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Abstract: In this paper, we describe a virtual basketball game where a human and an embodied agent can play together
as a team. Our goal is to investigate whether the human prefers an agent who is highly competent at basketball
or one which is not as competent but tries to actively communicate through body movements. The virtual
basketball game was implemented using a Kinect to sense body movements and a pressure sensor for hands-
free navigation. In order to create an agent who could react to a user’s body movements, we designed an
agent model based on joint activity theory. We performed an experiment where participants would play virtual
basketball with each agent and evaluated them through questionnaires. It was found that participants preferred
the agent which tried to communicate more with the user, even though they could distinguish that the other
agent was better at playing basketball. We propose that communication capability for these types of agents is
crucial, even at the expense of some task ability.

1 INTRODUCTION

The field of embodied conversational agents (ECAs)
contains sophisticated agents which are designed to
have a face-to-face conversation with real people,
driving forward the concept of computers as social
actors (Nass et al., 1994). ECAs such as Greta (Be-
vacqua et al., 2010) use multiple modalities such as
speech, facial expression and gesture to smoothly
communicate in this manner. On the other hand there
are situations in the real world which are not specifi-
cally conversational in nature. For example, commu-
nication in sports often requires physical co-operation
to achieve a common goal. This type of situated com-
munication (Rickheit and Wachsmuth, 2006) has been
somewhat addressed by robots and ECAs such as Max
(Kopp et al., 2003; Kruijff et al., 2012), but generally
the face-to-face paradigm appears to be more domi-
nant in ECA research. Furthermore, even the environ-
ment in which Max is situated does not require exten-
sive navigation, which is an activity commonly exe-
cuted in sports. If the aim of researchers is to create
an ideal virtual human, it is necessary for these agents
to have this capability so they can interact within a
wider variety of virtual environments.

One domain where agents can navigate freely with
humans is in the context of video games. Thousands
of scenarios exist where agents and humans interact

with the environment itself such as picking up and
using virtual objects or traveling to complex loca-
tions. Furthermore, activities in these scenarios are
often done in order to achieve a common goal such as
defeating an enemy. The limitation of such environ-
ments is their interactivity with the user, which is gen-
erally only done through peripherals such as a key-
board or mouse. Our proposal is that agents should
exist between the face-to-face agent and video game
agent paradigms by taking crucial elements of both.
From ECAs we take the ability to interact using hu-
man modalities. From video games we take the abil-
ity to navigate in the world to achieve a common goal.
These agents also require different methods of inter-
action. Figure 1 clarifies this concept.

The properties of the situated environment which
such an agent inhabits are that navigation is necessary
to achieve a common task and that the task should
be completed using human modalities. A human in a
virtualization of this environment should navigate in
the world with the agent without needing a keyboard
or mouse so they can effectively use body movement
for communication. The agent must be physically dy-
namic and able to react to human input. We can as-
sume that an ideal ECA will have the ability to hold
a conversation with the user so that the experience is
similar to talking with a real human. But what defines
a “good” agent in the situated environmental context?
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Figure 1: Navigation ability of video game agents and the human modality interface of ECAs are combined to produce an
agent which travels around with an environment with the userto execute shared tasks.

We propose that agents can have the properties of be-
ing good at a task and good at communication.

Creating an agent which is “good” at a task can
simply be a matter of adjusting its parameters or opti-
mizing its decision making. Consider an extreme case
of a virtual football game, where a virtual athlete is 10
times faster and more skilful than any other character.
We can say this agent is good at football, but we can-
not say it is realistic or sociable. It is more like a ma-
chine or tool designed to get a task done efficiently.
The opposite can also be imagined. For example a
guidance agent may be extremely sociable and recog-
nize many modalities but can’t provide the requested
information to the user. In this case a simple paper
map might be more useful. Our long-term goal is cre-
ating an agent with both task abilities and realistic so-
cial behavior which may or may not be task-related.

Current embodied agentsdo require both task and
communicative abilities, but these may be weighted
in terms of importance. For example, in crowd simu-
lations (Guy et al., 2010) or exploration agents (Little
and Sommer, 2011), task ability is the highest priority.
On the other hand in domains such as virtual guides
(Bickmore et al., 2013) and teachers (Bergmann and
Macedonia, 2013), the focus is improving communi-
cation because this is largely embedded in the task
(providing information to the user in a pleasant man-
ner). Greta and ECAs from the SEMAINE project
(Schroder et al., 2012) are not even designed towards

a particular task, their only function is to have a nat-
ural conversation with the user. Recently there has
been a shift towards using agents for more serious ap-
plications. ECAs have been proposed to provide bet-
ter information to hospital patients (Bickmore et al.,
2009), taking the role of a patient to train doctors
(Kenny et al., 2008) and assisting people with job in-
terviews (Baur et al., 2013). These are arguably situa-
tions where both abilities are the most intertwined and
balanced because conversation is necessary to achieve
the given task. However even in these tasks the do-
main still remains face-to-face.

Playing basketball is a domain which is separate
from these environments. The agent must be able to
both execute actions and communicate with the hu-
man player to achieve the goal. We aim to discover
the relative importance of both task and communica-
tion abilities. Although agents are often analyzed in
respect to these abilities (Kim and Baylor, 2006; Ed-
wards et al., 2014) we do not know of prior research
on their appropriate balance. Collaborative task en-
vironments such as basketball require us to consider
both task and communication contributions.

This motivates our work in which we aim to assess
which properties human value in a virtual agent for a
physically collaborative task, in this case basketball.
For virtual agents, we define physical collaboration
as a shared cooperative activity requiring both navi-
gation and usage of virtual objects. Given the choice
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between an agent who is clearly proficient at basket-
ball and one which is not so proficient but can express
and understand communication signals from humans,
which would a human prefer? We term the former
agenttask-competentand the lattercommunication-
competent. Note that these terms are relative to each
other and not absolute indicators. Our research ques-
tion is “How do people perceive embodied agents with
differing proficiencies and capacities of communica-
tion in a physically collaborative task?”

We propose that within the setting of basket-
ball, users prefer communication-competent agents to
task-competent agents. The question then turns to
how to design these types of agents to help test this
conjecture, in particular the communication model
which is used. ECAs require modalities which are
different from basketball. While ECAs make use of
information on speech and facial expression, basket-
ball agents tend to use the whole body as a communi-
cation mechanism. We cannot be certain that face-to-
face communication models can account for this type
of agent, so we make use of a more general frame-
work. The theory we use to guide their design is
Herbert Clark’s joint activity theory, or JAT (Clark,
1996). From this theory, we use two concepts - signal
identification and evidence. Signals in this context are
any body movements executed in order to send a mes-
sage to another party. Evidence is required to prove
that a body signal is actually a signal and not a move-
ment carrying no meaning. In Section 2.2 we describe
agent communication based on an evidence model.

JAT is useful because it simplifies communication
as being about signals, rather than attempting to sim-
ulate an abstract internal model. In the context of
basketball, signaling is offered a greater importance,
because we can already reliably assume the internal
goals of the human, which is to win the game. An-
other advantage is that JAT can model dynamic atten-
tion because it requires the agent to perceive (i.e. see)
and focus on a signal. Dynamic attention is the prop-
erty of an agent which switches focus between indi-
vidual and collaborative tasks during an interaction.
In JAT a specific interaction is commonly termed a
joint project. In sports, these joint projects can be
identified when players can focus on individual tasks
such as running, kicking or throwing, or collaborative
tasks such as passing a ball or celebrating with their
team mates. JAT has been applied to artificial agents
in other research, but this focused on robots (Brad-
shaw et al., 2009). We use JAT as a basis for virtual
agents in this paper and aim to test whether this the-
ory is suitable for agent design, particularly the design
of agents in basketball and other sports-like environ-
ments.

The basketball game uses body interaction as a
means of communication. Literature on the use of
the body as a modality can be roughly categorized
into gesture and full body movement. Gesture is im-
portant for face-to-face agents with many embodied
agents such as Greta being used to study gesture mod-
ulation and multimodal integration with facial expres-
sions (Pelachaud, 2009; Martin et al., 2006). On the
other hand, we focus on full body movement as a
driver for interaction. This has been seen as an impor-
tant function for communication in agents and robots
(de Gelder, 2009; Sanghvi et al., 2011; Damian et al.,
2013; Kistler et al., 2013). Extensive research on
body movement and engagement has also been un-
dertaken, particularly with regards to body movement
as an engaging and affective mechanism (Bianchi-
Berthouze, 2013; Kleinsmith and Bianchi-Berthouze,
2013).

In the type of environment we are creating body
movement is not only the primary modality, but is
used to execute tasks and to navigate. Humans will
use their bodies to send communication signals to the
agents, who then react to it. Furthermore, these sig-
nals may be explicit or implicit. We make a distinc-
tion between explicit and implicit signals by stating
that explicit signals are those which areidentifiable
as being a communicative signal evenwithout extra
context. For example, if we see somebody waving
their arm above their head with no other context avail-
able, we can still reasonably assume that it represents
a signal intended for someone or something. We don’t
know who the signal is intended for, nor do we have
any idea about its meaning, but we still identify it as a
signal. On the other hand, implicit signals, such as the
rotation of the body, cannot be identified as such with-
out context. A person who rotates their body could
simply be turning to walk to another place with no
communicative intent involved. These concepts are
important because they are related to the JAT concept
of identification. In order for any signal to be acted
upon, it must be identified by the receiver as actually
being a signal. Human players should be able to use
their bodies much as they would in a real basketball
game so agents must be able to identify both explicit
and implicit signals from the human player.

Two main questions will be addressed in this
work:

Q1 Can JAT be used as a theory for creating agents
which communicate through body modality?

Q2 Are there task-based situations where agents com-
petent at communication are preferred to agents
competent at the task itself?

To answer the above research questions, we create
a basketball game where a human plays with an agent
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team mate against two other agents. The participant
plays two games, each differing only by the type of
agent team mate (task-competent or communication-
competent). We ask participants to play a game with
each agent, evaluate them, and then determine if dif-
ferences exist in regards to user perception.

This paper contains two contributions. The first
is a validation of the need for communicative agents
over those that are simply good at a task. The sec-
ond is an agent model based on JAT which can be
extended for multimodal interaction. Section 2 dis-
cusses the virtual basketball game and the design of
each type of agent. Section 3 outlines our methodol-
ogy for the experiment, while Section 4 presents our
results and analysis. Section 5 discusses the results of
the experiment before the conclusion of the paper.

2 VIRTUAL BASKETBALL

In this section, we describe the virtual basketball
game to be used in the experiment. We first discuss
the environment itself and then the design of the two
agent types. We emphasize that the goal of this re-
search isnot to create a perfect basketball simulation
or virtual basketball player. The basketball game ex-
ists only as a means to analyze communicative behav-
ior. In this sense, the lessons from this work should
be generalizable to environments other than basket-
ball. Basketball is also used as a testbed because it is
a co-operative game in which players must commu-
nicate to achieve a common goal. The rules are well
known and do not need to be taught. We propose that
basketball is viewed as a communication game, where
the team with the best understanding of each other’s
intentions and behavior will be victorious. Another
viewpoint is that playing basketball is similar to hav-
ing a conversation, only with most signals being non-
verbal in nature.

2.1 Environment

There are three main components of our virtual bas-
ketball environment, which is based on the VISIE sys-
tem by Lala (2012). The first is the Kinect sensor
placed in front of the user, for allowing body move-
ment of the player’s character and to recognize inter-
actions. It also allows us to recognize passing, shoot-
ing and dribbling gestures to manipulate the ball dur-
ing the game. We use algorithms based on Gaussian-
mixture regression described by Calinon et al. (2007)
and applied to basketball gestures in previous work by
Lala et al. (2013). Although there are many ways to
pass a ball, we limit this to a simple extension of both

arms towards the target of the pass. One limitation
of Kinect is that body recognition is unreliable if the
user rotates their body away from the sensor.

The second main component is the pressure pad
which the participants walk on in order to navigate
their character around the court. We use a variant of
an algorithm described in previous research by Lala
(2012). This algorithm discriminates between a user’s
walking and non-walking states. Although the algo-
rithm can also calculate the walking direction of the
user, it was not required in this experiment because
it is necessary for the user to face the Kinect sen-
sor. Therefore any walking must be done in a for-
ward direction and it must be possible to rotate the
viewpoint of the user. This is achieved by the user
stepping on the extreme left and right edges of the
pressure pad. Additionally, the user can walk back-
wards during the game by stepping on the back edge
of the pad. Through this method, the user can walk
around the entire court by only using natural walking
movements and steps for rotation purposes.

Finally, we describe the immersive display hard-
ware component. Eight displays surround the user
and project the virtual environment around them, al-
lowing them to quickly visually perceive the whole
of the court. In a dynamic game such as basketball,
this is critical. With a flat screen display, the users
would have to constantly rotate to check the position
of other players and the court. This is undesirable in a
dynamic movement game such as basketball. Images
of the system in use are shown in Figure 2.

Gameplay in virtual basketball operates similarly
to real basketball. The players dribble the ball around
the court, can pass the ball to each other and can score
by shooting the ball in the hoop. Players may steal
the ball from their opponent by touching it with their
hand while in the opponent is in possession. However,
there are no fouls. One major difference is the use of
a restart location. When possession swaps (such as
the ball being out, stolen, or a goal scored), the other
team takes the ball to the restart location to begin play
again. The game operates much like street basketball,
where both teams take turns to score in one hoop. An-
other difference is that players cannot jump during the
game. The reason for this is to prevent physical dam-
age to the pressure pad.

2.2 Basketball Agent Design

In our experiment we design two types of agent
- one which is task-competent and one which is
communication-competent. We make use of an exist-
ing basic agent and then modify it to produce differing
behaviors. The basic agent has several capabilities. It
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Figure 2: Virtual basketball (left) being played through the use of a Kinect sensor and a foot pressure pad. These sensorsare
combined and used in the immersive display setup (center). The right image shows a screenshot of the game.

can move around the court to a free position and avoid
collisions, and make decisions on when to shoot. On
defense, the agent can block opposing players. These
decisions are made entirely without any direct input
from the participant except for their relative position
on the court. The opposing team in the experiment
consists of two of these basic agents.

The agents themselves are fairly low resolution
avatars and textures with simple animations. In fact
they are well below the standards of visual realism
in commercial games and other research applications.
There are a couple of reasons for this design decision.
Firstly, a user may expect a highly realistic agent to
behave to a more human-like standard than a non-
realistic one, in line with the work by Garau et al.
(2003). Unlike video game agents, this agent has to
react to human modality input and abnormal behav-
ior would greatly affect user perception if the avatar
was highly realistic. Furthermore, the focus in this
work is on full body modalities. In order to reduce
the extent of facial expressions as an influencing vari-
able the faces, while containing some expression, are
obviously static and not an indicator of any emotional
state.

2.2.1 Task-competent Agent

To create the task-competent agent (T-C agent), we
improve the physical characteristics of the basic agent
by simply parameterizing certain features. In our ex-
periment, this agent is 50% faster at walking, running,
sidestepping and turning, while 75% faster at drib-
bling. Additionally, the T-C agent is 75% better at
shooting and is more likely to successfully steal the
ball from an opposing player. The reasons for the val-
ues of these parameters are fairly arbitrary. They are
simply values which allow the T-C agent to be suc-
cessful at basketball without the need for communi-
cation. The design of the T-C agent is done to provide
a contrast to the other players of being more compe-
tent at basketball.

The behavior of the T-C agent also differs. Its
preference is to attempt to shoot a goal. Rather than

attempting to collaborate with its team mate, it will
dribble towards an empty space near the goal. When
this agent’s team mate has the ball, it will simply find
a free space, rotate towards the goal and wait. While
defending, the T-C agent always approaches the op-
posing player with the ball. If the ball is free, it will
always attempt to capture it regardless of where its
team mate is located. The T-C agent is good enough
to win basketball by itself. We consider this agent as
being similar to a tool because the strategy to win is
to simply give it the ball and let it do the work.

2.2.2 Communication-competent Agent

The communication-competent agent (C-C agent) has
the same physical characteristics as a basic agent, but
is 25% worse at shooting. In contrast to the T-C agent,
it will react to body movement signals given from the
human player and attempt to pass the ball to them if
possible. It will signal for the ball if it is in a free
space and can be seen by the human. Unlike the
T-C agent, it displays its focus of attention through
the rotation of its body. When defending, it will ap-
proach the nearest opponent in a man-to-man basket-
ball marking strategy. If the ball becomes free, it will
only attempt to capture it if it is closer than its team
mate, or if its team mate is not moving towards the
ball.

We implemented an evidence-based model for this
agent inspired by JAT. The concept of this model is
that each signal must be perceived (observed by the
agent in the virtual world), identified (discriminated
as a signal as opposed to ordinary movement behav-
ior), recognized (the meaning understood) and ac-
cepted. To facilitate this process, the agent makes use
of common ground, which is the knowledge shared
between agent and human. This must be programmed
into the agent beforehand. In this case, common
ground knowledge is limited to the following:

• Rotation of the body indicates the focus of atten-
tion of a player.

• Wide spatial movement of the arms when the team
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mate has the ball indicates a call for a pass.

• Wide spatial movement of the arms after a goal is
scored indicates celebration.

We generated this knowledge of common ground
from analyzing interactions between human team
mates in the same environment (Lala and Nishida,
2014). In the previous experiment it was found that
human team mates reacted to both implicit and ex-
plicit signaling. This justifies the discrimination of
these signal types. For example, a turn towards a team
mate possessor in open space was an implicit signal of
a request to pass. An explicit waving of the arms sig-
nal after a goal was scored indicated celebration. The
above actions were used in almost all games even with
no previous interactions between team mates and little
experience in basketball, which shows some general-
izable behavior that can be implemented into agents.

The agent infers the meaning of these signals
through the context of the game. For explicit signals,
a specific gesture model is not used because there are
a variety of user signals that would need to be recog-
nized. From previous observations, we found that a
wide spatial arm movement is common among these
gestures, and so include it as common knowledge for
the agent. Additionally, it also expresses its own in-
tentions by calling for a pass in a similar manner (rais-
ing its hand). If it identifies a signal that a human
player is looking to pass, it will hold up its arms,
readying itself to catch the ball. The C-C agent also
expresses a celebration action when their team scores
a goal, an apology action when it makes a mistake
such as throwing the ball out, and an encouragement
action for when the human player makes an error.

Another feature which differentiates face-to-face
and basketball agents is dynamic attention. For de-
signing these agents according to JAT, there must be
some method with which agents can engage and dis-
engage from a collaborative act. As stated previously,
in JAT terminology this is a joint project. The agent
should have the ability to recognize joint projects and
participate in them. To do this quantitatively, a simple
evidence model was constructed for the C-C agent.
It continuously looks for evidence that their partner
wishes to engage in communication with them. To do
this, it sumsn number of f variables weighted byw
over a certain period of timet, to produce evidence,
ε∗. It then checks this evidence against a threshold
value,thr. If this threshold is exceeded, it identifies a
signal,σ:

ε =
n

∑
i=1

wi fi ε∗ =
t

∑
j=1

ε j ε∗ > thr → σ (1)

The C-C agent uses two variables (f1 and f2) to
recognize if the user is waiting or ready to throw a
pass.f1 is the relative rotation of the body of the user
towards the player. f2 is the relative movement of
the user (towards the agent, away from the agent, or
stationary). f3 is used as a third binary variable to
identify explicit signals, by identifying the raising of
the arms higher than the shoulders.

3 METHODOLOGY

We used the virtual basketball environment to com-
pare the two agent types. The only difference between
the two games was the type of team mate agent used.
One limitation of this work which we acknowledge
is that there is no control agent (i.e. an agent with
poor communication and task ability). The major rea-
son for this is that after preliminary testing we found
such an agent to be extremely useless. We make the
assumption that this agent would generally be rated
very low. Furthermore, having each user play three
basketball games would likely increase fatigue, both
physical and mental. Ideally a control agent would
have been used but for these reasons we deemed this
experimental design to be suitable.

Questionnaires were used to evaluate and compare
the agents and consisted of three types of items. The
first was a semantic differential scale, much of which
is based on the Godspeed questionnaire described by
Bartneck et al. (2009). Originally designed for robot
interaction, we use this measurement to test the la-
tent variables of perceived intelligence, animacy, and
likeability. To tune the questionnaire more towards
virtual characters, we decided to only use three items
to measure the animacy construct: stagnant-lively,
mechanical-human and artificial-lifelike. In addition,
we also included our own semantic differential scales
to measure task ability. These items asked the partic-
ipants for the subjective interpretation of the agent’s
running speed (slow-fast), dribble speed (slow-fast)
and defensive ability (not good at-good at).

The second type of questions were 5-point Likert
scales (strongly disagree-strongly agree) which mea-
sured various aspects of the agents and the game it-
self. These were used to compare the agents with re-
spect to collaboration, showing of intent and general
likeability:

2A I was good at playing the basketball game.

2B When I tried to show my intention toward my
team mate, it understood me.

2C When my team mate tried to show its intention
toward me, I understood it.
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Table 1: Analysis of semantic differential scale items.

T-C Agent median JAT Agent median Wilcoxon S-R p-value
Perceived Intelligence
Competent 4 4 0.176
Knowledgeable 3 3 0.911
Responsible 4 3 0.392
Intelligent 3 3 0.988
Sensible 3 3 0.815
Animacy
Lively 4 4 0.372
Human-like 3 3 0.384
Life-like 2.5 3 0.374
Likeability
Like 3 4 0.011
Friendly 2 4 0.001
Kind 3 3 0.029
Pleasant 3 4 0.005
Nice 3 4 0.014
Task ability
Run 4.5 3 <0.001
Shoot 5 3 <0.001
Defend 4 3 <0.001
MyGoal 5 1.5 <0.001
OppGoal 0 2 <0.001

2D It was fun playing basketball with this team mate.

2E I want to play basketball with this team mate
again.

2F I collaborated effectively with my team mate.

2G The other team collaborated effectively.

Semantic differential scales and Likert scale ques-
tions were answered after the end of each game. The
final set of questions were a direct comparison of the
two agents. These were answered at the end of both
games. In these questions, participants were asked to
directly compare the agents in terms of intelligence,
likeability, showing of intention, basketball ability
and future interaction:

3A Which character was more intelligent?

3B Which character did you like the best?

3C Which character actively tried to show its inten-
tion?

3D Which character was better at playing basketball?

3E If you had to play the game again, which character
would you select?

A total of 32 participants were recruited for the
experiment, comprised of 8 female and 24 male
Japanese university students. None of the partici-
pants had previously used a Kinect before but all

of them had played basketball in some capacity, al-
though none were playing at a competitive level. Par-
ticipants were given a free training session before the
experiment in order to familiarize themselves with
the environment, navigation, and interaction system.
These training sessions took around 5-10 minutes un-
til the participant was satisfied with using the system.
Each participant played with both types of agents for
10 minutes. The order of the games was randomized
to negate an ordering effect.

4 RESULTS

4.1 Semantic Differential Scale Items

To compare specific items, we use Wilcoxon signed-
rank to compare differences in medians of T-C and C-
C agents for each participant. These results are shown
in Table 1. There was no significant difference be-
tween the two agents in any of the items related to
intelligence or animacy. There was a significant dif-
ference between the two in terms of the items related
to likeability. The C-C agent was shown to be rated
higher in all these items. On the other hand, the T-C
agent was rated as a faster runner, and a better shooter
and defender. In terms of task output, the T-C agent
scored more and conceded less goals.
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Table 2: Analysis of summated scale items.

T-C Agent summed mean C-C Agent summed mean Paired t-test p-value
Perceived intelligence 16.91 16.31 0.600
Animacy 9.09 9.31 0.769
Likeability 14.38 18.00 0.002*

Table 3: Analysis of Likert scale items.

Item T-C Agent median C-C Agent median Wilcoxon S-R p-value
2A: Self-competence 2 2 0.309
2B: My intention recognized 2 3 0.017*
2C: Team mate intention recognized 2 4 <0.001*
2D: Fun 3 4 0.036*
2E: Would play again 3 4 0.080
2F: Collaboration own team 2 3 0.171
2G: Collaboration other team 3 4 0.1110

We then constructed summated scales to measure
differences in means of the perceived intelligence, an-
imacy, and likeability. To ensure reliability, Cron-
bach’s alpha was calculated for the set of items com-
prising these constructs. It was found to meet in-
ternal consistency requirements for the construct of
perceived intelligence (α = 0.8909), animacy (α =

0.8066) and likeability (α = 0.9360). Items mea-
suring task ability were found not to meet this re-
quirement (α = 0.6333) and so were not summated.
Through these summated scales, we use a paired sam-
ple t-test to check for differences in mean. These re-
sults are provided in Table 2.

The summated scales verified our earlier individ-
ual item tests. There was no significant difference in
the two agents in the perceived intelligence and ani-
macy constructs. The C-C agent was ranked signifi-
cantly higher than the T-C agent in the likeability con-
struct.

4.2 Likert Scale Items

The Likert scale items were also individually tested
using both Wilcoxon signed rank and Mann-Whitney
U. Items were scored from 1 (strongly disagree) to 5
(strongly agree). These results are shown in Table 3.

The items with significant differences between the
agents were items measuring the recognition of inten-
tion, the expression of intention, and fun. In all these
items, the C-C agent was rated higher. Interestingly,
there was no significant difference between the agents
in terms of how participants rated their collaboration.

4.3 Direct Comparisons

Finally, we use simple frequency analysis to show di-
rect comparisons of the agents. This is presented in

Figure 3. Like our previous analyses, there was no
significant difference in the two agents in terms of
intelligence. The C-C agent was liked by more par-
ticipants, more likely to actively show its intention,
and was preferred for future interaction. More partic-
ipants rated the T-C agent as being good at basketball.
The frequency graph is shown in Figure 3.

We wished to investigate if there were any under-
lying differences in participants who chose different
agents as being more intelligent. To investigate this is-
sue further, we performed a crude analysis by dividing
the participants into two groups according to their an-
swer. We then ran statistical tests on each item within
these two groups. Table 4 shows these results. As ex-
pected, there was a significant difference in perceived
intelligence items according to each group’s choice
of agent. For participants who chose the T-C agent as
being more intelligent, there was no significant differ-
ence in likeability items. These participants also did
not find any differences in regard to the recognition of
intention, the expression of intention, or fun. On the
other hand, participants who thought the C-C agent
was the most intelligent thought this agent was more
life-like and that it collaborated better with them than
the T-C agent.

5 ANALYSIS AND DISCUSSION

We now present several findings from the experi-
ments:

• The agent designed using JAT theory is distin-
guishable from the task-competent agent.

• There is a significant difference in the likeability
of the two agents.

• The task-competent agent is recognized by the
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Table 4: Sub-group analysis of participants according to agent chosen as most intelligent

Agent chosen as most intelligentT-C Agent (n= 15) C-C Agent (n= 17)
Best agent p-value Best agent p-value

Perceived Intelligence T-C <0.001 C-C <0.001
Likeability - 0.831 C-C <0.001
Lifelike - 0.246 C-C 0.037
My intent recognized - 0.501 C-C <0.001
Team mate intent recognized - 0.349 C-C <0.001
Collaboration own team - 0.186 C-C 0.0040

participants at being more competent at basket-
ball.

• The communication-competent agent is recog-
nized as being more able to recognize and express
user intention.

• The communication-competent agent is preferred
by the majority of participants.

Firstly, it is clear that the two agents are distin-
guishable. We found a number of statistically signif-
icant differences between the two. It can be said that
at the very least participants could recognize that they
were interacting with different agents so could evalu-
ate them separately. This finding is important because
it means that the preferences of the users were more
likely to be based on differences rather than guess-
work.

In terms of likeability, there was a statistically
significant difference between the two, supported by
the individual items tests, summated scale and direct
comparison. The C-C agent was found to be much
more likeable. Additionally, it was found to be much
more fun than the T-C agent, which could also be re-
lated to the likeability aspect.

The T-C agent was objectively better at the task, in
both scoring and preventing goals. Through the item
tests the T-C agent was found to be rated a faster run-
ner, better at shooting the ball, and better at defending.
Additionally, the direct comparison test showed the
T-C agent to be better at basketball in general. This
confirmed the expectations of the experiment.

Our Likert scale and direct comparison test pro-
vided support to show that the C-C agent had better
communication capabilities in terms of body move-
ment recognition and expression. Along with the pre-
vious finding it showed that users perceived the agents
as being different based on the design. The C-C agent
was more communicative but worse at basketball.

If we assume that preference can be measured
through future interaction intention, then the C-C
agent was much more preferred than the T-C agent,
supported by the direct comparison test.

Figure 3: Direct comparison of T-C and C-C agents.

5.1 Agent Differences

Overall, we can conclude that for our basketball
game, an agent which attempts to communicate with
the user is much more preferred over an agent who
merely does the task well, which goes some way to
answering our research questionQ2. In the virtual
basketball scenario task ability is important to achiev-
ing the goal. However participants still preferred the
C-C agent even if it was poorer at the task. We have
also shown that the differences between the agents
can be identified by participants while playing the
game.

There is no obvious answer to exactly why the C-
C agent was preferred, but there can be several expla-
nations. The most obvious one is simply that people
like to interact. In a real life basketball game, this
phenomenon would likely occur. We can imagine that
a real game would be incredibly boring if only one
player did everything. It would seem that this is the
same for agents. Our experiment provides evidence
that participants transferred human properties to the
agents, such as kindness and friendliness. They did
not just consider the agent as a tool, but as a social
actor. If participants were only interested in the out-
come of the game, the T-C agent would be highly val-
ued, but we have shown that even with a task with a
clearly measurable outcome, social properties of an
agent have a more positive effect.

Another reason for the preference of the C-C agent
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could be related to the difficulty of the game. An ideal
game must be challenging enough so the user does
not get bored, but not so difficult that they become
frustrated. In our experiment, this balance may have
been addressed more by the C-C agent. The T-C agent
may have been too good at basketball - the participant
found no challenge in the game. However, we do not
know how “bad” the C-C agent has to become before
the user perceives it negatively. The parameterized
physical abilities and communicative capabilities of
the agents would need to be adjusted to assess the op-
timal balance of the game in terms of agent task and
communication.

We also believe that the task domain is important
influencing this balance. Basketball, while presented
here as a communication analysis tool, is perceived by
the participants as a game for entertainment. For this
reason we cannot claim that the same results would
be seen in other co-operative tasks. For example, a
search-and-rescue agent requires both task and com-
munication capabilities but because the task is more
serious in nature users may be willing to trade smooth
communication for the agent being able to find people
more efficiently.

Designers should maximize both task and commu-
nication abilities because in many cases they do not
overlap, but it would be useful to know what features
of agents deserve the most effort. In this case it would
appear to be the latter. We can say that being compe-
tent at playing basketball (which is an important goal
for AI in video games) is not as useful as ensuring
good communication skill.

5.2 Perceived intelligence

Perceived intelligence did not appear to be effected by
the ability to communicate, nor did it effect the pref-
erence of the participants. We initially thought that
the agent with the ability to read and express body
language would be seen as more intelligent. This is
not borne out in the results. It would also appear that
more complex behaviors would need to be displayed
in order for the users to believe the C-C agent was
truly intelligent. This increased complexity includes
both intelligent communicative behavior (e.g. recog-
nition of more complex signals) and task-based be-
havior (e.g. developing an better game strategy).

One other explanation could be that humans con-
sider both task ability and communication ability as
forms of intelligence. Therefore, each agent can be
seen as intelligent, but exhibit differenttypesof in-
telligence. A similar argument can be made for hu-
mans in the real world, for example Gardner’s the-
ory of multiple intelligence (Gardner, 1983). The de-

tailed analysis could be indicative of this. The par-
ticipants who chose the C-C agent as being more in-
telligent also rated it as being more likeable and able
to show intention. However there was no similar pat-
tern for participants who chose the T-C agent. This
could indicate that task and communication ability are
metrics for different intelligences and that individuals
perceive intelligence according to one of these cat-
egories. A future research avenue then becomes how
we can more accurately implement and measure these
different intelligence types.

5.3 The JAT Model Agent

One outcome of this research is the implementation
our evidence-based JAT agent model, designed to ad-
dressQ1. The C-C agent was found to be able to
express and recognize body movements indicating in-
tention signals from participants. This result shows
that our model is at least better than having no com-
munication functionality. We cannot definitively con-
clude that JAT is the best model for our purpose as
many confounding factors exist. However JAT con-
cepts, particularly identification through implicit sig-
nals, provide a perspective on human-agent collabo-
ration which differs from simply recognizing explicit
gestures. One way to improve the agent would be to
learn signals and strategies from the human during the
game through common ground inferences.

How would JAT fare against other agent designs?
It is difficult to compare across domains but we pro-
pose that as aconceptual framework, JAT is satis-
factory for agent implementation. In this work the
concepts were signals, joint projects and an evidence
model. We justified the use of JAT because it could
accommodate a dynamic navigable environment and
the implementation of the JAT agent appeared satis-
factory. Users of the JAT agent acknowledged that in-
tentions could be known (through the use of signals)
and intentions could be recognized (through the evi-
dence model). Identification of implicit and explicit
signals is also crucial and the JAT framework’s abil-
ity to explicitly model this process make it a useful
consideration for designers.

The next step is to compare the JAT model with
others and expand it to more modalities. A useful
property of our model is that it can be used for multi-
ple modalities by increasing the number of variables
to include any desirable features. For example, speech
pitch and skin temperature can be included in the
same model. We are currently considering how to im-
plement sound in our basketball system to further test
different modalities and users’ reactions to them.
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5.4 Limitations

There are a few limitations that we should consider.
First, there was no reward for winning the game. If a
motivation were involved, participants may have been
more inclined to play with the T-C agent. The fact that
the perception of the experiment was close to a video
game influenced the participant’s assessments of the
agents. It is likely they were looking to be entertained
rather than trying to win, which meant the C-C agent
was more likely to be preferred.

Secondly, we do not know the effects of these dif-
ferences over a longer time period. As a participant
becomes more familiar with the environment, they
may prefer to play the game individually and have no
need for either agent. Alternatively, they could be-
come used to the agent and be able to predict their
actions. In this case, more co-operative behavior may
arise which changes their perceptions, particularly in
regards to intelligence. The games used in the exper-
iment were only 10 minutes long so there was proba-
bly not enough time for the participants to get familiar
with the agent, especially given that they had to also
familiarize themselves with the interface.

Finally, the environment itself has a limited com-
munication channel, that of body movement. This
experiment deliberately left out these modalities to
focus on the body but in order for basketball to be
useful, multimodal interaction must be implemented.
It is impossible to claim that this agent is close to a
virtual human. However there are many potential re-
search directions associated with speech and gesture
combination in this environment because they require
different interaction protocols than ECAs.

6 CONCLUSION

In this paper we designed a virtual basketball game
in which the users could control an avatar, perform
basketball gestures and navigate the court without the
need for hand-held peripherals. Our goal was to as-
sess people’s perceptions of an agent team mate with
higher basketball ability against one with higher com-
munication ability. We also evaluated our joint activ-
ity theory-based agent model for the communication-
competent agent. We found that people were able to
distinguish between the two agents, and preferred the
one with higher communication ability but there ex-
isted no difference in the perceived intelligence of the
agents. This would suggest that users prefer commu-
nication ability to task ability in this environment al-
though this could largely be due to the nature of the
game itself.

Another important outcome is the use of joint ac-
tivity theory as a basis for agent design. The use of an
evidence model to both recognize and express inten-
tion through body movements was acknowledged by
the participants through questionnaires. We proposes
that joint activity theory can serve as a basis for agent
design in this type of environment. Our future plan
is to improve the model of the so it can be used with
different modalities in agents which are not ECAs.
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