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Abstract: In this paper, as unordered trees preserving the adjacency among siblings, we introduce the following three

kinds of acyclically ordered tregthat is, eiordered treghat allows both a left-to-right and a right-to-left order
among siblings, ayclic-ordered treghat allows cyclic order among siblings in a left-to-right direction and a
cyclic-biordered treghat allows cyclic order among siblings in both left-to-right and right-to-left directions.
Then, we design the algorithms to compute #lignment distancend thesegmental alignment distance
between biordered trees @(n’D?) time and ones between cyclic-ordered trees and cyclic-biordered trees in
O(n?D%) time, wheren is the maximum number of nodes abds the maximum degree in two given trees.

1 INTRODUCTION 1995) and applied to comparing RNA secondary

structures in bioinformatics (Hochsmann et al., 2003;
Comparing tree-structured data is one of the impor- Schiermer and Giegerich, 2013; Shapiro and Zhang,
tant tasks for many research areas such as patteri990; Zhang, 1998). The alignment distance is for-
recognition, natural language processing, machine mulated as the minimum cost of possillkgnments
learning, data mining, bioinformatics, and so on. In (as trees) obtained by first inserting nodes labeled
these researches, the tree-structured data are well rewith spaces into two trees such that the resulting trees
garded asooted labeled treetrees for short). Also ~ have the same structure and then overlaying them. In
a tree isorderedif the left-to-right order among sib-  operational, the alignment distance is an edit distance
lings is fixed andunorderedotherwise. such that every insertion precedes to deletions.

An edit distancdTai, 1979) is one of the standard Kuboyama (Kuboyama, 2007) has first formulated
distance measures between trees. The edit distance ian alignable mapping as a variation of the Tai map-
formulated as the minimum cost to transform from a ping. Then, he has shown that the alignment dis-
tree to another tree by applyireglit operationsof a tance coincides with the minimum cost of alignable
substitution adeletionand aninsertionto trees. mappings and the alignable mapping coincides with a

It is known that the edit distance is closely related less-constrained mapping (Lu et al., 2001). As same
to aTai mapping(Tai, 1979). The minimum cost of  as the edit distance, whereas the problem of comput-
Tai mappings coincides with the edit distance (Tai, ing the alignment distance between ordered trees is
1979). Then, whereas the problem of computing the tractable, one between unordered trees is MAX SNP-
edit distance between ordered trees is tractable (De-hard (Jiang et al., 1995). On the other hand, this prob-
maine et al., 2009), one between unordered treeslem becomes tractable if the degrees of unordered
is MAX SNP-hard (Zhang and Jiang, 1994). This trees are bounded (Jiang et al., 1995).

MAX SNP-hardness holds even if both trees are bi- In the above results of computing distances, we

nary (Hirata etal., 2011). o deal with either ordered or unordered trees. Note
An alignment distancés an alternative distance that unordered trees allow all of the permutations
measure between trees introduced by (Jiang et a'-,among siblings. On the other hand, several appli-
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2005) and molecules in molecular graphs (Horvath wherenis the maximum number of nodes aldds the
et al., 2010) as trees, the adjacency of nodes in themaximum degree in two given trees. This time com-
compounds is represented as the adjacency amonglexity is same as one between ordered trees (Jiang
siblings in the tree representation. Also, when etal., 1995). Also we design the algorithms to com-
comparing or modeling RNA secondary structures pute the alignment distance between cyclic-ordered
as trees (Hochsmann et al., 2003; Schiermer andand cyclic-biordered trees @(n°D*) time.
Giegerich, 2013; Shapiro and Zhang, 1990; Zhang,  Next, by using the same strategy of (Kan et al.,
1998), the base pairs in nucleotides are connected2014) to compute a top-down distance for every pair
with preserving the adjacency among siblings. of nodes in given two cyclically ordered trees in ad-
Hence, as unordered trees preserving the adja-vance, we design the algorithm to compute the seg-
cency among siblings, in this paper, we formulate mental alignment distance between cyclically ordered
the following three kinds of acyclically ordered trees with the same time complexity as above.

tree Let vq,...,vn be siblings from left to right. Finally, we give experimental results for the
Then, we say that a tree Isiordered if it allows alignment distance between biordered trees com-

two ordersvy,...,vp and vy,...,vi. Also we say  paring with the edit distance between ordered
that a tree iscyclic-orderedif it allows a cyclic ~ trees, by using N-glycan data provided from
ordervi,...,vn,V1,...,Vi_1 for everyi (1 <i <n). KEGG (Kyoto Encyclopedia of Genes and Genomes,
Furthermore, we say that a treedgclic-biordered ~ http: //wwv. kegg. j p/ ).
if it allows cyclic ordersv,...,Vn,V1,...,Vi—1 and
Vi,...,V1,Vn,...,Vi_1 foreveryi (1<i <n).

Since an unordered binary tree is always cycli- 2 PRELIMINARIES
cally ordered, the problem of computing the edit dis-
tance, the segmental distance (Kan et al., 2014) andp treeis a connected graph without cycles. For a tree
the bottom-up distance (Valiente, 2001; Kuboyama, 1 _ (V,E), we denote/ andE by V(T) andE(T),

2007) between cyclically ordered trees is also regpectively. Also thsizeof T is |V| and denoted by
MAX SNP-hard (Hirata et al., 2011; Yamamoto IT|. We sometime denotec V(T) by ve T. We

et al., 2014). On the other hand, the problems of yenote an empty tree iy
computing the isolated-subtree (or constrained) dis- A rgoted treeis a tree with one node chosen as
tance (Zhang, 1995; Zhang, 1996), the accordantjis root. We denote the root of a rooted tr@eby
(or Lu's) distance (Lu, 1979; Kuboyama, 2007), (1), For each node in a rooted tree with the root
the LCA-preserving (or degree-2) distance (Zhang | |et UP;(v) be the unique path froma to r. The
et al.,, 1996) and the top-down (or degree-1) dis- parentof v(# r), which we denote byar(v), is its
tance (Selkow, 1977; Chawathe, 1999) between UN- adjacent node obP; (v) and theancestorsof v(+ r)
ordered trees are tractable, so are the problems ofg.q the nodes obP; (v) — {v}. We denote the set of
computing these distances between cyclically ordered 5| ancestors of by anqv). We say that is achild
trees. of vif vis the parent ofi. The set of children of is
In this paper, we focus on the alignment dis- denoted bych(v). We call the number of children of
tance and segmental alignmerdistance, which is v thedegreeof v and denote it byl(v), that is,d(v) =
an alignment distance to preserve the parent-children|ch(v)|. Also we defined(T) = max{d(v) |ve T}
relationship as possible (Yoshino and Hirata, 2013), and call it thedegreeof T.
between cyclically ordered trees, because the prob-  |n this paper, we use the ancestor orderand<,
lems of computing both distances are tractable if the that is,u < vif vis an ancestor af andu < vif u< v
degrees of unordered trees are bounded. Note that theyr u = v. We say thatv is theleast common ancestor
algorithms to compute all of the above tractable vari- of uandv, denoted byiLlv, if u<w, v<wand there
ations of the edit distance between unordered treesexists now such thatV <w, u<w andv<w. A
contain the maximum weighted bipartite matching al- (completg subtree of T= (V,E) rooted by ydenoted
gorithm (Yamamoto et al., 2014; Zhang et al., 1996) by T|v], is a treeT’ = (V/,E’) such thatr(T’) = v,
or originally the minimum cost maximum flow algo- v/ ={ueV |u<v}andE’ = {(u,w) €E |u,weV'}.
rithm (Wang et al., 2003; Zhang, 1996). We say that a rooted tree liabeledif each node
On the other hand, in this paper, by directly ex- is assigned a symbol from a fixed finite alphaket
tending the recurrences to compute the alignment dis- For a nodev, we denote the label of by I(v), and
tance between ordered trees (Jiang et al., 1995), wesometimes identify with | (v). Also lete ¢ X denote
first design the algorithms to compute the alignment a speciablanksymbol and defin& = XU {e}.
distance between biordered treesn’D?) time, We say that a rooted tree @deredif a left-to-
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right order among siblings is fixedjnorderedoth-
erwise. In particular, for nodes andv in an or-
dered treeu is to the left of v denoted byu < v,
if pre(u) < pre(v) andpos{u) < pos{v) for the pre-
order numbepre and the postorder numbpost
Furthermore, in this paper, we introdunelically
ordered treedy using the following functioney; (i)

andop (i) for 1<i,p<n.

opn(i) = ((i+p—1) modn)+1,
Opn(i) = ((N—i—p+1)modn)+1.
Definition 1 (Cyclically Ordered Trees)Let T be a

tree and suppose that, . .., v, are the children of €
T from left to right.

1. We say thaf is biorderedif T allows the orders
of bothvy,...,vyandvy,...,v1.

2. We say thafl is cyclic-orderedif T allows the
ordersvcgn(l),...,v £ () forevery 1< p<n.

Opn
3. We say thaT is cyclic-biorderedif T allows the
ordersvoanm, < Vagn(n) and Vogn(1) 2 Vopn(n)

forevery 1< p<n.

Sometimes we use the scriptd, ¢, cb, u, and the no-
tation ofte {o, b, c,cb,u}, which we call arctree.

It is obvious that the cyclically ordered trees are

Alignment of Cyclically Ordered Trees

1if I3 # 1,. Thecostof an alignmentZ, denoted by
y(‘T), is the sum of the costs of all labelsin

Definition 3 (Alignment Distance (Jiang et al.,
1995)) Letme {o,b,c,chu}. Then, thealignment
distancebetweenT; and T is defined as the mini-
mum costy(‘T) for every alignmentZ’ € 2™(Ty, Ty).
Also we call an alignment with the minimum cost an
optimal alignment

Example 1. Consider ordered tredg andT; in Fig-
ure 1 (left). Then/7 in Figure 1 (right) is the opti-
mal alignment betweef, andT,. Under the unit cost
functiony, sincey(‘T) = 4, the alignment distance be-
tweenT; andTs is 4.

(@ @ (@)
® © Co@memEDn E@mEd
T T2 T

Figure 1. Ordered tree§; and T, (left) and the optimal
alignment7Z € 4°(Ty,T;) (right) in Example 1.

3 MAPPING AND DISTANCE

an extension of ordered trees and a restriction of un- |n this section, we introduce &i mappingand its
ordered trees. The number of orders among siblingsvariations, and then the distance as the minimum cost
of a nodev in ordered trees, biordered trees, cyclic- of all the mappings.

ordered trees, cyclic-biordered trees and unordered

treesis 1, 2d(v), 2d(v) andd(v)!, respectively.

Next, we introduce the alignment distance (Jiang

et al., 1995). Here, forme {o,b,c,cb u}, we call an
isomorphism foretrees a-isomorphism

Definition 2 (Alignment (Jiang et al., 1995)) et Ty
andT; be trees andt € {o,b,c,cb,u}. An alignment
betweenl; andT; is a tree7 obtained by the follow-
ing two steps.

1. Insert new nodes labeled bynto T; andT, such
that the resulting tre€f andT, aretrisomorphic
with ignoring labels and(g(v)) # € whenever
I(v) = € for a Trisomorphismg betweenT, and
T, and every node € T,.

2. Set7 to an obtained tred@] by relabeling a la-
bell (v) for every nodes € T] with (1(v),l(g(v))).
(Note that(e,€) ¢ 7.)

Let A™(T1,T,) denote the set of all possible align-

ments betweem; andTo.

We define @ost functiory: (Ze x ¢ — {(€,€)}) —
R* on pairs of labels. We constrajrto be ametric,
that is, y(l1,12) > 0, y(I1,11) = 0, y(I1,12) = y(I2,11)
andy(l1,13) < y(l1,l2) + y(I2,13). In particular, we
sometimes useunit cost functiorsuch tha/(l1,l2) =

Definition 4 (Tai Mapping (Tai, 1979)) Let T; and

T, be trees antl CV(Tq) x V(T2).

1. We say that a triplgM,T;,T,) is an ordered
Tai mappingfrom T; to T, denoted byM e
M3, (T1, T2), if every pair(ug,v1) and(ug, Vo) in
M satisfies the following conditions.

(i) u1 = uyiff vi = v, (one-to-one condition).

(i) u1 < uyiff vi < v, (ancestor condition).

(i) u1 < uyiff v < v (sibling condition).

2. We say that a tripléM,T;, T») is anunordered
Tai mappingfrom T, to T, denoted byM €
M7, (T1,To), if M satisfies the conditions (i) and
(ii).

In the following,

V1,V2,V3, Vs € ch(v).

3. We say that a triplgM,T1,T,) is a biordered
Tai mappingfrom Ty to T, denoted byM e
M ?A, (T1,T2), if M satisfies the above conditions
(i) and (ii) and the following condition (iv).

(iv) For every u € T and v € T, such that
(ug,v1), (U2,v2), (us,v3) € M, one of the fol-
lowing statements holds.

1 u S < ugiff vi <vo <vs.

let ug,up,u3,us € ch(u) and
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2. U S up X ugiff va <Xvo < vy,

4. We say that a tripléM, T1, T,) is acyclic-ordered
Tai mappingfrom T; to T,, denoted byM €
M3, (T1, T2), if M satisfies the above conditions
(i) and (ii) and the following condition (v).

(v) For everyu € Ty and v € T, such that
(u1,v1), (U2, v2), (us,v3) € M, one of the fol-
lowing statements holds.

1. up S X ugiff vi S vo <vs.
2. U Sup X ugiff vp vz <vy.
3. Sup =uziff va <vi < wo.

5. We say that a triple(M,T;,T,) is a cyclic-
biordered Tai mappindrom T; to T,, denoted by
Me M%ﬂl (T, T2), if M satisfies the above condi-
tions (i) and (ii) and the following condition (vi).

(vi) For everyu € T; and v € T, such that

(Ul,Vl),(Uz,Vz),(Ug,V3),(U4,V4) € M, one of

the following statements holds.

LU Rl 2w XU iff vi S vo vz <.

LU 2 JUg X Ug iff Vo Sz Xvg X v,

LU Rl 2w R U iff va 2 va X v <o,

LU R Uz R U iff va 2 v X vo <.

U R 2w XU iff va 2 vz X vo <vyp,

UL S 2w = ugiff va=vo v <.

UL XU XU = ugiff vo <vp v <.

8. U1 X X=X ugiff vi Jva 23 <o

No o~ wN PR

We will useM instead of(M, T1, T2) simply.

Since a less-constrained mapping (Lu et al., 2001) 1.

coincides with an alignable mapping (Kuboyama,

2007) characterizing the alignment, we formulate the

alignable mapping as the less-constrained mapping.
Definition 5 (Variations of Tai Mapping) Let T; and
T, be treesyte {o,b,c,cb,u} andM € M7, (Ty, T2).

Here, we denot®! — {(r(T1),r(T2))} by M~.

1. We say that M is an alignable map-
ping (Kuboyama, 2007) (or dess-constrained
mapping (Lu et al., 2001)), denoted by
M e My, (T, Tp), if M satisfies the follow-
ing condition.

V(uz,v1), (U2, V2), (Us, v3) € M
(U1|_|U2 < Upluz = Vvollv3 :V1L|V3).

2. We say thaM is asegmental mappin@g<an et al.,
2014), denoted byl € M ¢ (T1,T2), if M satisfies
the following condition.

Y(u,v) e M~

(a(u’,\/) eM ((u’ € andu)) A (V € ano(v)))
— ((par(u),par(v)) = M))
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3. We say thatM is a segmental alignable map-
ping (Yoshino and Hirata, 2013), denoted by
M € Mgan(T,T2), if M € Mg (T1,T2) N
MKLN (T1,T2).

4. We say thaM is atop-down mappindSelkow,
1977; Chawathe, 1999) (ordegreel mapping,
denoted byM € M7,.(T1, T,), if M satisfies the
following condition.

Y(u,v) e M~ ((par(u),par(v)) € M).

Let M be a mapping fronT; to T,. Letl andJ be
the sets of nodes iy, andT, but notinM. Then, the
costy(M) of M is given as follows.

yMy="5_ v(uv)+ Zv(u78) + Zv(&V)-
(uv)eM ue Ve
Definition 6 (Variations of Edit Distance)For every
A € {TAI,ALN,SGALN, Topr} andme {o,b,c,ch,u},
we define the distanc&'(Ty, T2) as follows.

(T, T2) = min{y(M) | M € Mx(T1, To)}.

Theorem 1. Let T; and T be trees andrm €
{o,b,c,cbu}.

1. t7,,(T1, T2) coincides with the edit distance (Tai,
1979).

2. 13, (T1,T2) coincides with the alignment dis-
tance (Kuboyama, 2007).

Theorem 2. Let T and & be trees such that &
[T1| > |T2| = m and D= max{d(T1),d(T2)}.

We can computer$, (T1,Tz) in O(nm?(1 +
log2)) = O(n®) time. On the other hand, the
problem of computingy,, (T1, T2) is MAX SNP-
hard, even if T and T, are binary (Demaine
etal., 2009; Zhang and Jiang, 1994; Hirata et al.,
2011).

2. We can compute? , (T, T2) and 1., (T1,T2)

in O(nmD?) time. On the other hand, the prob-
lem of computingy, , (T1, T2) andté_,, (T2, T2)

is MAX SNP-hard, but it is tractable if the de-
grees of Tand T, are bounded (Jiang et al., 1995;
Yoshino and Hirata, 2013).

Proposition 1 (cf. (Kuboyama, 2007; Yoshino and
Hirata, 2013)) Let T and T be trees andm €
{o,b,c,ch,u}. Also suppose that a cost function is
a metric. Thent®, (T1,T2) andt},.(T1, T2) are met-
rics, whereas neithety, , (T1,T2) nor 13,4, (T1, T2)

is a metric.

Proposition 2. Let T; and § be trees. ForA €
{TAI,ALN,SGALN, TOP} andtt € {o,b,c,ch,u}, the
following statements hold.

1. (T, o) < P(Ty, o) < R(T, T)
2. TX(Tl,Tz) < Tﬁb(Tl,Tz) < Tg(Tl,Tz)



3. T'IT'[Al (TlvTZ) < TKLN (T1,T2) < TT[SGALN (TlvTZ) <
T1T'[0P(T17T2)'

Proposition 3. For A € {TAI,ALN,SGALN, TOP},

there exist treesiTand T satisfying each of the fol-

lowing conditions.

1. §(T, T2) < (T, T2).
2. (T, ) < §(Ty, T2).

Proof. Consider the following tre€;, T, andTs.

T ip) T3

Under the unit cost function, Statement 1 follows
thatt?,.(T1, T2) = 1 < 3=15,,(T1, Tz) and Statement
2follows thatt . (T1, T3) =1 < 3=12_,(Ty,T2). O

Proposition 4. Let T, and § be trees andA €
{TAI,ALN,SGALN, TOF}.

1. 1f ma{d(Ty),d(T2)} <1, then /it holds
that Tg(Tl,Tz) = TR(Tl,Tz) = TX(Tl,Tz) =
Tgb(Tl,Tz) = TX(Tl,Tz).

2. If max{d(T1),d(T2)} < 2, then it holds that
TR(Tl,Tz) = TX(Tl,Tz) = Tﬁb(Tl,Tz) = TK(Tl,Tz).

3. If max{d(T1),d(Tz)} < 3, then it holds that
Tgb(Tl,Tz) = TX(Tl,Tz).

Proposition 5. For rte {b,c,cb}, there exist trees{T

and T satisfying each of the following conditions.

1. T10'A| (TlvTZ) < TRLN (TlaTZ)'
2. TRLN (T17T2) < T%u (TlaTZ)'

Proof. Consider the following tree§, T, andTz and
suppose that a cost function is the unit cost function.

1. Itis obvious that$AI (T1,T2) = 2. On the other
hand, since the alignmefit; 2 is an optimal alignment
betweenTl andT; for cyclically ordered trees, it holds
that TALN (TlaTZ) = T%LN (TlvTZ) = Tgﬁ)_N (TlvTZ) =3.
Note thattQ , (T1,T2) = 4 (Jiang et al., 1995).

2. Since the alignmentI'13 is an optimal
alignment betweei; and T3 for cyclically ordered

Alignment of Cyclically Ordered Trees

trees, it holds thatt] ,(T1,Ts) = 1§, (T1, Ta) =
18 (T1,T3) = 1. On the other hand, it is obvious that
T-|0—A| (T1,T3) = 4. Note thatrgLN (T1,T2) =5. O

4 ALGORITHMS

In this section, we identify a node with its pos-
torder number. Also let = |T1|, m= |Tz| (and sup-
pose thatn > m), d = min{d(T1),d(T2)} andD =
max{d(Ty),d(T2)}.

A(n ordered)forestis a sequencgly,..., Ty| of
trees. For a tredl and a nodel € T, T(i) is a
forest obtained by deleting the robtin T[i]. For
nodesi € T; and j € Ty, let the children ofi and
j beis,...,is and ji1,...,j;. That is, it holds that
d(i) = sandd(j) =t. Also, for treesT; and Ty,
we denote the forest; (i) = [T1[i1],..., T1[is]] and
T2()) = [T2[ja],- . -, T2[ji]] by Fa(ia,is) andFa(ja, ji)-

ForA € {ALN,SGALN, Tor} andme {o,b,c,cb},
the recurrences in Figure 2 compute the distarice
and the forest distana® when containing an empty
tree or forest. Also Figure 3 illustrates the common
recurrence§ ! andA} to computery anddy.

5(0,0) =
umumzmmmw+W@7
THO.T0i]) = 5(0.T2() + v(e. ).
SE(Te(i).0) = 3 TH(Tafi]. 0),

T Tlm 0>+ min {w Teli) ~TH(T.0),
= min T)—TR(0,T)}
7F2(117Jt))

Ell,lﬂ) JFa(j1, jt) + TA(Ta[ig), 0), }

i1,is), F2(j1, jt-1)) +TA(O, To[ jt]),
1(i1,0s-1), Fa(j1, ji-1)) +TA(Talis], T2[jt])

The common recurrencesSy(Ty,T2) and

Let Ti(i) = [Tifia],..
[T2[ja],- -, T2[jt]]- Also Iet 1< p<sand1<qg<
Then, we denote the foregi i+ )] [cps(s) ]

t.
]
and [T2[jqy, )]s+ Teliog, ] by Tl() and T3 (J)-
]
)-

S Tafig]] and To(j) =

Also we denote the forest§1[| Sell )] T1[| Ss(9) ]

and[Tz[jg, 1))+ Teligy, )] byT P(i) an (J
It is obvious thaffy (i) = Tll(i) andTy(j) = Tzl(j).
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Furthermore, the values gb and q in T1 (i), andF,(j1, jt), and 7 contains the alignment of
T1 (is), T2( ) andT2 (jt) are Q)p=qg=1if mt=o, Fi(ik,is) andTa(jt) for 1<k <s.
(2)p=+landg=+1lift=bh, (3) 1< p<sand ) ) .
1<qg<tifm=cand (4) 1< p<s —-s<p< -1, In just above three formulas, an optimal alignment

1<qg<tand—t <q< —1if m=ch Hence, we T contains and expands the siblings of some node in
prepare the following sets: ((s) = o(t) = {1}, (2) T 0r Tz (or both). When extending fron§  (T1, T2)

b(s) = b(t) = {—1,1}, (3) c(s) = {1,...,s}, c(t) = to T}, (Tl,'l_'z), it is sufficient to deal With more than
{1,...,t}, and (4)ch(s) = {-s,...,—1,1,...,s}, two ordgrs in the above three formulas, mstead.ofone
cb(t) = {—t,....,—1,1,...,t}. We refer these sets to left-to-right order, and then to repladg(i), Ta(j),

m(s) andm(t) for te {o,b,c,ch}. Ta(is) andTz(je) with TP(i), T,'(j), Ty’ (is) andT,'(j;)

Then, by introducing the sets(s) andi(t) into for p € m(s) andq € m(t). Hence, by replacing the for-
recurrences of computingy, (1, T2) between cycli- formula in T, (Fu(is.is), Fo(j1. it)) and the second

cally ordered tree$; andT, as Figure 4. and the third formulas iy, (F1(i1,is), F2(j1, Jt)) in
Figure 4, we can comput&,  (T1, T2) correctly. [

S |
Taun (Tl %{2 (S, (TP, ) 4G D)) Theorem 4. We can computet® ,(T1,T2) in
= min pen()qen(t) ALNG LA 2 ’ }, O(nmD?) time. Also we can computg, , (Ty, T2) and

(Ta[i], T2[j]) cb ; -

A, (Fl(ui‘f_ui)_ Fo(jz, jt)) = min 12, (T2, T2) in O(nmd ) time.
A(/iALNS()Fl('l"S)’Fz(Jl’1‘))’ Proof. In Figure 4, the number of recurrencesfy,,
Vils S (Fainsis 1)sFa( it k1)) is 3 and one i}, is 5; the number of recurrences

+._ min s AT TR in 12 is 6 and one irY,  is 7; the number of re-
1<k<t,peT(s) +6A|_N (Tl (is),Fo(jk, it))) . ALN ALN ’ ! )
y(e, jt) currences it is d(i)d(j) +2 and one i}, is
- {5ALN(|:1( 1,ik-1), Fz(]L]t 1))} d(i) +d(j) + 3; the number of recurrencesiff , is
1<kesgentt) | +OAu (Fulikids), T () 4d(i)d(j) +2 and one irdbg | is 2d(i) +2d(j) +3
Figure 4: The recurrences of computinfj, ,, (T1, T2) be- According to the proof of (Jiang et al., 1995),
tween cyclically ordered trees. for s = d(i) and t = d(j), we can compute

Bun (Falig 1s), Faljv, i) in O((s—8) x (t —t')
- ((s—)+(t—t)) = O(d(i)d(j)(d(i) +d(]))) time.
Theorem 3. The recurrences in Flgur_e 4 are correct Then, we can Computégw(,:l( ¢.is),F2(jir, jt)) in
to computery, (T1,T2) between cyclically ordered  o(d(i)d(j)(d(i) +d(j))) time. So the running time
trees T and & for e {b,c,cb}. of computingt?,  (T1[i], T2[j]) for each(i, j) € Ty x
To is Od(i)d(j)(d(i) +d(j)d(i) +d(iH)d(j)(d(i
Proof. In the proof of (Jiang et al., 1995) showing dZ(JI)S)d(E))(): 8()(50()'3&)(5]()))_‘_(3&3)2()) &Jgrgcg):rhe

that the recurrences of computir&_N (Ti, T2) Iscor-  rynning time of computing?,, (T1, T2) is:
rect, the formulas and the cases of an optimal align-

ment tree or forest” are presented as follows. [Ta| T2

o[ d(i)d(j)(d(i) +d(] 2>
1. The formulady , (T1(i),T2(j)) +¥(i, ) is corre- i;j; ( (DDA +d(1)
sponding to the case thét j) is a label in an op- Ta| T2
timal alignment treeZ” of Ti[i] and T,[j], and T < Zl ZO< d(T1) +d(T2)) )
contains the alignment &% (i) andTz(j). - .
2. The formula
{62LN(F1(i1,i51),F2(jl,jk1))} = O<(d(T1 )+(T)* Zid - Z 40 )
V(is, €) + mln 5 / 2
<kt +8n (Ta(is), F2(Jk, t))) < O(|T|  |Ta| % (d(Tp) +d(T2))2 )
is correspondlng to the case th#ag €) is a label = O(nmD?).
in an optimal alignment forest of Fy(i1,is) and
F(j1, jt), andZ contains the alignment & (is) Also, by focusing on the number of recurrences in
andR(jk, jt) for1 <k <t. Figure 4, we can comput®; , (Fi(ig,is),F2(Ji, jt))
3. The formula o o and 6,(13\?_N(F1(is’7is_)a':2(jt’ajt)) in  O((s —
Ve ) min { B Fuliviic ). Fo(j 1)) )d(j) x (t — t)d(i) x ((s— ) + (t — 1)) =
U fckes +082\ (Fu(ik, is), T2(jt))) O(d(i)?d(j)?(d(i) + d(j))) time. So the run-
is corresponding to the case that j;) is a la- ning time of computing 1§, (T1[i], T2[j]) and
bel in an optimal alignment forest of Fy(iy,is) 0 (Tufi], T2[j]) for each (i,j) € Tt x To is
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O(d(i)2d(j)?(d(i) + d(i))d(i) + d(i)2d(j)?d(i) +
d()))d(j)+d(i)d(j)) = O(d(i)2d(})2(d(i) +d(j))?),
where the last formula(i)d(j) is corresponding to
the time complexity of computing the first recurrence
in th,  (Tw[i], T2[j]) in Figure 4. Hence, the running
time of computing§, , (T1, T2) andt®®, (T, T») is:

Tzli (dt2atiy?t + o))
\Tl\J\Tz\l )d
< ZZO( ' (<(:|J(T1 +d T2 )
(To)d(T2)(d(T1) + d(T2))?
=0 xid( ) X E‘d
(|T1| X |T2| X d(Tl ~|—d

<
= O(nmdD).

O

Next, we design the algorithm to compute the
segmental alignment distantg, 5, (T1, Tz) for me
{b,c,cb}. Here, we adopt the same strategy of (Kan
et al., 2014) to computel .(Ti[i],T2[j]) between
Ti[i] andT[j] for every pair(i,j) e i x T, (1 <i <
n,1 < j <m)in advance.

Then, Figure 5 illustrates the recurrences of com-
puting 12.,,, (T1,T2) for cyclically ordered trees.
Here, 8% 5, (F1,F2) is same asdy  (F1,F2) by re-

ALN

placing the subscript AN with SGALN.

T?op(Tlm TZ[]])
min_ {8Foe(T]

P(0), T,
PET(s),qeT(S)
6nop(Fl(|17.|S) FZ.(JL Jt))
TssALN (T%T['LTZ[J_]) _
TTop(Tl[ILTZ[”)
--use the value computed in advance

min {5sGALN( ), () +YG, D)} (-
peT(s),qem(t)

rSGALN (Tl[ } TZ[J])

6SGALN(F1( Lis),F2(j1, jt))
-same a9y with replacing AN with SGALN.

2 (1)) +Y(i, )},
AR op(Fa(in,is), F2(ja, Jt))-

=min

Figure 5: The recurrence of computin§,, , (T1,T2) be-
tween cyclically ordered trees.

Theorem 5. The recurrences in Figure 5 are cor-
rect to computerSGALN (T1,T2) in O(nmD?) time, and
ean (Tr, T2) andt, (T, T2) in O(nmdB) time.

Proof. The correctness follows from Theorem 3 and
(Yoshino and Hirata, 2013). Since the number of re-
currences i, in Figure 5 isO(1) and one int$,,
andt%%P is O(dD), we can compute? . (Ti[i], T2[j])
in O(nm) time and computer$, . (T1[i], T2[j]) and

10 (T1[i], T2[j]) in O(nmdD) time for every pair

Alignment of Cyclically Ordered Trees

(i,j) € Ty x T.. Hence, by Theorem 4, the run-
ning time of computingt®.,, (T1,T2) is O(nm) +
o(nmD?) = O(anz) Also, the running time
of computingt$,,,, (T2, T2) and 18, (T1, T2) is
O(nmdD) + O(nmdD®) = O(nmd D). O

5 EXPERIMENTAL RESULTS

In this section, we give experimental results 8,
comparing wittt%,,, by using N-glycan data provided
from KEGG. Here, the number of N-glycan data is
2142, the average number of nodes is 11.09, the av-
erage number of labels is 5.43 and the average depth
and degree are 5.38 and 2.07, respectively.

50 - -

]
IS

Figure 6: The correlation diagrams to the edit distar{ge
of 1}, for N-glycan data.

Figures 6 illustrates the correlation diagrams to
19, of 1, for all the 2293011 pairs of N-glycan
data. The plots in Figures 6 are the ratio (%) of the
pairs of trees whose value ©f, , is given as they-
axis to the value of?,, given in thex-axis.

Figures 6 shows that, for N-glycan data, whereas
8, tends to be smaller thad,,, we can observe the
pairs thatr}  is greater than$,, as Proposition 5.

Table 1 represents the number of pairs comparing
®,, with 12, in all the pairs of N-glycan data.

Table 1: The number of pairs comparity, , with 1,

case | #pairs
G‘LN >y 675
T TTA, 1193559
rALN <1}, | 298777
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Hence, we conclude that:RLN <19, for al- (2003). Local similarity in RNA secondary structures.
most pairs of N-glycan data; Only 675 pairs (about In Proc. CSB’03 pages 159-168.
0.029%) satisfies thaf, , > 1%, . This resultimplies ~ Horvath, T., Ramon, J., and Wrobel, S. (2010). Frequent
thatTRLN (andT,iﬁN) is possible to be a good approxi- subgraph mining in outerplanar graph®ata Min.

Knowl. Disc, 21:472-508.

Jiang, T., Wang, L., and Zhang, K. (1995). Alignment of
trees — an alternative to tree editheoret. Comput.
Sci, 143:137-148.

6 CONCLUSION Kan, T., Higuchi, S., and Hirata, K. (2014). Segmental
mapping and distance for rooted ordered labeled trees.

Fundamenta Informaticael 32:1-23.
Kuboyama, T. (2007Matching and learning in tree$h.D

mation oftY,, for N-glycan data.

In this paper, we have formulated biordered, cyclic-

ordered and cyclic-biordgred trees as c_yclically or- thesis, University of Tokyo.

deredbtrees, and therg designed the algorlthms to COMy . L. Su, Z-Y, and Yang, C. Y. (2001). A new mea-
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