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Abstract: Financial time series are known for their non-stationary behaviour. However, sometimes they exhibit some
stationary linear combinations. When this happens, it is said that those time series are cointegrated.The Vector
Error Correction Model (VECM) is an econometric model which characterizes the joint dynamic behaviour
of a set of cointegrated variables in terms of forces pulling towards equilibrium. In this study, we propose an
Online VEC model (OVECM) which optimizes how model parameters are obtained using a sliding window of
the most recent data. Our proposal also takes advantage of the long-run relationship between the time series
in order to obtain improved execution times. Our proposed method is tested using four foreign exchange rates
with a frequency of 1-minute, all related to the USD currency base. OVECM is compared with VECM and
ARIMA models in terms of forecasting accuracy and execution times. We show that OVECM outperforms
ARIMA forecasting and enables execution time to be reduced considerably while maintaining good accuracy
levels compared with VECM.

1 INTRODUCTION

In finance, it is common to find variables with long-
run equilibrium relationships. This is called cointe-
gration and it reflects the idea of that some set of vari-
ables cannot wander too far from each other. Coin-
tegration means that one or more linear combinations
of these variables are stationary even though individ-
ually they are not (Engle and Granger, 1987). Fur-
thermore, the number of cointegration vectors reflects
how many of these linear combinations exist. Some
models, such as the Vector Error Correction (VECM),
take advantage of this property and describe the joint
behaviour of several cointegrated variables.

VECM introduces this long-run relationship
among a set of cointegrated variables as an error cor-
rection term. VECM is a special case of the vector
autorregresive model (VAR) model. VAR model ex-
presses future values as a linear combination of vari-
ables past values. However, VAR model cannot be
used with non-stationary variables. VECM is a lin-
ear model but in terms of variable differences. If
cointegration exists, variable differences are station-
ary and they introduce an error correction term which
adjusts coefficients to bring the variables back to equi-

librium. In finance, many economic time series are
revealed to be stationary when they are differentiated
and cointegration restrictions often improves fore-
casting (Duy and Thoma, 1998). Therefore, VECM
has been widely adopted.

In finance, pair trading is a very common exam-
ple of cointegration application (Herlemont, 2003)
but cointegration can also be extended to a larger set
of variables (Mukherjee and Naka, 1995),(Engle and
Patton, 2004).

Both VECM and VAR model parameters are ob-
tained using ordinary least squares (OLS) method.
Since OLS involves many calculations, the parame-
ter estimation method is computationally expensive
when the number of past values and observations in-
creases. Moreover, obtaining cointegration vectors is
also an expensive routine.

Recently, online learning algorithms have been
proposed to solve problems with large data sets be-
cause of their simplicity and their ability to update
the model when new data is available. The study pre-
sented by (Arce and Salinas, 2012) applied this idea
using ridge regression.

There are several popular online methods
such as perceptron (Rosenblatt, 1958), passive-
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aggressive (Crammer et al., 2006), stochastic gradient
descent (Zhang, 2004), aggregating algorithm (Vovk,
2001) and the second order perceptron (Cesa-Bianchi
et al., 2005). In (Cesa-Bianchi and Lugosi, 2006), an
in-deph analysis of online learning is provided.

In this paper, we propose an online formulation of
the VECM called Online VECM (OVECM). OVECM
is a lighter version of VECM which considers only a
sliding window of the most recent data and introduces
matrix optimizations in order to reduce the number of
operations and therefore execution times. OVECM
also takes into account the fact that cointegration vec-
tor space doesn’t experience large changes with small
changes in the input data.

OVECM is later compared against VECM and
ARIMA models using four currency rates from the
foreign exchange market with 1-minute frequency.
VECM and ARIMA models were used in an itera-
tive way in order to allow fair comparison. Execu-
tion times and forecast performance measures MAPE,
MAE and RMSE were used to compare all methods.

Model effectiveness is focused on out-of-sample
forecast rather than in-sample fitting. This criteria
allows the OVECM prediction capability to be ex-
pressed rather than just explaining data history.

The next sections are organized as follows: sec-
tion 2 presents the VAR and VECM, the OVECM al-
gorithm proposed is presented in section 3. Section 4
gives a description of the data used and the tests car-
ried on to show accuracy and time comparison of our
proposal against the traditional VECM and section 5
includes conclusions and a proposal for future study.

2 BACKGROUND

2.1 Integration and Cointegration

A time series y is said to be integrated of order d if
after differentiating the variable d times, we get an
I(0) process, more precisely:

(1�L)dy� I(0) ;

where I(0) is a stationary time series and L is the lag
operator:

(1�L)y = Dy = yt �yt�1 8t
Let yt = fy1; : : : ;ylg be a set of l stationary time

series I(1) which are said to be cointegrated if a vector
b = [b(1); : : : ;b(l)]> 2 Rl exists such that the time
series,

Zt := b
>yt = b(1)y1 + � � �+b(l)yl � I(0) : (1)

In other words, a set of I(1) variables is said to
be cointegrated if a linear combination of them exists
which is I(0).

2.2 Vector Autorregresive Models

VECM is a special case of VAR model and both de-
scribe the joint behaviour of a set of variables.

VAR(p) model is a general framework to describe
the behaviour of a set of l endogenous variables as
a linear combination of their last p values. These l
variables at time t are represented by the vector yt as
follows:

yt =
�
y1;t y2;t : : : yl;t

�>
;

where y j;t corresponds to the time series j evaluated
at time t.

The VAR(p) model describes the behaviour of a
dependent variable in terms of its own lagged values
and the lags of the others variables in the system. The
model with p lags is formulated as the following:

yt = f1yt�1 + � � �+fpyt�p + c+ et ; (2)

where t = p+1; : : :N, f1; : : : ;fp are l� l matrices of
real coefficients, ep+1; : : : ;eN are error terms, c is a
constant vector and N is the total number of samples.

The VAR matrix form of equation (2) is:

B = AX+E ; (3)

where:

A =

266664
yp : : : yN�1

yp�1 : : : yN�2
...

. . .
...

y1 : : : yN�p
1 : : : 1

377775
>

;

B =

24yp+1 : : : yN

35> ;

X =

24 f1 � � � fp c

35> ;

E =

24ep+1 : : : eN

35> :

Equation (3) can be solved using ordinary least
squares estimation.
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2.3 VECM

VECM is a special form of a VAR model for I(1) vari-
ables that are also cointegrated (Banerjee, 1993). It
is obtained by replacing the form Dyt = yt � yt�1 in
equation (2). VECM is expressed in terms of differ-
ences, has an error correction term and the following
form:

Dyt = Wyt�1| {z }
Error correction term

+
p�1

å
i=1

f
�
i Dyt�i + c+ et ; (4)

where coefficients matrices W and f�i are function of
matrices fi (shown in equation (2)) as follows:

f
�
i := �

p

å
j=i+1

f j

W := �(I�f1��� ��fp)

The matrix W has the following properties (Johansen,
1995):

� If W = 0 there is no cointegration

� If rank(W) = l i.e full rank, then the time series
are not I(1) but stationary

� If rank(W) = r; 0 < r < l then, there is coin-
tegration and the matrix W can be expressed as
W = ab>, where a and b are (l� r) matrices and
rank(a) = rank(b) = r.
The columns of b contains the cointegration vec-
tors and the rows of a correspond with the ad-
justed vectors. b is obtained by Johansen proce-
dure (Johansen, 1988) whereas a has to be deter-
mined as a variable in the VECM.
It is worth noticing that the factorization of the
matrix W is not unique since for any r� r nonsin-
gular matrix H we have:

ab
> = aHH�1

b
>

= (aH)(b(H�1)>)>

= a
�(b�)>

with a� = aH and b� = b(H�1)>.

If cointegration exists, then equation (4) can be
written as follows:

Dyt = ab
>yt�1 +

p�1

å
i=1

f
�
i Dyt�i + c+ et ;

which is a VAR model but for time series differences.
VECM has the same form shown in equation (3)

but with different matrices:

A =

2666664
b>yp � � � b>yN�1
Dyp � � � DyN�1

...
. . .

...
Dy2 � � � DyN�p+1

1 � � � 1

3777775
>

; (5)

B =

24Dyp+1 : : : DyN

35> ; (6)

X =

24a f�1 � � � f�p�1 c

35> ; (7)

E =

24ep+1 : : : eN

35> (8)

VAR and VECM parameters shown in equation
(3) can be solved using standard regression tech-
niques, such as ordinary least squares (OLS).

2.4 Ordinary Least Squares Method

When A is singular, solution to equation (3) is given
by the ordinary least squares (OLS) method. OLS
consists of minimizing the sum of squared errors or
equivalently minimizing the following expression:

min
X

kAX�Bk2
2

for which the solution X̂ is well-known:

X̂ = A+ B
where A+ is the Moore-Penrose pseudo-inverse which
can be written as follows:

A+ = (A>A)�1A> : (9)

However, when A is not full rank, i.e rank(A) =
k < n � m, A>A is always singular and equation (9)
cannot be used. More generally, the pseudo-inverse is
best computed using the compact singular value de-
composition (SVD) of A:

A
m�n

= U1
m�k

S1
k�k

V>1
k�n

;

as follows

A+ = V1S
�1
1 U>1 :
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3 METHODOLOGY

3.1 Online VECM

Since VECM parameter estimation is computation-
ally expensive, we propose an online version of
VECM (OVECM). OVECM considers only a slid-
ing window of the most recent data. Moreover, since
cointegration vectors represent long-run relationships
which vary little in time, OVECM determines firstly
if they require calculation.

OVECM also implements matrix optimizations in
order to reduce execution time, such as updating ma-
trices with new data, removing old data and introduc-
ing new cointegration vectors.

Algorithm 1 shows our OVECM proposal which
considers the following:

� The function getJohansen returns cointegration
vectors given by the Johansen method considering
the trace statistic test at 95% significance level.

� The function vecMatrix returns the matrices (5)
and (6) that allows VECM to be solved.

� The function vecMatrixOnline returns the ma-
trices (5) and (6) aggregating new data and remov-
ing the old one, avoiding calculation of the matrix
A from scratch.

� Out-of-sample outputs are saved in the variables
Ytrue and Ypred.

� The model is solved using OLS.

� In-sample outputs are saved in the variables Dytrue
and Dypred.

� The function mape gets the in-sample MAPE for
the l time series.

� Cointegration vectors are obtained at the begin-
ning and when they are required to be updated.
This updating is decided based on the in-sample
MAPE of the last n inputs. The average of all
MAPEs are stored in the variable e. If the aver-
age of MAPEs (mean(e)) is above a certain error
given by the mean error threshold, cointegration
vectors are updated.

� If new cointegration vectors are required, the
function vecMatrixUpdate only updates the cor-
responding columns of matrix A affected by those
vectors (see equation 5).

Our proposal was compared against VECM and
ARIMA. Both algorithms were adapted to an online
context in order to get a reasonable comparison with
our proposal (see algorithms 2 and 3). VECM and
ARIMA are called with a sliding window of the most

Algorithm 1: OVECM: Online VECM.
Input:

y: matrix with N input vectors and l time series
p: number of past values
L: sliding window size (L < N)
mean error: MAPE threshold
n: interpolation points to obtain MAPE

Output:
fypred[L+1]; : : : ;ypred[N]g: model predictions

1: for i = 0 to N�L do
2: yi y[i : i+L]
3: if i = 0 then
4: v getJohansen(yi; p)
5: [A B] vecMatrix(yi; p;v)
6: else
7: [A B] vecMatrixOnline(yi; p;v;A;B)
8: DYpred[i] A[�1; :]�X
9: end if

10: X OLS(A;B)
11: e mape(B[�n; :];A[�n; :]�X)
12: if mean(e)> mean error then
13: v getJohansen(yi; p)
14: A vecMatrixUpdate(yi; p;v;A)
15: X OLS(A;B)
16: end if
17: end for
18: Ytrue Y[L+1 : N]
19: Ypred Y[L : N�1]+DYpred

Algorithm 2: SLVECM: Sliding window VECM.
Input:

y: matrix with N input vectors and l time series
p: number of past values
L: sliding window size (L < N)

Output:
fypred[L+1]; : : : ;ypred[N]g: model predictions

1: for i = 0 to N�L do
2: yi y[i : i+L+1]
3: model =V ECM(yi; p)
4: Ypred[i] = model:predict(y[i+L])
5: end for
6: Ytrue = y[i+L+1 : N]

recent data, whereby the models are updated at every
time step.

Since we know out time series are I(1) SLARIMA
is called with d = 1. ARIMA is executed for every
time series.

Both OVECM and SLVECM time complexity
is dominated by Johansen method which is O(n3).
Thus, both algorithms order is O(Cn3) where C is the
number of iterations.
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Algorithm 3: SLARIMA: Sliding window ARIMA.
Input:

y: matrix with N input vectors and l time series
p: autoregressive order
d: integrated order
q: moving average order
L: sliding window size (L < N)

Output:
fypred[L+1]; : : : ;ypred[N]g: model predictions

1: for i = 0 to N�L do
2: for j = 0 to l�1 do
3: yi y[i : i+L+1; j]
4: model = ARIMA(yi;(p;d;q))
5: Ypred[i; j] = model:predict(y[i+L; j])
6: end for
7: end for
8: Ytrue = y[i+L+1 : N; :]

3.2 Evaluation Methods

Forecast performance is evaluated using different
methods. We have chosen three measures usually
used:
MAPE. Mean Average Percent Error which presents

forecast errors as a percentage.

MAPE =
1
N

N

å
t=1

jyt � ŷt j
jyt j

�100 (10)

MAE. Mean Average Error which measures the dis-
tance between forecasts to the true value.

MAE =
1
N

N

å
t=1
jyt � ŷt j (11)

RMSE. Root Mean Square Error also measures the
distance between forecasts to the true values but,
unlike MAE, large deviations from the true value
have a large impact on RMSE due to squaring
forecast error.

RMSE =

vuuut N

å
t=1

(yt � ŷt)
2

N
(12)

3.3 Model Selection

Akaike Information Criterion (AIC) is often used in
model selection where AIC with smaller values are
preferred since they represent a trade-off between bias
and variance. AIC is obtained as follows:

AIC =�2l
N

bias

+
2k
N

variance

(13)

where

l is the loglikelihood function

k number of estimated parameters

N number of observations

Loglikelihood function is obtained from the
Residual Sum of Squares (RSS):

l =�N
2

�
1+ ln(2p)+ ln

�
RSS
N

��
(14)

4 RESULTS

4.1 Data

Tests of SLVECM, SLARIMA and our proposal
OVECM were carried out using foreign four ex-
change data rates: EURUSD, GBPUSD, USDCHF
and USDJPY. This data was collected from the free
database Dukascopy which gives access to the Swiss
Foreign Exchange Marketplace (Dukascopy, 2014).

The reciprocal of the last two rates (CHFUSD,
JPYUSD) were used in order to obtain the same
base currency for all rates. The tests were done us-
ing 1-minute frequency from ask prices which corre-
sponded to 1.440 data points per day from the 11th to
the 15th of August 2014.

4.2 Unit Root Tests

Before running the tests, we firstly checked if they
were I(1) time series using the Augmented Dickey
Fuller (ADF) test.

Table 1: Unit roots tests.

Statistic Critical value Result
EURUSD -0.64 -1.94 True
DEURUSD -70.45 -1.94 False
GBPUSD -0.63 -1.94 True
DGBPUSD -54.53 -1.94 False
CHFUSD -0.88 -1.94 True
DCHFUSD -98.98 -1.94 False
JPYUSD -0.65 -1.94 True
DJPYUSD -85.78 -1.94 False

Table 1 shows that all currency rates cannot reject
the unit root test but they rejected it with their first
differences. This means that all of them are I(1) time
series and we are allowed to use VECM and therefore
OVECM.
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4.3 Parameter Selection

In order to set OVECM parameters: windows size L
and lag order p, we propose to use several window
sizes: L= 100;400;700;1000. For every window size
L we chose lag order with minimum AIC.

ARIMA parameters were also obtained using
AIC. Parameters optimization is presented in table 2:

Table 2: Parameters optimization. VECM order and
ARIMA parameters were selected using AIC.

Windows size L VECM ARIMA
L order (p) order (p;d;q)

100 2 p=2,d=1,q=1
400 5 p=1,d=1,q=1
700 3 p=2,d=1,q=1
1000 3 p=2,d=1,q=1

In OVECM we also define a mean error vari-
able, which was defined based on the in-sample
MAPEs. Figure 1 shows how MAPE moves and how
mean error variable help us to decide whether new
cointegration vectors are needed.
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0.000105

0.000110

MAPE USDJPY

Figure 1: In-sample MAPEs example for 50 minutes. The
average of them is considered to obtain new cointegration
vectors.

4.4 Execution Times

We ran OVECM and SLVECM 400 iterations.
SLARIMA execution time is excluded because its
is not comparable with OVECM and SLVECM.
SLARIMA was created based on statsmodels library
routine ARIMA.

The execution times are shown in the table 3.

Table 3: Execution times.

L order e Time[s]
OVECM 100 p=2 0 2.492
OVECM 100 p=2 0.0026 1.606
SLVECM 100 p=2 – 2.100
OVECM 400 p=5 0 3.513
OVECM 400 p=5 0.0041 2.569
SLVECM 400 p=5 – 3.222
OVECM 700 p=3 0 3.296
OVECM 700 p=3 0.0032 2.856
SLVECM 700 p=3 – 3.581
OVECM 1000 p=3 0 4.387
OVECM 1000 p=3 0.0022 2.408
SLVECM 1000 p=3 – 3.609

It is clear that execution time depends directly on
L and p since they determine the size of matrix A and
therefore affect the OLS function execution time. It
is worthy of note that execution time also depends
on mean error because it determines how many times
OVECM will recalculate cointegration vectors which
is an expensive routine.

Figure 1 shows an example of the in-sample
MAPE for 50 iterations. When the average of the in-
sample MAPEs is above mean error new cointegra-
tion vectors are obtained. In consequence, OVECM
performance increases when mean error increases.
However, this could affect accuracy, but table 4 shows
that using an appropriate mean error doesn’t affect
accuracy considerable.

4.5 Performance Accuracy

Table 4 shows in-sample and out-of-sample per-
formance measures: MAPE, MAE and RMSE for
OVECM, SLVECM and SLARIMA. Test were done
using the parameters defined in table 2. We can
see that OVECM has very similar performance than
SLVECM and this support the theory that cointegra-
tion vectors vary little in time. Moreover, OVECM
also out performed SLARIMA based on these three
performance measures.

We can also notice that in-sample performance
in OVECM and SLVECM is related with the out-of-
sample performance. This differs with SLARIMA
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Table 4: Model measures.

Model In-sample Out-of-sample
Method L Parameters e MAPE MAE RMSE MAPE MAE RMSE
OVECM 100 P=2 0.0026 0.00263 0.00085 0.00114 0.00309 0.00094 0.00131
OVECM 400 P=5 0.0041 0.00378 0.00095 0.00127 0.00419 0.00103 0.00143
OVECM 700 P=3 0.0032 0.00323 0.00099 0.00130 0.00322 0.00097 0.00132
OVECM 1000 P=3 0.0022 0.00175 0.00062 0.00087 0.00172 0.00061 0.00090
SLVECM 100 P=2 - 0.00262 0.00085 0.00113 0.00310 0.00095 0.00132
SLVECM 400 P=5 - 0.00375 0.00095 0.00126 0.00419 0.00103 0.00143
SLVECM 700 P=3 - 0.00324 0.00099 0.00130 0.00322 0.00098 0.00132
SLVECM 1000 P=3 - 0.00174 0.00061 0.00087 0.00172 0.00061 0.00090
SLARIMA 100 p=2, d=1, q=1 - 0.00285 0.00110 0.00308 0.00312 0.00098 0.00144
SLARIMA 400 p=1, d=1, q=1 - 0.00377 0.00101 0.00128 0.00418 0.00106 0.00145
SLARIMA 700 p=2, d=1, q=1 - 0.00329 0.00102 0.00136 0.00324 0.00097 0.00133
SLARIMA 1000 p=2, d=1, q=1 - 0.00281 0.00074 0.00105 0.00177 0.00063 0.00092

which models with good in-sample performance are
not necessarily good out-of-sample models. More-
over OVECM outperformed SLARIMA using the
same window size.

Figure 2 shows the out-of-sample forecasts made
by our proposal OVECM with the best parameters
found based on table 4 which follows the time series
very well.

0 10 20 30 40 50
0.00008

0.00010

0.00012

0.00014

0.00016

0.00018

0.00020 +2.918e−1

True EURUSD

Pred EURUSD

0 10 20 30 40 50
0.00008

0.00010

0.00012

0.00014

0.00016

0.00018

0.00020

0.00022

0.00024

0.00026 +5.175e−1

True GBPUSD

Pred GBPUSD

0 10 20 30 40 50
−0.09864

−0.09862

−0.09860

−0.09858

−0.09856

−0.09854

−0.09852

True USDCHF

Pred USDCHF

0 10 20 30 40 50

0.00002

0.00004

0.00006

0.00008

0.00010

+4.62564

True USDJPY

Pred USDJPY

Figure 2: OVECM forecasting accuracy example for 50
minutes using L = 1000 and p = 3.

5 CONCLUSIONS

A new online vector error correction method was pre-
sented. We have shown that our proposed OVECM
considerably reduces execution times without com-
promising solution accuracy. OVECM was compared
with VECM and ARIMA with the same sliding win-
dow sizes and OVECM outperformed both in terms
of execution time. Traditional VECM slightly outper-
formed our proposal but the OVECM execution time
is lower. This reduction of execution time is mainly
because OVECM avoids the cointegration vector cal-
culation using the Johansen method. The condition
for getting new vectors is given by the mean error
variable which controls how many times the Johansen
method is called. Additionally, OVECM introduces
matrix optimization in order to get the new model in
an iterative way. We could see that our algorithm took
much less than a minute at every step. This means that
it could also be used with higher frequency data and
would still provide responses before new data arrives.

For future study, it would be interesting to im-
prove the out-of-sample forecast by considering more
explicative variables, to increase window sizes or try-
ing new conditions to obtain new cointegration vec-
tors.

Since OVECM is an online algorithm which opti-
mizes processing time, it could be used by investors
as an input for strategy robots. Moreover, some tech-
nical analysis methods could be based on its output.
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