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Abstract: In this paper, as unordered trees preserving the adjacency among siblings, we introduce the following three
kinds of acyclically ordered tree, that is, abiordered treethat allows both a left-to-right and a right-to-left order
among siblings, acyclic-ordered treethat allows cyclic order among siblings in a left-to-right direction and a
cyclic-biordered treethat allows cyclic order among siblings in both left-to-right and right-to-left directions.
Then, we design the algorithms to compute thealignment distanceand thesegmental alignment distance
between biordered trees inO(n2D2) time and ones between cyclic-ordered trees and cyclic-biordered trees in
O(n2D4) time, wheren is the maximum number of nodes andD is the maximum degree in two given trees.

1 INTRODUCTION

Comparing tree-structured data is one of the impor-
tant tasks for many research areas such as pattern
recognition, natural language processing, machine
learning, data mining, bioinformatics, and so on. In
these researches, the tree-structured data are well re-
garded asrooted labeled trees(trees, for short). Also
a tree isorderedif the left-to-right order among sib-
lings is fixed andunorderedotherwise.

An edit distance(Tai, 1979) is one of the standard
distance measures between trees. The edit distance is
formulated as the minimum cost to transform from a
tree to another tree by applyingedit operationsof a
substitution, adeletionand aninsertionto trees.

It is known that the edit distance is closely related
to a Tai mapping(Tai, 1979). The minimum cost of
Tai mappings coincides with the edit distance (Tai,
1979). Then, whereas the problem of computing the
edit distance between ordered trees is tractable (De-
maine et al., 2009), one between unordered trees
is MAX SNP-hard (Zhang and Jiang, 1994). This
MAX SNP-hardness holds even if both trees are bi-
nary (Hirata et al., 2011).

An alignment distanceis an alternative distance
measure between trees introduced by (Jiang et al.,
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1995) and applied to comparing RNA secondary
structures in bioinformatics (Höchsmann et al., 2003;
Schiermer and Giegerich, 2013; Shapiro and Zhang,
1990; Zhang, 1998). The alignment distance is for-
mulated as the minimum cost of possiblealignments
(as trees) obtained by first inserting nodes labeled
with spaces into two trees such that the resulting trees
have the same structure and then overlaying them. In
operational, the alignment distance is an edit distance
such that every insertion precedes to deletions.

Kuboyama (Kuboyama, 2007) has first formulated
an alignablemapping as a variation of the Tai map-
ping. Then, he has shown that the alignment dis-
tance coincides with the minimum cost of alignable
mappings and the alignable mapping coincides with a
less-constrained mapping (Lu et al., 2001). As same
as the edit distance, whereas the problem of comput-
ing the alignment distance between ordered trees is
tractable, one between unordered trees is MAX SNP-
hard (Jiang et al., 1995). On the other hand, this prob-
lem becomes tractable if the degrees of unordered
trees are bounded (Jiang et al., 1995).

In the above results of computing distances, we
deal with either ordered or unordered trees. Note
that unordered trees allow all of the permutations
among siblings. On the other hand, several appli-
cations require to allow just some permutations, not
all of the permutations, among siblings. For exam-
ple, when representing graphs with cyclic compounds
such as monosaccharides in glycans (Hizukuri et al.,
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2005) and molecules in molecular graphs (Horváth
et al., 2010) as trees, the adjacency of nodes in the
compounds is represented as the adjacency among
siblings in the tree representation. Also, when
comparing or modeling RNA secondary structures
as trees (Höchsmann et al., 2003; Schiermer and
Giegerich, 2013; Shapiro and Zhang, 1990; Zhang,
1998), the base pairs in nucleotides are connected
with preserving the adjacency among siblings.

Hence, as unordered trees preserving the adja-
cency among siblings, in this paper, we formulate
the following three kinds of acyclically ordered
tree. Let v1, . . . ,vn be siblings from left to right.
Then, we say that a tree isbiordered if it allows
two ordersv1, . . . ,vn and vn, . . . ,v1. Also we say
that a tree iscyclic-ordered if it allows a cyclic
order vi , . . . ,vn,v1, . . . ,vi−1 for every i (1 ≤ i ≤ n).
Furthermore, we say that a tree iscyclic-biordered
if it allows cyclic ordersvi , . . . ,vn,v1, . . . ,vi−1 and
vi , . . . ,v1,vn, . . . ,vi−1 for everyi (1≤ i ≤ n).

Since an unordered binary tree is always cycli-
cally ordered, the problem of computing the edit dis-
tance, the segmental distance (Kan et al., 2014) and
the bottom-up distance (Valiente, 2001; Kuboyama,
2007) between cyclically ordered trees is also
MAX SNP-hard (Hirata et al., 2011; Yamamoto
et al., 2014). On the other hand, the problems of
computing the isolated-subtree (or constrained) dis-
tance (Zhang, 1995; Zhang, 1996), the accordant
(or Lu’s) distance (Lu, 1979; Kuboyama, 2007),
the LCA-preserving (or degree-2) distance (Zhang
et al., 1996) and the top-down (or degree-1) dis-
tance (Selkow, 1977; Chawathe, 1999) between un-
ordered trees are tractable, so are the problems of
computing these distances between cyclically ordered
trees.

In this paper, we focus on the alignment dis-
tance and asegmental alignmentdistance, which is
an alignment distance to preserve the parent-children
relationship as possible (Yoshino and Hirata, 2013),
between cyclically ordered trees, because the prob-
lems of computing both distances are tractable if the
degrees of unordered trees are bounded. Note that the
algorithms to compute all of the above tractable vari-
ations of the edit distance between unordered trees
contain the maximum weighted bipartite matching al-
gorithm (Yamamoto et al., 2014; Zhang et al., 1996)
or originally the minimum cost maximum flow algo-
rithm (Wang et al., 2003; Zhang, 1996).

On the other hand, in this paper, by directly ex-
tending the recurrences to compute the alignment dis-
tance between ordered trees (Jiang et al., 1995), we
first design the algorithms to compute the alignment
distance between biordered trees inO(n2D2) time,

wheren is the maximum number of nodes andD is the
maximum degree in two given trees. This time com-
plexity is same as one between ordered trees (Jiang
et al., 1995). Also we design the algorithms to com-
pute the alignment distance between cyclic-ordered
and cyclic-biordered trees inO(n2D4) time.

Next, by using the same strategy of (Kan et al.,
2014) to compute a top-down distance for every pair
of nodes in given two cyclically ordered trees in ad-
vance, we design the algorithm to compute the seg-
mental alignment distance between cyclically ordered
trees with the same time complexity as above.

Finally, we give experimental results for the
alignment distance between biordered trees com-
paring with the edit distance between ordered
trees, by using N-glycan data provided from
KEGG (Kyoto Encyclopedia of Genes and Genomes,
http://www.kegg.jp/).

2 PRELIMINARIES

A tree is a connected graph without cycles. For a tree
T = (V,E), we denoteV andE by V(T) andE(T),
respectively. Also thesizeof T is |V| and denoted by
|T|. We sometime denotev ∈ V(T) by v ∈ T. We
denote an empty tree by/0.

A rooted treeis a tree with one noder chosen as
its root. We denote the root of a rooted treeT by
r(T). For each nodev in a rooted tree with the root
r, let UPr(v) be the unique path fromv to r. The
parentof v(6= r), which we denote bypar(v), is its
adjacent node onUPr(v) and theancestorsof v(6= r)
are the nodes onUPr(v)−{v}. We denote the set of
all ancestors ofv by anc(v). We say thatu is achild
of v if v is the parent ofu. The set of children ofv is
denoted bych(v). We call the number of children of
v thedegreeof v and denote it byd(v), that is,d(v) =
|ch(v)|. Also we defined(T) = max{d(v) | v ∈ T}
and call it thedegreeof T.

In this paper, we use the ancestor orders< and≤,
that is,u< v if v is an ancestor ofu andu≤ v if u< v
or u= v. We say thatw is theleast common ancestor
of u andv, denoted byu⊔v, if u≤ w, v≤ w and there
exists now′ such thatw′ ≤ w, u≤ w′ andv ≤ w′. A
(complete) subtree of T= (V,E) rooted by v, denoted
by T[v], is a treeT ′ = (V ′,E′) such thatr(T ′) = v,
V ′ = {u∈V | u≤ v} andE′ = {(u,w)∈E | u,w∈V ′}.

We say that a rooted tree islabeledif each node
is assigned a symbol from a fixed finite alphabetΣ.
For a nodev, we denote the label ofv by l(v), and
sometimes identifyv with l(v). Also letε 6∈ Σ denote
a specialblanksymbol and defineΣε = Σ∪{ε}.

We say that a rooted tree isordered if a left-to-
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right order among siblings is fixed;unorderedoth-
erwise. In particular, for nodesu and v in an or-
dered tree,u is to the left of v, denoted byu � v,
if pre(u) ≤ pre(v) andpost(u) ≤ post(v) for the pre-
order numberpre and the postorder numberpost.

Furthermore, in this paper, we introducecyclically
ordered treesby using the following functionsσ+

p,n(i)
andσ−

p,n(i) for 1≤ i, p≤ n.

σ+
p,n(i) = ((i + p−1) modn)+1,

σ−
p,n(i) = ((n− i − p+1)modn)+1.

Definition 1 (Cyclically Ordered Trees). Let T be a
tree and suppose thatv1, . . . ,vn are the children ofv∈
T from left to right.

1. We say thatT is biorderedif T allows the orders
of bothv1, . . . ,vn andvn, . . . ,v1.

2. We say thatT is cyclic-orderedif T allows the
ordersvσ+

p,n(1)
, . . . ,vσ+

p,n(n)
for every 1≤ p≤ n.

3. We say thatT is cyclic-biorderedif T allows the
ordersvσ+

p,n(1)
, . . . ,vσ+

p,n(n)
andvσ−

p,n(1)
, . . . ,vσ−

p,n(n)

for every 1≤ p≤ n.

Sometimes we use the scriptso,b,c,cb, u, and the no-
tation ofπ ∈ {o,b,c,cb,u}, which we call aπ-tree.

It is obvious that the cyclically ordered trees are
an extension of ordered trees and a restriction of un-
ordered trees. The number of orders among siblings
of a nodev in ordered trees, biordered trees, cyclic-
ordered trees, cyclic-biordered trees and unordered
trees is 1, 2,d(v), 2d(v) andd(v)!, respectively.

Next, we introduce the alignment distance (Jiang
et al., 1995). Here, forπ ∈ {o,b,c,cb,u}, we call an
isomorphism forπ-trees aπ-isomorphism.

Definition 2 (Alignment (Jiang et al., 1995)). Let T1
andT2 be trees andπ ∈ {o,b,c,cb,u}. An alignment
betweenT1 andT2 is a treeT obtained by the follow-
ing two steps.

1. Insert new nodes labeled byε into T1 andT2 such
that the resulting treesT ′

1 andT ′
2 areπ-isomorphic

with ignoring labels andl(φ(v)) 6= ε whenever
l(v) = ε for a π-isomorphismφ betweenT ′

1 and
T ′

2 and every nodev∈ T ′
1.

2. SetT to an obtained treeT ′
1 by relabeling a la-

bel l(v) for every nodev∈ T ′
1 with (l(v), l(φ(v))).

(Note that(ε,ε) 6∈ T .)

Let A
π(T1,T2) denote the set of all possible align-

ments betweenT1 andT2.

We define acost functionγ : (Σε×Σε−{(ε,ε)}) 7→
R+ on pairs of labels. We constrainγ to be ametric,
that is, γ(l1, l2) ≥ 0, γ(l1, l1) = 0, γ(l1, l2) = γ(l2, l1)
and γ(l1, l3) ≤ γ(l1, l2) + γ(l2, l3). In particular, we
sometimes use aunit cost functionsuch thatγ(l1, l2)=

1 if l1 6= l2. Thecostof an alignmentT , denoted by
γ(T ), is the sum of the costs of all labels inT .

Definition 3 (Alignment Distance (Jiang et al.,
1995)). Let π ∈ {o,b,c,cb,u}. Then, thealignment
distancebetweenT1 and T2 is defined as the mini-
mum costγ(T ) for every alignmentT ∈ A

π(T1,T2).
Also we call an alignment with the minimum cost an
optimal alignment.

Example 1. Consider ordered treesT1 andT2 in Fig-
ure 1 (left). Then,T in Figure 1 (right) is the opti-
mal alignment betweenT1 andT2. Under the unit cost
functionγ, sinceγ(T ) = 4, the alignment distance be-
tweenT1 andT2 is 4.aeb 
 d ab f
 d a; ae; "b; b 
; " "; f"; 
 d; d

T1 T2 T

Figure 1: Ordered treesT1 and T2 (left) and the optimal
alignmentT ∈ A

o(T1,T2) (right) in Example 1.

3 MAPPING AND DISTANCE

In this section, we introduce aTai mappingand its
variations, and then the distance as the minimum cost
of all the mappings.

Definition 4 (Tai Mapping (Tai, 1979)). Let T1 and
T2 be trees andM ⊆V(T1)×V(T2).

1. We say that a triple(M,T1,T2) is an ordered
Tai mapping from T1 to T2, denoted byM ∈
M

o
TAI (T1,T2), if every pair(u1,v1) and(u2,v2) in

M satisfies the following conditions.
(i) u1 = u2 iff v1 = v2 (one-to-one condition).
(ii) u1 ≤ u2 iff v1 ≤ v2 (ancestor condition).

(iii) u1 � u2 iff v1 � v2 (sibling condition).
2. We say that a triple(M,T1,T2) is an unordered

Tai mapping from T1 to T2, denoted byM ∈
M

u
TAI (T1,T2), if M satisfies the conditions (i) and

(ii).

In the following, let u1,u2,u3,u4 ∈ ch(u) and
v1,v2,v3,v4 ∈ ch(v).

3. We say that a triple(M,T1,T2) is a biordered
Tai mapping from T1 to T2, denoted byM ∈

M
b
TAI (T1,T2), if M satisfies the above conditions

(i) and (ii) and the following condition (iv).
(iv) For every u ∈ T1 and v ∈ T2 such that

(u1,v1),(u2,v2),(u3,v3) ∈ M, one of the fol-
lowing statements holds.

1. u1 � u2 � u3 iff v1 � v2 � v3.
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2. u1 � u2 � u3 iff v3 � v2 � v1.

4. We say that a triple(M,T1,T2) is acyclic-ordered
Tai mapping from T1 to T2, denoted byM ∈
M

c
TAI (T1,T2), if M satisfies the above conditions

(i) and (ii) and the following condition (v).

(v) For every u ∈ T1 and v ∈ T2 such that
(u1,v1),(u2,v2),(u3,v3) ∈ M, one of the fol-
lowing statements holds.

1. u1 � u2 � u3 iff v1 � v2 � v3.
2. u1 � u2 � u3 iff v2 � v3 � v1.
3. u1 � u2 � u3 iff v3 � v1 � v2.

5. We say that a triple(M,T1,T2) is a cyclic-
biordered Tai mappingfrom T1 to T2, denoted by
M ∈ M

cb
TAI (T1,T2), if M satisfies the above condi-

tions (i) and (ii) and the following condition (vi).

(vi) For every u ∈ T1 and v ∈ T2 such that
(u1,v1),(u2,v2),(u3,v3),(u4,v4) ∈ M, one of
the following statements holds.

1. u1 � u2 � u3 � u4 iff v1 � v2 � v3 � v4.
2. u1 � u2 � u3 � u4 iff v2 � v3 � v4 � v1.
3. u1 � u2 � u3 � u4 iff v3 � v4 � v1 � v2.
4. u1 � u2 � u3 � u4 iff v4 � v1 � v2 � v3.
5. u1 � u2 � u3 � u4 iff v4 � v3 � v2 � v1.
6. u1 � u2 � u3 � u4 iff v3 � v2 � v1 � v4.
7. u1 � u2 � u3 � u4 iff v2 � v1 � v4 � v3.
8. u1 � u2 � u3 � u4 iff v1 � v4 � v3 � v2.

We will useM instead of(M,T1,T2) simply.

Since a less-constrained mapping (Lu et al., 2001)
coincides with an alignable mapping (Kuboyama,
2007) characterizing the alignment, we formulate the
alignable mapping as the less-constrained mapping.

Definition 5 (Variations of Tai Mapping). Let T1 and
T2 be trees,π ∈ {o,b,c,cb,u} andM ∈ M

π
TAI (T1,T2).

Here, we denoteM−{(r(T1), r(T2))} by M−.

1. We say that M is an alignable map-
ping (Kuboyama, 2007) (or aless-constrained
mapping (Lu et al., 2001)), denoted by
M ∈ M

π
ALN (T1,T2), if M satisfies the follow-

ing condition.

∀(u1,v1),(u2,v2),(u3,v3) ∈ M
(

u1⊔u2 < u1⊔u3 =⇒ v2⊔v3 = v1⊔v3

)

.

2. We say thatM is asegmental mapping(Kan et al.,
2014), denoted byM ∈ M

π
SG(T1,T2), if M satisfies

the following condition.
∀(u,v) ∈ M−
(

∃(u′,v′) ∈ M
(

(u′ ∈ anc(u))∧ (v′ ∈ anc(v))
)

=⇒
(

(par(u),par(v)) ∈ M
)

)

.

3. We say thatM is a segmental alignable map-
ping (Yoshino and Hirata, 2013), denoted by
M ∈ M

π
SGALN (T1,T2), if M ∈ M

π
SG(T1,T2) ∩

M
π
ALN (T1,T2).

4. We say thatM is a top-down mapping(Selkow,
1977; Chawathe, 1999) (or adegree-1 mapping),
denoted byM ∈ M

π
TOP(T1,T2), if M satisfies the

following condition.

∀(u,v) ∈ M−
(

(par(u),par(v)) ∈ M
)

.

Let M be a mapping fromT1 to T2. Let I andJ be
the sets of nodes inT1 andT2 but not inM. Then, the
costγ(M) of M is given as follows.

γ(M) = ∑
(u,v)∈M

γ(u,v)+∑
u∈I

γ(u,ε)+ ∑
v∈J

γ(ε,v).

Definition 6 (Variations of Edit Distance). For every
A∈ {TAI ,ALN,SGALN,TOP} andπ ∈ {o,b,c,cb,u},
we define the distanceτπ

A(T1,T2) as follows.

τπ
A(T1,T2) = min{γ(M) | M ∈ M

π
A(T1,T2)}.

Theorem 1. Let T1 and T2 be trees andπ ∈
{o,b,c,cb,u}.

1. τπ
TAI (T1,T2) coincides with the edit distance (Tai,

1979).

2. τπ
ALN (T1,T2) coincides with the alignment dis-

tance (Kuboyama, 2007).

Theorem 2. Let T1 and T2 be trees such that n=
|T1| ≥ |T2|= m and D= max{d(T1),d(T2)}.

1. We can computeτo
TAI (T1,T2) in O(nm2(1 +

log n
m)) = O(n3) time. On the other hand, the

problem of computingτu
TAI (T1,T2) is MAX SNP-

hard, even if T1 and T2 are binary (Demaine
et al., 2009; Zhang and Jiang, 1994; Hirata et al.,
2011).

2. We can computeτo
ALN (T1,T2) and τo

SGALN (T1,T2)
in O(nmD2) time. On the other hand, the prob-
lem of computingτu

ALN (T1,T2) andτu
SGALN (T1,T2)

is MAX SNP-hard, but it is tractable if the de-
grees of T1 and T2 are bounded (Jiang et al., 1995;
Yoshino and Hirata, 2013).

Proposition 1 (cf. (Kuboyama, 2007; Yoshino and
Hirata, 2013)). Let T1 and T2 be trees andπ ∈
{o,b,c,cb,u}. Also suppose that a cost function is
a metric. Then,τπ

TAI (T1,T2) andτπ
TOP(T1,T2) are met-

rics, whereas neitherτπ
ALN (T1,T2) nor τπ

SGALN (T1,T2)
is a metric.

Proposition 2. Let T1 and T2 be trees. ForA ∈
{TAI ,ALN,SGALN,TOP} andπ ∈ {o,b,c,cb,u}, the
following statements hold.

1. τu
A(T1,T2)≤ τcb

A (T1,T2)≤ τb
A(T1,T2)≤ τo

A(T1,T2).
2. τu

A(T1,T2)≤ τcb
A (T1,T2)≤ τc

A(T1,T2)≤ τo
A(T1,T2).
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3. τπ
TAI (T1,T2) ≤ τπ

ALN (T1,T2) ≤ τπ
SGALN (T1,T2) ≤

τπ
TOP(T1,T2).

Proposition 3. For A ∈ {TAI ,ALN,SGALN,TOP},
there exist trees T1 and T2 satisfying each of the fol-
lowing conditions.

1. τc
A(T1,T2)< τb

A(T1,T2).
2. τb

A(T1,T2)< τc
A(T1,T2).

Proof. Consider the following treesT1, T2 andT3.ab 
 d ed 
 b e
 d b
T1 T2 T3

Under the unit cost function, Statement 1 follows
thatτb

TOP(T1,T2) = 1< 3= τc
TOP(T1,T2) and Statement

2 follows thatτc
TOP(T1,T3) = 1<3= τb

TOP(T1,T2).

Proposition 4. Let T1 and T2 be trees andA ∈
{TAI ,ALN,SGALN,TOP}.

1. If max{d(T1),d(T2)} ≤ 1, then it holds
that τo

A(T1,T2) = τb
A(T1,T2) = τc

A(T1,T2) =
τcb
A (T1,T2) = τu

A(T1,T2).
2. If max{d(T1),d(T2)} ≤ 2, then it holds that

τb
A(T1,T2) = τc

A(T1,T2) = τcb
A (T1,T2) = τu

A(T1,T2).
3. If max{d(T1),d(T2)} ≤ 3, then it holds that

τcb
A (T1,T2) = τu

A(T1,T2).

Proposition 5. For π ∈ {b,c,cb}, there exist trees T1
and T2 satisfying each of the following conditions.

1. τo
TAI (T1,T2)< τπ

ALN (T1,T2).
2. τπ

ALN (T1,T2)< τo
TAI (T1,T2).

Proof. Consider the following treesT1, T2 andT3 and
suppose that a cost function is the unit cost function.aeb 
 d ab f
 d ad f
 b

T1 T2 T3a; ae; fb; d 
; 
 d; b a; ae; fb; b 
; 
 d; d
T 12 T 13

1. It is obvious thatτo
TAI (T1,T2) = 2. On the other

hand, since the alignmentT 12 is an optimal alignment
betweenT1 andT2 for cyclically ordered trees, it holds
that τb

ALN (T1,T2) = τc
ALN (T1,T2) = τcb

ALN (T1,T2) = 3.
Note thatτo

ALN (T1,T2) = 4 (Jiang et al., 1995).
2. Since the alignmentT 13 is an optimal

alignment betweenT1 and T3 for cyclically ordered

trees, it holds thatτb
ALN (T1,T3) = τc

ALN (T1,T3) =

τcb
ALN (T1,T3) = 1. On the other hand, it is obvious that

τo
TAI (T1,T3) = 4. Note thatτo

ALN (T1,T2) = 5.

4 ALGORITHMS

In this section, we identify a node with its pos-
torder number. Also letn = |T1|, m= |T2| (and sup-
pose thatn ≥ m), d = min{d(T1),d(T2)} and D =
max{d(T1),d(T2)}.

A(n ordered)forest is a sequence[T1, . . . ,Tn] of
trees. For a treeT and a nodei ∈ T, T(i) is a
forest obtained by deleting the rooti in T[i]. For
nodesi ∈ T1 and j ∈ T2, let the children ofi and
j be i1, . . . , is and j1, . . . , jt . That is, it holds that
d(i) = s and d( j) = t. Also, for treesT1 and T2,
we denote the forestsT1(i) = [T1[i1], . . . ,T1[is]] and
T2( j) = [T2[ j1], . . . ,T2[ jt ]] by F1(i1, is) andF2( j1, jt).

ForA∈ {ALN,SGALN,TOP} andπ∈{o,b,c,cb},
the recurrences in Figure 2 compute the distanceτπ

A
and the forest distanceδπ

A when containing an empty
tree or forest. Also Figure 3 illustrates the common
recurrencesΓπ

A and∆π
A to computeτπ

A andδπ
A .

δπ
A( /0, /0) = 0,

τπ
A(T1[i], /0) = δπ

A(T1(i), /0)+ γ(i,ε),
τπ
A( /0,T2[ j]) = δπ

A( /0,T2( j))+ γ(ε, j),

δπ
A(T1(i), /0) =

s

∑
k=1

τπ
A(T1[ik], /0),

δπ
A( /0,T2( j)) =

t

∑
k=1

τπ
A( /0,T2[ jk]).

Figure 2: The basic recurrences of computingτπ
A(T1,T2).

Γπ
A(T1[i],T2[ j ])

= min







τπ
A(T1[i], /0)+ min

T∈T1(i)
{τπ

A(T,T2[ j ])− τπ
A(T, /0)},

τπ
A( /0,T2[ j ])+ min

T∈T2( j)
{τπ

A(T1[i],T)− τπ
A( /0,T)}







,

∆π
A(F1(i1, is),F2( j1, jt))

= min







δπ
A(F1(i1, is−1),F2( j1, jt))+ τπ

A(T1[is], /0),
δπ
A(F1(i1, is),F2( j1, jt−1))+ τπ

A( /0,T2[ jt ]),
δπ
A(F1(i1, is−1),F2( j1, jt−1))+ τπ

A(T1[is],T2[ jt ])







.

Figure 3: The common recurrencesΓπ
A(T1,T2) and

∆π
A(F1,F2).

Let T1(i) = [T1[i1], . . . ,T1[is]] and T2( j) =
[T2[ j1], . . . ,T2[ jt ]]. Also let 1≤ p≤ s and 1≤ q≤ t.
Then, we denote the forests[T1[iσ+

p,s(1)
], . . . ,T1[iσ+

p,s(s)
]]

and [T2[ jσ+
q,t (1)

], . . . ,T2[ jσ+
q,t (t)

]] by T p
1 (i) and Tq

2 ( j).

Also we denote the forests[T1[iσ−
p,s(1)

], . . . ,T1[iσ−
p,s(s)

]]

and[T2[ jσ−
q,t (1)

], . . . ,T2[ jσ−
q,t (t)

]] by T−p
1 (i) andT−q

2 ( j).

It is obvious thatT1(i) = T1
1 (i) andT2( j) = T1

2 ( j).
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Furthermore, the values ofp and q in T p
1 (i),

T p
1 (is), Tq

2 ( j) andTq
2 ( jt) are (1)p= q= 1 if π = o,

(2) p = ±1 andq = ±1 if π = b, (3) 1≤ p ≤ s and
1 ≤ q ≤ t if π = c and (4) 1≤ p ≤ s, −s≤ p ≤ −1,
1 ≤ q ≤ t and−t ≤ q ≤ −1 if π = cb. Hence, we
prepare the following sets: (1)o(s) = o(t) = {1}, (2)
b(s) = b(t) = {−1,1}, (3) c(s) = {1, . . . ,s}, c(t) =
{1, . . . , t}, and (4) cb(s) = {−s, . . . ,−1,1, . . . ,s},
cb(t) = {−t, . . . ,−1,1, . . . , t}. We refer these sets to
π(s) andπ(t) for π ∈ {o,b,c,cb}.

Then, by introducing the setsπ(s) andπ(t) into
the recurrences in (Jiang et al., 1995), we design the
recurrences of computingτπ

ALN (T1,T2) between cycli-
cally ordered treesT1 andT2 as Figure 4.

τπ
ALN (T1[i],T2[ j ])

= min

{

min
p∈π(s),q∈π(t)

{δπ
ALN (T

p
1 (i),Tq

2 ( j))+ γ(i, j)},

Γπ
ALN

(T1[i],T2[ j ])

}

,

δπ
ALN (F1(i1, is),F2( j1, jt)) = min



































∆π
ALN (F1(i1, is),F2( j1, jt)),

γ(is,ε)

+ min
1≤k<t,p∈π(s)

{

δπ
ALN (F1(i1, is−1),F2( j1, jk−1))
+δπ

ALN (T
p

1 (is),F2( jk, jt)))

}

,

γ(ε, jt)

+ min
1≤k<s,q∈π(t)

{

δπ
ALN

(F1(i1, ik−1),F2( j1, jt−1))
+δπ

ALN (F1(ik, is),T
q
2 ( jt)))

}



































.

Figure 4: The recurrences of computingτπ
ALN (T1,T2) be-

tween cyclically ordered trees.

Theorem 3. The recurrences in Figure 4 are correct
to computeτπ

ALN (T1,T2) between cyclically ordered
trees T1 and T2 for π ∈ {b,c,cb}.

Proof. In the proof of (Jiang et al., 1995) showing
that the recurrences of computingτo

ALN (T1,T2) is cor-
rect, the formulas and the cases of an optimal align-
ment tree or forestT are presented as follows.

1. The formulaδo
ALN (T1(i),T2( j)) + γ(i, j) is corre-

sponding to the case that(i, j) is a label in an op-
timal alignment treeT of T1[i] andT2[ j], andT

contains the alignment ofT1(i) andT2( j).

2. The formula

γ(is,ε)+ min
1≤k<t

{

δo
ALN (F1(i1, is−1),F2( j1, jk−1))

+δo
ALN (T1(is),F2( jk, jt )))

}

is corresponding to the case that(is,ε) is a label
in an optimal alignment forestT of F1(i1, is) and
F2( j1, jt), andT contains the alignment ofT1(is)
andF2( jk, jt) for 1≤ k< t.

3. The formula

γ(ε, jt )+ min
1≤k<s

{

δo
ALN (F1(i1, ik−1),F2( j1, jt−1))

+δo
ALN (F1(ik, is),T2( jt )))

}

is corresponding to the case that(ε, jt ) is a la-
bel in an optimal alignment forestT of F1(i1, is)

and F2( j1, jt ), and T contains the alignment of
F1(ik, is) andT2( jt ) for 1≤ k< s.

In just above three formulas, an optimal alignment
T contains and expands the siblings of some node in
T1 or T2 (or both). When extending fromτo

ALN (T1,T2)
to τπ

ALN (T1,T2), it is sufficient to deal with more than
two orders in the above three formulas, instead of one
left-to-right order, and then to replaceT1(i), T2( j),
T1(is) andT2( jt ) with T p

1 (i), Tq
2 ( j), T p

1 (is) andTq
2 ( jt )

for p∈ π(s) andq∈ π(t). Hence, by replacing the for-
mulas in the above statements 1, 2 and 3 with the first
formula in τπ

ALN (F1(i1, is),F2( j1, jt )) and the second
and the third formulas inδπ

ALN (F1(i1, is),F2( j1, jt)) in
Figure 4, we can computeτπ

ALN (T1,T2) correctly.

Theorem 4. We can computeτb
ALN (T1,T2) in

O(nmD2) time. Also we can computeτc
ALN (T1,T2) and

τcb
ALN (T1,T2) in O(nmdD3) time.

Proof. In Figure 4, the number of recurrences inτo
ALN

is 3 and one inδo
ALN is 5; the number of recurrences

in τb
ALN is 6 and one inδb

ALN is 7; the number of re-
currences inτc

ALN is d(i)d( j) +2 and one inδc
ALN is

d(i)+d( j)+3; the number of recurrences inτcb
ALN is

4d(i)d( j)+2 and one inδcb
ALN is 2d(i)+2d( j)+3.

According to the proof of (Jiang et al., 1995),
for s = d(i) and t = d( j), we can compute
δo

ALN (F1(is′ , is),F2( jt′ , jt )) in O((s− s′)× (t − t ′)×
((s−s′)+(t− t ′))) = O(d(i)d( j)(d(i)+d( j))) time.
Then, we can computeδb

ALN (F1(is′ , is),F2( jt′ , jt )) in
O(d(i)d( j)(d(i) + d( j))) time. So the running time
of computingτb

ALN (T1[i],T2[ j]) for each(i, j) ∈ T1×
T2 is O(d(i)d( j)(d(i) + d( j))d(i) + d(i)d( j)(d(i) +
d( j))d( j)) = O(d(i)d( j)(d(i)+ d( j))2). Hence, the
running time of computingτb

ALN (T1,T2) is:

|T1|

∑
i=1

|T2|

∑
j=1

O

(

d(i)d( j)(d(i)+d( j))2
)

≤
|T1|

∑
i=1

|T2|

∑
j=1

O

(

d(i)d( j)(d(T1)+d(T2))
2
)

≤ O

(

(d(T1)+d(T2))
2×

|T1|

∑
i=1

d(i)×
|T2|

∑
j=1

d( j)

)

≤ O(|T1|× |T2|× (d(T1)+d(T2))
2)

= O(nmD2).

Also, by focusing on the number of recurrences in
Figure 4, we can computeδc

ALN (F1(is′ , is),F2( jt′ , jt))
and δcb

ALN (F1(is′ , is),F2( jt′ , jt )) in O((s −
s′)d( j) × (t − t ′)d(i) × ((s − s′) + (t − t ′))) =
O(d(i)2d( j)2(d(i) + d( j))) time. So the run-
ning time of computing τc

ALN (T1[i],T2[ j]) and
τcb

ALN (T1[i],T2[ j]) for each (i, j) ∈ T1 × T2 is
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O(d(i)2d( j)2(d(i) + d( j))d(i) + d(i)2d( j)2(d(i) +
d( j))d( j)+d(i)d( j)) =O(d(i)2d( j)2(d(i)+d( j))2),
where the last formulad(i)d( j) is corresponding to
the time complexity of computing the first recurrence
in τπ

ALN (T1[i],T2[ j]) in Figure 4. Hence, the running
time of computingτc

ALN (T1,T2) andτcb
ALN (T1,T2) is:

|T1|

∑
i=1

|T2|

∑
j=1

O

(

d(i)2d( j)2(d(i)+d( j))2
)

≤
|T1|

∑
i=1

|T2|

∑
j=1

O

(

d(i)d( j)d(T1)d(T2)
×(d(T1)+d(T2)

2)

)

≤ O







d(T1)d(T2)(d(T1)+d(T2))
2

×
|T1|

∑
i=1

d(i)×
|T2|

∑
j=1

d( j)







≤ O(|T1|× |T2|×d(T1)d(T2)(d(T1)+d(T2))
2)

= O(nmdD3).

Next, we design the algorithm to compute the
segmental alignment distanceτπ

SGALN (T1,T2) for π ∈
{b,c,cb}. Here, we adopt the same strategy of (Kan
et al., 2014) to computeτπ

TOP(T1[i],T2[ j]) between
T1[i] andT2[ j] for every pair(i, j) ∈ T1×T2 (1≤ i ≤
n,1≤ j ≤ m) in advance.

Then, Figure 5 illustrates the recurrences of com-
puting τπ

SGALN (T1,T2) for cyclically ordered trees.
Here, δπ

SGALN (F1,F2) is same asδπ
ALN (F1,F2) by re-

placing the subscript ALN with SGALN.

τπ
TOP(T1[i],T2[ j ])
= min

p∈π(s),q∈π(s)
{δπ

TOP(T
p

1 (i),Tq
2 ( j))+ γ(i, j)},

δπ
TOP(F1(i1, is),F2( j1, jt)) = ∆π

TOP(F1(i1, is),F2( j1, jt)).
τπ

SGALN
(T1[i],T2[ j ])

= min



















τπ
TOP(T1[i],T2[ j ])
· · ·use the value computed in advance,

min
p∈π(s),q∈π(t)

{δb
SGALN (T

p
1 (i),Tq

2 ( j))+ γ(i, j)},

Γπ
SGALN (T1[i],T2[ j ])



















,

δπ
SGALN (F1(i1, is),F2( j1, jt))

· · ·same asδπ
ALN with replacing ALN with SGALN.

Figure 5: The recurrence of computingτπ
SGALN

(T1,T2) be-
tween cyclically ordered trees.

Theorem 5. The recurrences in Figure 5 are cor-
rect to computeτb

SGALN (T1,T2) in O(nmD2) time, and
τc

SGALN (T1,T2) andτcb
SGALN (T1,T2) in O(nmdD3) time.

Proof. The correctness follows from Theorem 3 and
(Yoshino and Hirata, 2013). Since the number of re-
currences inτb

TOP in Figure 5 isO(1) and one inτc
TOP

andτcb
TOP is O(dD), we can computeτb

TOP(T1[i],T2[ j])
in O(nm) time and computeτc

TOP(T1[i],T2[ j]) and
τcb

TOP(T1[i],T2[ j]) in O(nmdD) time for every pair

(i, j) ∈ T1 × T2. Hence, by Theorem 4, the run-
ning time of computingτb

SGALN (T1,T2) is O(nm) +
O(nmD2) = O(nmD2). Also, the running time
of computing τc

SGALN (T1,T2) and τcb
SGALN (T1,T2) is

O(nmdD)+O(nmdD3) = O(nmdD3).

5 EXPERIMENTAL RESULTS

In this section, we give experimental results forτb
ALN

comparing withτo
TAI , by using N-glycan data provided

from KEGG. Here, the number of N-glycan data is
2142, the average number of nodes is 11.09, the av-
erage number of labels is 5.43 and the average depth
and degree are 5.38 and 2.07, respectively.

Figure 6: The correlation diagrams to the edit distanceτo
TAI

of τb
ALN for N-glycan data.

Figures 6 illustrates the correlation diagrams to
τo

TAI of τb
ALN for all the 2293011 pairs of N-glycan

data. The plots in Figures 6 are the ratio (%) of the
pairs of trees whose value ofτb

ALN is given as they-
axis to the value ofτo

TAI given in thex-axis.
Figures 6 shows that, for N-glycan data, whereas

τb
ALN tends to be smaller thanτo

TAI , we can observe the
pairs thatτb

ALN is greater thanτo
TAI as Proposition 5.

Table 1 represents the number of pairs comparing
τb

ALN with τo
TAI in all the pairs of N-glycan data.

Table 1: The number of pairs comparingτb
ALN with τo

TAI .

case #pairs

τb
ALN > τo

TAI 675
τb

ALN = τo
TAI 1193559

τb
ALN < τo

TAI 298777
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Hence, we conclude that,τb
ALN ≤ τo

TAI for al-
most pairs of N-glycan data; Only 675 pairs (about
0.029%) satisfies thatτb

ALN > τo
TAI . This result implies

thatτb
ALN (andτcb

ALN ) is possible to be a good approxi-
mation ofτu

TAI for N-glycan data.

6 CONCLUSION

In this paper, we have formulated biordered, cyclic-
ordered and cyclic-biordered trees as cyclically or-
dered trees, and then designed the algorithms to com-
puteτb

ALN (T1,T2) andτb
SGALN (T1,T2) in O(nmD2) time

and to computeτπ
ALN (T1,T2) andτπ

SGALN (T1,T2) (π ∈

{c,cb}) in O(nmdD3) time. Finally, we have given
the experimental results of computingτb

ALN compar-
ing with τo

TAI by using N-glycan data.
It is a future work to implement the algo-

rithms to computeτc
ALN , τcb

ALN and τπ
SGALN (π ∈

{b,c,cb}), and applyτπ
ALN and τπ

SGALN to real data
such as glycans (Hizukuri et al., 2005) or molecular
graphs (Horváth et al., 2010). Also, it is a future work
to apply cyclically ordered trees to compare RNA sec-
ondary structures (Höchsmann et al., 2003; Schier-
mer and Giegerich, 2013; Shapiro and Zhang, 1990;
Zhang, 1998).

As the comparison withτu
TAI , it is a future work to

investigate howτπ
ALN (π∈ {b,c,cb}) is a good approx-

imation of τu
TAI and to compareτπ

ALN with tractable
variations ofτu

TAI such as the isolated-subtree dis-
tance (Zhang, 1996) and the LCA-preserving dis-
tance (Zhang et al., 1996). Also, it is a future work to
solve whether or not the problem of computingτu

ALN

is tractable if the number of permutations among sib-
lings is bounded by some polynomial with respect to
degrees.
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