinguish between elements of desired classes and other ones. We call them native and
foreign elements, respectively. The assumption that we have only native elements results in incorrect inclusion
of foreign ones into desired classes. Since foreign elements are usually not known at the stage of recognizer
construction, standard classification methods fail to eliminate them. In this paper we study construction of
recognizers based on support vector machines and aimed on coping with foreign elements. Several tests are

performed on real-world data.

INTRODUCTION

In the standard attempt to pattern recognition an ob-
ject is classified to one of given classes. The set of
classes is either fixed a priori (supervised problem)
or is determined at the stage of recognizer construc-
tion (unsupervised problem). In these cases, it is as-
sumed that each classified element belongs to one of
the given classes. However, in practice, this assump-

tion is often too optimistic.

It is proven in impor-

tant practical applications that not only elements of
the fixed set of classes but also ones not belonging to
these classes are processed. Since elements not be-
longing to any of the given classes are usually not
known a priori, i.e. at the stage of recognizer con-
struction, they cannot be assumed to create their own
class(es) and cannot be used at this stage. To distin-
guish between these two types of elements the follow-
ing terms are used:
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native elements for elements of recognized
classes and

foreign elements for ones not belonging to any
given class.

Homenda W., Jastrzebska A. and Pedrycz W..

Recognizing printed texts, manuscripts, music no-
tations, biometric features, voice, speaker, recorded
music, medical signals, images, etc. are examples
of problems dealing with foreign elements, (Zhang,
2011; Weber, 1993). In recognition of printed texts,
foreign elements (blots, grease, or damaged symbols)
appear in a negligible scale due to regular placement
of printed texts’ elements (letters, numbers, punctua-
tion marks) and due to their good separability. These
features of printed texts allow employing effective
segmentation methods and filtering foreign elements.
However, in recognition of such sources as recorded
voice, biometric features, medical images, geodetic
maps or music notation, the foreign elements prob-
lem is more noticeable and important. Unlike printed
text, such sources contain symbols placed irregularly
and overlapping with each other. Such elements are
hardly distinguishable by size and shape analysis.
Due to weak separability of foreign and native el-
ements of recognized sources, segmentation criteria
must be more tolerant than in the case of printed texts
in order not to reject native elements at the stage of
segmentation. In consequence, more foreign elements
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are subjected to stages of recognition next to segmen-
tation one and, in consequence, they should be elim-
inated then, (Homenda et al., 2013; Homenda et al.,
2014).

Also, the problem of rejecting foreign elements
(in pattern recognition tasks) is rarely present in re-
search papers on pattern recognition. Alike, papers
describing practical applications of pattern recogni-
tion methods ignore the problem of foreign elements,
what may come from insufficient theoretical investi-
gations on this subject and limited abilities of existing
rejection methods. There are significant exceptions
which show that the rejection problem cannot be dis-
regarded, (Pillai et al., 2011; Stefano et al., 2000).

The motivation of this study arises from discus-
sion on classification with rejection option. As out-
lined above, up-to—date research and practice still
need conducting further studies on new aspects in the
domain of pattern recognition. It is expected that re-
search in this area will overcome technological barri-
ers and will increase effectiveness in areas mentioned
above.

In this paper we investigate the problem of reject-
ing foreign elements assuming that classes of native
elements are given but the foreign ones are not known
a priori. Sets of (semi-synthetic) foreign elements are
constructed from real-world sets of native elements
(handwritten digits). Then the following is accom-
plished:

1. astandard classifier for classes of native elements
is constructed,

2. the standard classifier is used for classification of
native elements (to estimate its accuracy),

3. in order to reject foreign elements from native
classes, additional classifiers are used for every
native class. These extra classifiers are con-
structed and used as follows:

(a) no training set of foreign elements is used while
constructing these extra classifiers and sets of
semi-synthetic foreign elements are used as
testing sets,

(b) one set of semi-synthetic foreign elements is
used as training set and both sets of semi-
synthetic foreign elements are used as testing
sets.

4. results of both methods of rejection are compared.

Semi-synthetic foreign elements, i.e. constructed
from native elements (this is why we call them semi-
synthetic), are used as a substitute of real foreign ele-
ments unknown at the stage of classifier’s construc-
tion. Elements constructed in such a way are ex-
pected to have characteristics similar to real foreign

elements, but obviously not exactly the same. Semi-
synthetic foreign elements may help in increasing the
quality of rejection when using them at the construc-
tion stage of rejecting classifiers as in point 3 (b)
above.

The paper is structured as follows. Related re-
search and introductory remarks are presented in Sec-
tion 2. In Section 3, classifiers with rejection option
are tested. The discussion includes evaluation criteria
of rejection option. Results of experiments are dis-
cussed in Section 4. Conclusions and directions of
further research are presented in Section 5.

2 PRELIMINARIES

In this Section the concepts and methodologies cru-
cial for the paper are briefly described: Support Vec-
tor Machines (SVMs) as binary classifier, a method-
ology of constructing SVM-based multi-class classi-
fiers, concepts of rejecting foreign elements and pa-
rameters used in evaluation of recognition with rejec-
tion.

2.1 Support Vector Machines (SVMs)

Here we briefly present two-classes and one class sup-
port vector machines as classification tools. Both con-
cepts are then used as basic tools for rejecting foreign
elements. Two-classes SVMs are also employed in
construction of multi-class classifier.

2.1.1 Two-classes Support Vector Machines

Support Vector Machines (SVMs) in their pure form
are non-probabilistic binary linear classifier models
used in supervised machine learning in order to sepa-
rate two sets of elements, (Cortes and Vapnik, 1995).
In SVM’s mathematical definition the two classes are
denoted as integers 1 and 1. In this paper we as-
sume that the considered sets of elements are points
of the Euclidean space R", which are also referred as
vectors of this space. SVMs training corresponds to
the problem of finding the maximum-margin hyper-
plane that divides the samples from two given classes,
compare Figure 1. The following formula with the re-
quirement of margin maximization describes the hy-
perplane:

w X b=0 Q)

where w;x 2 R", b 2 R and is an operator of the
scalar product of two vectors. \ector w is a nor-
mal vector to the hyperplane and it can be obtained
as a linear combination of training vectors x; lying at

91



ICAART 2015 - International Conference on Agents and Artificial Intelligence

margin

Figure 1: The concept of a linear SVM.

borders of the margin:
w= a;j X (2)
[
Formally support vectors are such x; that satisfy the
following condition:

yilw xi b)=1 )

Support vectors, i.e. those lying on the margin’s bor-
der, have their corresponding a; & 0.

SVM learning algorithms finds w and b such that
jiwijj? is minimized subject to the following condition
for all training vectors x;:

yiw xi by 1 4

wherey; 2  1;1g is the class of x;.
Having in mind formula (2), the linear decision
(classification) function 1(x) is expressed as follows:

aixi Xx b (5)
|
SVMs efficiency can be enhanced by using a so
called kernel functions other than linear dot prod-
uct so that they may be successfully applied to non-
linearly-separable problems. The generalized deci-
sion function with a kernel K is written as:

I(x)=sgn  aiK(xj;x) b (6)
i
where polynomials and Gaussian functions are exam-
ples of kernels.

All the SVMs in this work use kernels that are
based on a Gaussian radial basis function:

I(x) =sgn

Koax)=exp  giixi i’ ™

where g is set to the inverse of the number of features
used in classification as in (Homenda et al., 2014).
Yet, sometimes classes are not completely separa-
ble what leads to misclassification errors. The con-
cept of allowing only partial separation is known as
the soft margin. The C parameter, also called the reg-
ularization parameter, controls the shape of the mar-
gin by adjusting the penalty of misclassification. The
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Figure 2: SVM based multi-class classifier without Rejec-
tion (left part) and with local rejection by one-class SVMs.
Presented is the cascade architecture of the classifiers.

C parameter is a positive real number, its high values
might cause over-fitting. In the soft margin case the
optimization problem becomes a problem of minimiz-
ing the following expression:

1.
Sl +C g (8)
I

where X are the deviations (of wrongly classified vec-
tors) and C is the regularization constant. The goal is
to minimize the number of errors in the training set
subject to the following x; based prerequisites:

yiw xi b) 1 xi xi 0 ©)

2.1.2 One-class Support Vector Machines

One-class SVMs are a little different from regular
two-classes SVMs as they use the n parameter in
place of the C parameter?, (Scholkopf et al., 1999).
The n parameter has a similar role but its range is from
0 (exclusive) to 1 (inclusive) and is effectively the up-
per bound on the fraction of outliers in the training
set, i.e. elements allowed to be misclassified. It is
also a lower bound on the fraction of training samples
used as support vectors. This time it is necessary to
minimize the following expression:

1. ., 1
Wi+ | Xj b (10)
where n is the number of samples present in the train-
ing set.

All the SVMs used in this work were implemented
using machine learning library in Python, so called
scikit-learn library, see (Pedregosa et al., 2011) for
details. It internally uses LIBSVM, (Chang and Lin,
2011).

IThere are also two-classes SVMs which use parameter
n instead of C and those are called n-SVMs, (Scholkopf
et al., 2000).
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2.2 SVM-based Multi-class Classifiers

Since SVMs are able to separate only two distinct ar-
eas of an input space, i.e. two classes of presented el-
ements, it is necessary to design ensembles of SVMs
in order to cope with multi-class problems. There
are several methods leading to SVM-based multi-
class classifiers. In this Section we briefly describe
the construction of SVM-based multi-class classifiers.
A possible architecture of such SVM-based ensemble
is indicated with no intention of a thorough discus-
sion on this topic. On the other hand, expansion of
the presented method on other architectures is rather
straightforward, (Homenda et al., 2013).

As mentioned, since pure SVMs are two-class (bi-
nary) classifiers, SVM-based multi-class classifiers
have to be designed to cope with more complex clas-
sification problems. One of the approaches is pre-
sented in the left part of Figure 2. The so called cas-
cade architecture is implemented to deal with four
classes. The classifier consists of three two-classes
SVMs. Each SVM separates one class from the rest
presented at its input.

There are several attempts to rejecting foreign ele-
ments, e.g. they might be identified prior to classifica-
tion to native classes (global rejection), after classifi-
cation to native classes (local rejection) or even at dif-
ferent stages of recognition process, (Homenda et al.,
2013).

Models with local rejection can be built based on
the no rejection classifier, as for instance the one de-
scribed above. An example of classification with local
rejection is presented in the right part of Figure 2. It
essentially reuses the SVM-based classifier structure
(without any change) and adds SVMs, which are re-
sponsible for rejecting foreign elements, see the right
part of this Figure. Assuming that foreign elements
are presented to no rejection model, they are (incor-
rectly) classified to native classes. Therefore, output
of such classification (native classes with foreign ele-
ments incorrectly included) is processed by additional
SVMs in order to reject foreign elements.

2.3 Spectral Clustering

Clustering (cluster analysis) is a category of methods
in machine learning which are used to group simi-
lar samples together. Different clustering methods re-
quire different inputs and give different results. In our
work we use spectral clustering to build the architec-
ture of our classifier.

Spectral clustering is a clustering method that, as
its input, takes an affinity matrix W, i.e. a weighted
adjacency matrix of a similarity graph, and the de-

sired number of clusters to create k, refer to (Shi and
Malik, 2000) and (Ng et al., 2001). For clustering of
n samples the affinity matrix has size (n;n). It is al-
ways symmetrical. One way to compute this matrix
is to use a similarity function such as a Gaussian sim-
ilarity function as in Equation (7) on pairs of distinct
samples and put zeros on the diagonal.

The steps of the spectral clustering algorithm are
as follows, refer to (von Luxburg, 2007). Given an
affinity matrix W of the similarity graph and a clusters
count k:

1. Compute the normalized Laplacian

Lym=1 D ¥wD % (11)

of the similarity graph, where 1 is the unit matrix
and D is the diagonal degree matrix of the simi-
larity graph.

2. Compute the k largest eigenvectors of Leym,
i.e. eigenvectors with the largest eigenvalues,

ble, to-have them maximally-independent of each
other).

3. LetU 2 R" X be the matrix containing the vectors

4. Form the matrix T 2 R" ¥ from U by normalizing
the rows to Euclidean norm, i.e. dividing each
value in a row by the value of this norm of the
rOw.

5. Treating each row of T as a point in R¥ (in
fact [ 1;1]), cluster them into k clusters using
K-means or any other algorithm (e.g. the optimal
discretization).

In our work we use the optimal discretization al-
gorithm which is described in (Yu and Shi, 2003). We
did not include its definition here due to space con-
straints and the fact that its definition includes several
complex mathematical concepts that would need to be
described as well.

Scikit-learn library, refer to (Pedregosa et al.,
2011), provides the implementation of the spectral
clustering algorithm.

2.4 Evaluations

In this subsection, factors and measures are defined in
order to provide ways to reliably evaluate the quality
of recognition with rejection.

Native elements are all the elements that are con-
sidered to be included in designed classes and need to
be assigned a corresponding class (i.e. the class they
present). Foreign elements are everything else — the
garbage. We would like our classifiers to be able to:
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identify all native elements as native (i.e. accept
them) and all foreign ones as foreign ones (i.e. re-
ject them),

classify native elements to respective classes.

Quality evaluation of classification with rejection
requires non-standard measures. Intuitively, it is im-
portant to measure how exact rejection procedure, i.e.
how many foreign elements are accepted and, vice
versa, how many native elements are rejected. Of
course, measuring classification’s quality understood
as assigning native elements to proper classes is still
of great importance, (Homenda et al., 2014).

For better understanding of how quality of classi-
fication with rejection should be measured we adopt
parameters and quality measures used in signal detec-
tion theory. Since these parameters are widely uti-
lized, we do not refer to original sources here. The
following parameters were used in defining several
factors, which outline classification’s quality:

TP (True Positives) — the number of native ele-
ments classified as native elements (no matter, if
classified to correct class, or not),

FN (False Negatives) — the number of native ele-
ments incorrectly classified as foreign ones,

FP (False Positives) — the number of foreign ele-
ments incorrectly classified as native ones,

TN (True Negatives) — the number of foreign ele-
ments correctly classified as foreign ones.

CC (Correctly Classified) — the number of cor-
rectly classified elements, i.e. foreign elements
classified as foreign and native elements classified
as native with the correct class

These notions can be used to construct the following
seven characteristics:

. _ CC
Strict Accuracy = TPFENEEPFTN
Accuracy = TP+TN
Y = TP+FN+FP+TN
. . TP
N P = 0
ative Precision TP+FP
. ... TN
Foreign Precision = TNFEN
. . .. TP
Native Sensitivity = TPEEN
. I TN
F = —
oreign Sensitivity TN+EP

Precision Sensitivity
Precision + Sensitivity

F—measure

These characteristics were described in more de-
tail in (Homenda et al., 2014). Strict accuracy was
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added to have a characteristic corresponding to accu-
racy of a model without rejection. The following re-
lation holds: Strict Accuracy 6 Accuracy and in the
case of only one class of native elements it is obvi-
ously turned into equality. The following comments
help to understand emaning of characteristics:

Strict accuracy is the absolute measure of the clas-
sifier’s performance. It is the ratio of the number
of all correctly classified elements, i.e. foreign
classified as foreign (rejected), and native classi-
fied to their respective classes, to the number of
all elements being classified.

Accuracy is a characteristic derived from strict ac-
curacy by ignoring the need to classify native ele-
ments to their respective classes: in other words, it
is sufficient to correctly identify whether elements
are native or foreign. This measure describes the
ability to distinguish between native and foreign
elements. Of course, the higher the value of this
measure, the better the identification.

Native Precision is the ratio of the number of ele-
ments correctly classified as native to the-number
of all ones classified as native. Native Precision
evaluates the ability of the classifier to distinguish
foreign elements from native ones. The higher the
value of this measure, the better ability to distin-
guish foreign elements from native ones. Native
Precision does not evaluate how effective identifi-
cation of native elements is.

Foreign Precision corresponds to Native Preci-
sion. It is the ratio of the number of elements cor-
rectly classified as foreign ones to the number of
all ones classified as foreign.

Native Sensitivity is the ratio of the number of ele-
ments correctly classified as native to the number
of all that should be classified as native, i.e. all
that are in fact native ones. This measure eval-
uates the ability of the classifier to identify native
elements. The higher the value of Native Sensitiv-
ity, the more effective identification of native ele-
ments. Unlike the Native precision, this measure
does not evaluate the effectiveness of separation
between native and foreign elements.

Foreign Sensitivity corresponds to Native Sensi-
tivity. It is the ratio of the number of elements
correctly classified as foreign ones to the number
of all that should be classified as native ones, i.e.
all that are in fact native ones.

Precision and Sensitivity are complementary and
there exists yet another characteristic that com-
bines them: the F-measure. It is there to ex-
press the balance between precision and sensitiv-
ity since, in practice, these two affect each other.
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Increasing sensitivity can cause a drop in pre-
cision since, along with correctly classified ele-
ments, there might be more incorrectly classified.

It is the goal of classification with rejection to
maximize all of the above measures. However, it is
not that simple since, in practice, increase in one can
lead to decrease in another. In practice, depending
on real application, some measures might be more
important than others. For instance, if importance is
given to minimizing the number of foreign elements
identified as native, then Native Precision gets higher
importance than other measures and it should be max-
imized. On the other hand, if the highest priority is
given to minimize loss of native elements, then focus
should be on Native Sensitivity, etc.

3 EXPERIMENT

In this Section the datasets and classifiers architec-
tures used in this paper’s experiment are introduced
and briefly described. The datasets were constructed
based on the MNIST database of handwritten dig-
its, (LeCun et al., 1996). This database was directly
used in construction of the classifier without rejection.
Then, based on this database, two sets of foreign ele-
ments were constructed and used for (reinforcement)
training of rejecting SVMs attached at local level to
the recognizer without rejection.

3.1 Datasets

The complete data consists of 10000 samples with
106 features. This data was split into two sets with
ratio approximately equal 7:3 - the training set with
6999 samples and the test set with 3001 samples
(numbers of samples from each class are not equal
but approximately the same). These samples repre-
sent handwritten decimal digits (i.e. from 0 to 9) and
their classes correspond directly to represented digits.
All 106 features were used for classification. Their
values were scaled to the standard normal distribution
in order to avoid dominance of features with greater
values.

These features were obtained by computing them
from binary (black and white) images. The following
vector features were computed:

projections (vertical and horizontal) — for each
column (row) black pixels in that column (row)
were counted

histograms of projections — for each possible
amount of black pixels, columns (rows) in which

60/ 12L2™v3UYYSELOET7TT78EA?P
0O V22334455061 78894

OO0-=~PRVEFEFVLLANE NN YR P
[« X v IETIA I VYRV RE S Vo < Tl - R Y R

COLL2IGCE L REARRPLLRL
OOF T Y E L4 FRFTDYLLLRD

Figure 3: Elements of native classes (upper part) and for-
eign elements of set A (middle part) and set B (bottom part).

exactly this amount of black pixels is present were
counted

transitions (vertical and horizontal) — for each
column (row) color changes from black to white
were counted (i.e.-how many times a black pixel
precedes a white one)

offsets (from left and right) — for each row the
distance between image’s border and the first
black pixel in that row (counting from left or right
respectively) was computed

differentials of the above

And from these vectors the following scalar features
were extracted:

minimum value and its position
maximum value and its position
mean

first absolute moment

peaks count

Apart from the scalars obtained from vector fea-
tures, the following scalar features were computed di-
rectly from the matrix representations of images:

for each of 4 directions (0 ;45 ;90 ;135 ) the
length of the longest black segment in that direc-
tion. Notice that such segments were found for
each pixel of the image and, furthermore, a given
segment of black pixels is the common direction
for all its pixels

first raw moments
height to width ratio

The rejection models were tested with two sets
of foreign elements. The set of all 10000 native el-
ements is their common core:

the first set (A) of (semi-synthetic) foreign ele-
ments includes rotated native elements,

the second set (B) of (semi-synthetic) foreign el-
ements includes chosen native elements overlap-
ping chosen rotated ones.
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Figure 4: The basic architecture of a SVM-based classifier
for native elements without rejection.

For a preview see Figure 3.

Notice that both sets of foreign elements are cre-
ated from native ones, because we do not have real
foreign elements. Such elements are called semi-
synthetic since they are still handwritten symbols
which might be similar to real ones, on one hand, but,
on the other hand, they were artificially created.

The complete set of 10000 digits was processed as
shown in Figure 3, i.e. digit’s images were converted
to 1 bit per pixel, black ink on white paper, and then
rotated and overlapped.

3.2 Classifiers Architecture

A quasi-balanced tree obtained by using spectral clus-
tering was used as a core of classifier’s architecture.

First, average values of features were computed
for each of 10 classes using the training dataset. These
10 vectors were used to build an affinity matrix us-
ing Gaussian similarity function and used as input
to spectral clustering algorithm along with the num-
ber of clusters equal to 2. This process resulted in
classes being grouped into two separate clusters. The
first cluster contained classes: 0;2;3;5;6;8, and the
second one: 1;4;7;9. The process was repeated for
newly obtained sets of classes until they have at least
two classes.

The final tree as was generated by the spectral
clustering is presented in Figure 4.

The tested classifiers are based on this tree. There
are essentially three classifier models:

1. the no rejection model constructed at the basis of
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Figure 5: SVM-based classifiers with rejection based on the
classifier without rejection. The classifier presented in Fig-
ure 4 is enhanced by applying one-class SVMs (left part)
and two-classes SVMs (right part) to reject foreign ele-
ments.

the training/testing sets of native elements. Its ar-
chitecture is presented in Figure 4. Internal nodes
represent SVMs, however, these can be replaced
by any classifier capable of at least two-class out-
put (e.g. decision trees, randomized forests, etc.),

2. the model with local rejection based on one-class
Support Vector Machines (1-SVMs), cf. Figure 5,

3. the model with local rejection based on two-
classes Support Vector Machines (2-SVMs),
cf. Figure 5.

The tree model can effectively be replaced by any
classifier architecture capable of multi-class output
(e.g. decision trees, randomized forests, etc.).

We also considered a global rejection model with
one-class SVMs instead of doing local rejection.
Namely, rejection of foreign elements was applied
first and then non-rejected elements were subjected to
classification to native classes instead of classifying
all elements to native classes first and then rejecting
foreign elements from every native class using specif-
ically trained SVMs. However, it turned out that one-
class SVM based global rejection was less effective
than local rejection, i.e. Foreign Sensitivity was sig-
nificantly lower in such a case.

It is worth to underline, that investigation on re-
jecting foreign elements was the main aim of this
study rather than achieving outrageous recognition
rates of native elements. Therefore, standard li-
brary functions implementing considered methods
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Table 1: Accuracy matrix for native classes for the classifier shown in Figure 4. Values stand for percents. For the sake of

clarity, zeros are not printed.

o[+ [ 2] 3 [ 4[5 [ 6| 7|8 ]9 |
0 99:29 0:20 0:10 0:20 0:10 0:10
1 99:03 0:26 0:09 0:35 0:26

2 0:19 95:45 1:74 0:39 1:07 0:29 0:19 0:39 0:29
3 0:10 0:69 | 95:74 1:29 0:59 0:79 0:79
4 1:32 0:10 | 95:72 0:31 0:10 0:20 0:20 2:04
5 1:68 2:69 93:83 0:34 0:22 0:78 0:45
6 0:21 0:10 0:42 | 98:54 0:73

7 0:10 0:19 0:49 0:58 0:39 94:94 3:31
8 0:41 0:92 1:13 0:21 1:13 0:21 95:89 0:10
9 0:10 0:20 0:69 1:59 0:50 1:29 0:40 | 95:24

were used without any effort put into increasing ef-
ficiency/quality of classifiers. Of course, detailed re-
searches on the problem of recognition with rejecting
foreign elements as well as practical application of
such researches require more effort put on quality of
every stage of recognition, but this is out of the scope
of this study.

4 RESULTS

In this Section we present the results of the described
experiment. The classifiers are built and evaluated
and their characteristics presented and commented on.

4.1 The no Rejection Model

The first model is build upon the balanced tree in the
following way: all internal nodes are assigned a two-
class SVM which is trained to separate samples of
classes from the set in the left child from samples of
classes from the set in the right child. There are no
classifiers rejecting foreign elements in the leaves of
the tree and it means that this SVM-based classifier
does not reject any sample, i.e. it to classifies all sam-
ples, native and foreign, to one of the 10 classes.
This classifier was used to estimate the right com-
mon regularization (C) parameter for all two-classes
SVMs. The method utilized for estimation of the
optimal value of the regularization parameter was
a 2-base logarithm space search from 2 ° to 2°, i.e.
all the integer powers of 2 in these interval were tried.
The chosen parameter was the one with the highest
score which was calculated as the percent of properly
predicted classes, i.e. with the highest value of Strict
Accuracy measure. Of course, in this case the factors

FP and TN vanish. To improve results a stratified
3-fold cross validation was used instead of a simple
self-validation in the training set.

The best estimated value for C was 8 and it was
used in all further computations.

The final scores of the Strict Accuracy measure
that this model achieves with the chosen parameters
are 99:07% at training set, 90:20% at testing set and
96:41% at both sets joined.

The accuracy matrix for the complete set of na-
tive classes is shown in Table 1. Rows represent real
classes and columns the predicted ones. All the values
are percentages. For instance, the row labeled 1 in-
forms that 99:03% of 1’s is correctly classified, 0:26%
of 1’s is classified as 2’s, 0:09% of 1’s is classified as
3’s etc. Taking the column labeled 1 we have 99:03%
of 1’s correctly classified, 0:10% of 3’s classified as
1’s and 0:10% of 7’s classified as 1’s. Percentages in
rows sum up to 100% ( 0:01% due to rounding er-
ror). Percentages at the diagonal define the accuracy
of the classifier for each class separately.

We also compared our architecture to a popular
multi-class output architecture for SVMs — the one-
vs-one architecture as implemented in LIBSVM. The
results are comparable (96:96% at both sets joined).
However, our architecture is computationally more
efficient since it builds less SVMs (in this case: 9 in
our architecture vs 45 in the one-vs-one architecture).

4.2 The Local Rejection Model with
One-class SVMs

Employing one-class SVM for each native class is the
simplest method for rejecting foreign elements, com-
pare left part of Figure 5. The question arises for
an optimal value of the parameter n. This is quite in-
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Table 2: Results for SVM-based classifiers with rejection.

rejection by one-class SVM two-classes SVM
details n=0:01 n=0:22 train set A train set B
results on set A B A B A B A B
Strict Accuracy 90:17 68:30 85:69 74:06 97:97 67:03 86:78 97:64
Accuracy 91:78 69:84 86:97 75:28 99:65 68:64 88:39 99:18
Native Precision 89:24 62:04 95:31 72:50 99:99 60:46 82:04 99:97
Foreign Precision 94:67 91:13 81:22 78:21 99:31 98:47 97:89 98:48
Native Sensitivity 95:02 95:02 77:76 77:76 99:31 99:31 98:31 98:31
Foreign Sensitivity 88:54 46:81 96:17 73:02 99:99 40:59 78:48 99:97
Native F-measure 92:04 75:06 85:64 75:04 99:65 75:16 89:44 99:13
Foreign F-measure 91:50 61:85 88:06 75:53 99:65 57:49 87:12 99:22

tuitive that the higher its value, the better acceptance
of native elements and the worse rejection of foreign
elements. Since real foreign elements are not known
at the stage of classifier’s construction, semi-synthetic
ones, as described in Section 3.1, were used for both
training and testing purposes.

The results were first computed for n = 0:01 and
are high for set A. Rotated digits differ enough from
non-rotated ones to be easily rejected. In the case of
set B, there is a substantial drop in both native preci-
sion and foreign sensitivity (as well as a small drop in
foreign precision). This means that in the space of our
106 features these prepared symbols are quite similar
to digits and one-class SVMs accept them more often
than it is in the case with the rotated digits.

The question arises if results can be improved by
modifying parameter n. A simple linear search with
step equal to 0:01 reveals n = 0:22 as the best value
for set B in terms of accuracy. However, better results
for set A could not be achieved with this step.

With n = 0:22 foreign sensitivity got improved in
both cases but native one dropped considerably. It
means that the classifier was able to reject more for-
eign elements but also rejected more native elements
(which is not what we want). Furthermore, it resulted
in a drop in foreign precision since more native ele-
ments were incorrectly rejected. Overall, better accu-
racy with set B but worse with set A were achieved.

4.3 The Local Rejection Model with
Two-classes SVMs

In this model one-class SVMs are replaced by two-
classes SVMs, cf. Figure 5. In case of one-class
SVMs it was straightforward how to train them —
use data for particular class only. In case of two-
classes SVMs, however, there needs to be an addi-

98

tional anti-class which acts as an explicit foreign ele-
ments class. This model was built against two sepa-
rate anti-classes:

1. Train set A: The class of rotated digits.

2. Trainset B: The class of rotated digits printed over
normal digits.

The sensitivity of foreign elements is high in set
A when it is trained against itself. This is the ex-
pected result since that is the goal of training a two-
class SVM. However, it is considerably lower in set
B, lower even than the lowest one obtained with one-
class SVMs.

When training with set B the sensitivity of foreign
elements in that set improved but got worse in set A
due to different anti-class. There is also a small drop
in native sensitivity. That might be due to higher sim-
ilarity between elements in set B and native elements.

In both cases, however, the native sensitivity is
very high, higher than with any of the presented one-
class SVMs-based models. This is the main result of
abandoning one-class SVMs — native elements are
more likely to be accepted.

4.4 Training with Other Anti-classes

There was an idea to train these rejecting two-classes
SVMs using foreign samples with a random number
of randomly distributed black pixels, using both uni-
form and normal probability distributions. However,
in performed experiment, it turned out that such sam-
ples are not a good anti-class. It occurred that such
samples are so much different comparing to native
samples (handwritten digits), that they were perfectly
identified as foreigners, with no mistakes! Therefore,
this idea was abandoned and the results are not in-
cluded.
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5 CONCLUSIONS

In this paper we presented two ways in which stan-
dard classifiers can be enhanced to reject foreign ele-
ments at local level. Namely, first, all elements, native
and foreign, subjected to recognition were classified
to native classes. Then, for every native class a SVM
dedicated to the identification of foreign elements was
applied. While one-class SVMs are the more straight-
forward way to do the rejection, two-classes SVMs
gave similarly good results keeping Native Sensitiv-
ity high.

There are several interesting research directions
related to recognition with rejection. An interesting
topic is a possibility to generate such random sam-
ples that would improve quality measures in so called
reinforced learning of rejecting elements. Another in-
teresting topic is related to the architecture of classi-
fiers. Architectures with rejecting at different levels
of classification would be more effective than ones
with rejection at local level only. Another topic is re-
lated to re-classification of rejected elements. - This
topic is especially important for classification with
low Foreign Sensitivity. Alike, other measures would
be considered in construction of classifiers and the re-
classification process.
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