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Abstract: The first step in any non linear time series analysis, is to characterize signals in terms of periodicity, station-
arity, linearity and predictability. In this work we aim to find if PCG (phonocardiogram) and ECG (electro-
cardiogram) time series are generated by a deterministic system and not from a random stochastic process. 
If PCG and ECG are non-linear deterministic systems and they are not very contaminated with noise, data 
should be confined to a finite dimensional manifold, which means there are structures hidden under the sig-
nal that could be used to increase our knowledge in forecasting future values of the time series. A non-linear 
process can give rise to very complex dynamic behaviours, even though the underlying process is purely de-
terministic and probably low-dimensional. To test this hypothesis, we have generated 99 surrogates and then 
we compared the fitting capability of AR (auto-regressive) models on the original and surrogate data. The 
results show with a 99\% of confidence level that PCG and ECG were generated by a deterministic process. 
We compared the fitting capability of an ECG and PCG to AR linear models, using a multi-channel ap-
proach. We make an assumption that if a signal is more linearly predictable than another one, it may adjust 
better to these AR linear models. The results showed that ECG is more linearly predictable (for both chan-
nels) than PCG, although a filtering step is needed for the first channel. Finally we show that the false near-
est neighbour method is insufficient to identify the correct dimension of the attractor in the reconstructed 
state space for both PCG and ECG signals. 

1 INTRODUCTION 

Over the last decades, there has been an increasing 
interest in creating joint electrical-mechanical heart 
models using multi-source signals from the cardiac 
system. Therefore it seems crucial that we must 
characterize these sources. Non-linear methods have 
been successfully tested and used to study the 
dynamics of the system. One interesting idea is that 
aperiodicity in the data may not be due to a 
stochastic process but due to a non-linear 
deterministic system. False nearest neighbours 
method (FNN) (Kaplan, 1992-1993) have been 
widely and somewhat blindly used to estimate the 
minimum necessary embedding dimension. (Hegger 
and Kantz, 1999) identified some limitations on 
FNN statistic in distinguishing between low-
dimensional chaotic data and their corresponding 
surrogate data, giving as an example a simple ECG 
record, although they did not make any assumptions 
or claim that ECG signal is a deterministic process. 

In this study, we have expanded Hegger's work 
and incorporated PCG analysis in order to pave the 

way for multi-source fusion of these signals into a 
unified model. Possibly more importantly, we 
performed a null-hypothesis experiment using 
surrogate time series in order to distinguish and 
quantify the differences between PCG and ECG 
from a Gaussian stochastic process. This work's 
primary aim is to study the deterministic behaviour 
of a PCG and ECG signal. We aim to understand 
which signal is more linearly predictable and as a 
consequence more reliable. This will give us clues 
on how to combine information from the acoustic 
and electromagnetic system in order to create a more 
interesting space capable of detecting pathological 
diseases with higher accuracy than using a single 
ECG or PCG approach. If the PCG and ECG are 
deterministic signals then the secondary aim of this 
paper is to estimate their embedding dimension. An 
overestimation would lead to inaccurate results since 
all coordinates would be contaminated by noise and 
it also would lead to an increase in computational 
effort as most of the operations for prediction or 
classification scale exponentially with the 
embedding dimension. Finally, it could also lead to a 
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poor performance of the general algorithm used, 
simply because it treats the signal to be more 
complicated than what it really is. A sub-estimation 
would result in the incapacity of the system to 
reconstruct the phase space. 

This paper is structured as follows: ECG and 
PCG morphologies are presented in section 2. 
Surrogate time series are explained in section 3 
followed by an introduction to false nearest 
neighbours in section 4. Materials are presented in 
section 5. Results and conclusions complete the 
paper in sections 6 and 7. 

2 ECG AND PCG 
MORPHOLOGIES 

An electrocardiogram (ECG) is an electrical 
signature of the heart and it can give us indicators of 
pathological conditions. There are 3 main deflections 
in an ECG (Figure 1): the P wave, QRS complex and 
T-wave. These waves correspond to the far field 
induced by specific electrical phenomena on the 
cardiac surface, namely, the atrial depolarization P, 
the ventricular depolarization, QRS complex, and 
the ventricular repolarization T. 

 

Figure 1: The main components and segments in an ECG 
signal (adapted from (Guyton, 2006)). 

 

Figure 2: A typical heart sound and its four main compo-
nents: S1, S2, Systole and Diastole. 

In Figure 2 we can observe the various 
components of a heart cycle, including S1 (first heart 

sound) and S2 (second heart sound). These establish 
the boundaries of the other two fundamental 
components of a heart cycle: the systole (period 
between S1 and S2), and the diastole (period 
between S2 and S1). S1 and S2 are generated by the 
opening and closing of the various heart valves and 
in some auscultations we have the presence of 
additional sounds such as S3, S4 or murmurs 
(Guyton, 2006). 

3 SURROGATE TIME SERIES 

The ECG and PCG signals gives us a time series. In 
order to find a phase space we need to convert the 
observations ሼݏሺ݊ሻሽ into state vectors. A delay 
reconstruction is formed by delay vectors given by : 

௜ሺ݊ሻݔ ൌ ሾݏሺ݊ሻ, ሺ݊ݏ ൅ ߬ሻ,⋯ , ሺ݊ݏ ൅ ሺ݉ െ 1ሻ߬ሻሿ (1) 

Where n is the sample time, m is the embedding 
dimension and ߬ is the delay time; the choice of the 
two embedding parameters m and߬are crucial to 
probe deterministic behaviour with minimal 
computational effort. Taken's theorem (Kantz, 2004) 
states that for ideal noise-free data, there exists a 
dimension ݉ such that the delay vectors ݔ௜ሺ݊ሻ are 
equivalent to phase space vectors. If ݉ is enough for 
this purpose every ݉ᇱ ൐ ݉ will work as well, but 
this redundancy when considering chaotic data leads 
to a lower performance of many algorithms. In 
particular, the noise that is always present 
contaminates all the components of our delay vector 
and the computational cost is higher, which 
compromises any attempt for prediction or control. 
Also in this way the minimum embedding dimension 
gives us a lower bound on the dimensionality of the 
system. The delay time ߬ measures the temporal 
correlation between the states of ݔ௜ሺ݊ሻ. If ߬ is small 
compared to the time scales successive elements of 
the delay vectors are strongly correlated. On the 
other hand, for large ߬ successive elements are 
almost independent. In the limit of infinite data and 
infinite precision any time delay would work but in 
reality we have a range of acceptable values for ߬. 
This motivates the search for optimal embedding 
parameters ሺ݉, ߬ሻ for our problem. 

3.1 Algorithm to Generate the 
Surrogates 

In this paper the process to generate the surrogates 
of the original data is the Iterated Amplitude 
Adjusted Fourier Transform (IAAFT) surrogates, 
since it already takes into account the bias towards a 
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too flat spectrum, when the length of the time series 
is not large enough, like it happens in Amplitude 
Adjusted Fourier Transform (AAFT) (Schreiber, 
2000). 
 

ܵ௞
ଶ ൌ ∣∣

∣෍ ݏ
ே

௡ୀଵ
ሺ݊ሻ݁

௜ଶగ௞௡
ே

∣∣
∣
ଶ

 (2)

These components are multiplied by a random phase 
݁௜థೖ where ߶௞ are uniformly distributed in ሾ0,2ߨሿ 
and ߶ேି௞ ൌ െ߶௞. Different phases yield new surro-
gates. As a first step we apply a random shuffle to 
ሼݏሺ݊ሻሽ that returns ሼݏሺ݊ሻ଴ሽ. The i-th shuffle 
ሼݏሺ݊ሻ௜ିଵሽ must have the desired power spectrum. 
This is accomplished taking the Fourier transform of 
ሼݏሺ݊ሻ௜ିଵሽ and replacing the squared amplitudes 
ܵ௞
ଶ,௜ିଵ by ܵ௞

ଶ and then transforming back.  

 
(3A) 

 
(3B) 

Figure 3: PCG signal (A) and it is corresponding surrogate 
(B). 

 
(4A) 

 
(4B) 

Figure 4: ECG signal (A) and it is corresponding surrogate 
(B). 

Although we achieve the correct spectrum, the dis-
tribution is modified. A second-step is required to 
rank-order the resulting series to strictly assume the 
values taken by ሼݏሺ݊ሻሽ. This modifies the resulting 
spectrum ሼݏሺ݊ሻ௜ሽ so the 2 steps have to be repeated 
several times until the algorithm converges. The 
TISEAN implementation was used to this end 
(Kantz, 2004). 

3.2 The Null Hypothesis 

The null hypothesis is defined for a time series in 
terms of a class of processes that is assumed to 
contain the specific process that generated the data 
(Schreiber, 2000). In this section we are interested in 
understanding the underlying dynamics of the signal, 
mainly if deterministic signatures are present. In 
other words, we want to test if the data was not 
generated by a random stochastic process but by a 
deterministic system. If that assumption is true, we 
should observe temporal correlation in our data 
points which is something that could not happen in a 
surrogate time series, since any linear temporal 
correlation between successive data points have 
been completely destroyed by the process. We 
choose the AR (autoregressive) linear model with 
nonzero coefficients and two consecutive lag 
samples. 

ሾ݊ሿݕ ൌ ܿଵݕሾ݊ െ 1ሿ ൅ ܿଶݕሾ݊ െ 2ሿ (3) 

Where ܿଵ and ܿଶ are the model coefficients. These 
are calculated during the training phase using the 
first half of the signal. After this optimization step, 
the algorithm is going to predict the newest values 
using the second half of the signal (equation (3)). 
Finally the mean square error (݁̅ଶ) is computed from 
the observed and the predicted values, as it described 
in equation (4). 

݁̅ଶ ൌ
∑ ൛൫ݕ௜

௣௥௘ െ ௜ݕ
௢௕௦൯ൟ

ଶே
௜ୀଵ

ܰ
 (4) 

We argue that if a signal is deterministic it may be 
more predictable than a non-deterministic one, 
unless in cases of very noisy systems. A pre-
processing step is thus recommended in order to 
attenuate the noise. First we select a residual 
probabilityߙof a false rejection, corresponding to a 
level of significance ሺ1 െ ሻߙ ∗ 100%, then for the 

one-sided test we generate ܯ ൌ
௄

ఈ
െ 1 surrogate 

sequences, whereܭis a positive integer 

corresponding to a total of
௄

ఈ
sets. Therefore the 

probability of the data has one of theܭsmallest 
prediction errors is exactlyߙ. In our case, K is set 
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equal to 1 in order to minimize the computational 
effort, since mostly of the computational time is 
generating the surrogates. 

4 FALSE NEAREST NEIGH-
BOURS METHOD (FNN) 

The False Nearest Neighbours (FNN) method was 
developed (Kennel, 2002) to estimate the minimum 
embedding dimension necessary to correctly 
represent the dynamics of a system. It is based on 
the uniqueness property of the phase space trajectory 
for deterministic systems in which points that are 
close in the phase space remain close under forward 
interaction. The nearest neighbour of a point is 
considered to be a false neighbour if they are close 
purely by a projection effect. Therefore, the 
optimized value for the embedding dimension is the 
minimum value which correctly represents the 
attractor (only for correlation dimension) (Kennel, 
1992). For the implementation we take a 
givenݔ௜ሺ݊ሻin݉dimensions and find the nearest 
neighbourݔ෤ప෩ ሺ݊ሻ. The Euclidean distance in m-
dimensions is: 

ܴ௠ଶ ሺ݊ሻ ൌ෍ ሺሾݏሺ݊ ൅ ݇߬ሻ െ ሺ݊ݏ̃ ൅ ݇߬ሻሿሻଶ
௠

௞ୀଵ
 (5) 

The same is done for݉൅ 1dimensions, where this is 
simply the previous vectors with an extra component 
ሺ݊ݏ ൅ ݉߬ሻ. So: 

ܴ௠ାଵ
ଶ ሺ݊ሻ ൌ ܴ௠ଶ ሺ݊ሻ ൅ ሺሾݏሺ݊ ൅ ݉߬ሻ െ ሺ݊ݏ̃ ൅ ݉߬ሻሿሻଶ (6)

The specific test for false neighbours is given as: 

௥ߩ ൌ
ሺ݊ݏ ൅ ݉߬ሻ െ ሺ݊ݏ̃ ൅݉߬ሻ

ܴ௠ሺ݊ሻ
 (7) 

If the increase in distance is larger than a given 
thresholdߩ௥(usually10 ൏ ௥ߩ ൏ 20) we name these 
points as false nearest neighbours. When this 
quantity drops to zero we have unfolded the attractor 
into a m-dimensional Euclidean space. 

4.1 FNN statistics 

The previous criterion alone does not provide a safe 
standard to determine a proper embedding 
dimension. It is known that stochastic processes 
(characterized by high dimensional attractors) yield 
a vanishing or at least a small fraction of false 
nearest neighbours. The fact is that even ifݔ෤ప෩ ሺ݊ሻ is 
the closest neighbour toݔ௜ሺ݊ሻ when ܴ௠ሺ݊ሻ is 
comparable with the size of the attractor ܴ஺ the 
criterion does not count this as a false neighbour. So, 

a second test gives ൫ݔ෤ሺ݊ሻ൯
௜
 as a false neighbour if : 

஺ߩ ൌ
ሺ݊ݏ ൅݉߬ሻ െ ሺ݊ݏ̃ ൅ ݉߬ሻ

ܴ஺
 (8) 

 ஺ has typical values between 1 and 2. ܴ஺ is usuallyߩ
chosen as : 

ܴ஺ ൌ ൭
1
ܰ
෍ሾݏሺ݊ሻ െ ሿଶݏ̄
ே

௡ୀଵ

൱

ଵ ଶ⁄

 (9) 

where ̄ݏ is the average value of the observed data. 

5 MATERIALS 

The used dataset was collected in the Center for 
Cardiothoracic Surgery (CCT-CHUC) and the 
Cardiology Department (DCCHC-CHUC) of the 
Centro Hospitalar e Universitário de Coimbra under 
the scope of the HeartSafe project. The dataset is 
composed by 33 healthy patients: 31 males and 2 
females. The Body Mass Index average is 24 (BMI) 
and their age average are 30 are summarized in 
Table 1. Two ECG channels and one PCG were 
recorded simultaneously and annotated by an expert 
physician. 

6 RESULTS 

We test the null-hypothesis for both ECG and PCG 
signals with and without filtering. The ECG signal is 
filtered using a low-pass filter followed by high-pass 
filter in order to form a bandpass filter in the 5-15Hz 
frequency range and normalized at last. In Figure 
3.A it is represented a typical phonocardiogram 
signal (PCG), which was used to generate the surro-
gate data plotted in Figure 3.B. Different time lags 
were chosen in order to demystify its importance in 
the false nearest neighbours (FNN) statistic. The 
results in Figure 5 showed a lack to sensitivity of the 
false nearest neighbour method to distinguish the 
original PCG from the surrogate. In other words, 
both curves show the same trend regardless of the 
dimensionality݉. These results can be extrapolated 
easily to the ECG as it is shown in Figure 6 (Go-
vindan, 1998). The false nearest neighbour method 
revealed itself as not capable to distinguish deter-
ministic from a stochastic process in both PCG and 
ECG signals. All graphics plotted in Figures 5-6 
show that the percentage of FNN tends to zero more 
quickly for a higher embedding dimension ݉, inde-
pendently of the time delay ߬. This can be explained 
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by the fact of adding an extra ሺ݉ ൅ 1ሻ௧௛ component 
ሺ݅ݏ ൅ ݉߬ሻ in a vector ݕሺ݅ሻ of dimension݉. As an 
alternative explanation, this can be due to a specific 
geometric characteristic of the attractor. This topic 
will be explored in future works. Regarding the 
embedding dimension tested, the decay velocity is 
faster in ECG than in PCG, which possibly means 
that an ECG signal is more folded than a PCG one in 
the reconstructed phase space. In some cases, it is 
observable an increase in FNN statistics. This might 
be happening because of noise, since a high dimen-
sion system is by nature more susceptible to it than a 
lower one. 

 
(A)߬ ൌ 1 

 
(B)߬ ൌ 5 

 
(C)߬ ൌ 10 

Figure 5: Percentage of FNN for PCG data and their sur-
rogate for ݉ ൌ 1 → 6 (from top to bottom) using different 
߬, R factor is the maximum distance between pairwise 
points to be considered a true neighbours. 

 

Figure 6: Percentage of FNN for ECG data and their sur-
rogate for ݉ ൌ 1 → 6 (from top to bottom) using ߬ ൌ 1, R 
factor is the maximum distance between pairwise points to 
be considered a true neighbours. 

The null-hypothesis was designed to test if the ECG 
and PCG data represents a deterministic process. In 
order to create a 99% statistic significance test, we 
have generated M = 99 surrogates using the IAAFT 
algorithm. For the evaluation of the AR performance 
in the surrogate data, we have followed the same 
procedure discussed on the previous sections. 

 

Figure 7: The ECG (blue) and its filtered (red) in channel 
1. The bandpass filter used is adding a constant phase to 
the original ECG signal. 

We have tested the null-hypothesis using two ECG 
and one PCG signal. The ECG signals were recorded 
at 600Hz and 44100Hz sampling frequency from 
two different channels (Figure 7). The PCG was 
recorded at 44100Hz sampling frequency. 

Table 2: Mean square error (݁̅ଶ) from the Original ECG 
and PCG series and their corresponding surrogates. 

Original  SurrogateMin

௖௛௔௡௡௘௟ଵܩܥܧ 2.02E-3 1.70E-3 

௖௛௔௡௡௘௟ଶܩܥܧ 1.18E-7 7.65E-5 

ி௜௟௧௘௥௘ௗܩܥܧ
௖௛௔௡௡௘௟ଵ 2.00E-7 8.43E-4 

PCG 5.51E-6 1.47E-4 

The HeartSafe dataset is composed by 960 seconds 
of record in average, although we used records of 
only 9.6 seconds to speed up the process. Results are 
presented in Table 2. 

With the exception of the non-filtered ECG in 
channel 1, both PCG and ECG have smaller mean 
square error (݁̅ଶ) than their corresponding minimum 
surrogate series. Therefore we can conclude with a 
99% of confidence level that ECG and PCG were 
not generated by a random stochastic system but 
instead by a non-linear deterministic system. For the 
non-filtered ECG in channel 1, the noise level was 
unusually high (Figure 7), therefore the noisy 
stochastic components are predominant under the 
sources of information. This result lead to an 
impossibility of rejecting the null-hypothesis for 
such noisy levels. 
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Table 3: HeartSafe dataset results. 

  ECG 
Ch1 

ECG 
Ch2 

PCG ECG Ch1 
Filt 

݁̅ଶ 3.29E-4 1.67E-7 1.87E-6 2.48E-7 

We also compare the fitting capability of ECG and 
PCG to AR linear models (Table 3). We make an 
assumption that if a signal is more linearly 
predictable than another one, it may adjust better to 
these AR linear models. The HeartSafe dataset 
results showed that filtered ECG is a more linearly 
predictable signal than filtered PCG. The first ECG 
channel exhibits higher noise levels when compared 
to the second one, as a consequence ݁̅ଶ is greater in 
the first channel making it a more unreliable 
channel. 

7 CONCLUSIONS 

Using a null hypothesis test, we concluded with 99% 
of confidence that the PCG and ECG data came 
from a deterministic system, although potentially 
contaminated with a broad type of noises. 
The FNN statistic revealed itself to be insufficient to 
extract an embedding dimension from both PCG and 
ECG signals, simply because it was never observed 
a zero fraction of false neighbours. Therefore any 
attempt to build a phase space turns to be 
insufficient to completely describe the dynamical 
system so the embedding dimension does not insure 
a deterministic mapping. This can be caused by the 
measurement noise (error which is independent of 
the system, where all observations are contaminated 
by some amount) or dynamical noise (feedback 
process where in the system is perturbed by some 
amount in each time step (Schreiber, 1996)). 
Dynamical noise may sometimes be a higher 
dimensional part of the dynamics with small 
amplitude. At least one type of the dynamical noise 
in a PCG is not static but it is periodic or quasi-
periodic and it depends on the breathing cycle, 
making the analysis of PCG a more difficult task. 
Finally, in the HeartSafe dataset, ECG revealed to be 
a more linearly predictable signal when compared to 
the PCG, although a filtering step is needed in 
channel 1. Therefore, in order to improve the 
predictability of a multi-signal acquisition system , 
we suggest to have more PCG than ECG channels, 
since they are more linearly unpredictable signals. 
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