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Abstract: In this paper, we propose a 4-Dimensional Higher-order Local Auto-Correlation (4D HLAC). The method
aims to extract the features of a 3D time series, which is regarded as a 4D static pattern. This is an orthodox
extension of the original HLAC, which represents correlations among local values in 2D images and can
effectively summarize motion in 3D space. To recognize motion in the real world, a recognition system
should exploit motion information from the real-world structure. The 4D HLAC feature vector is expected to
capture representations for general 3D motion recognition, because the original HLAC performed very well
in image recognition tasks. Based on experimental results showing high recognition performance and low
computational cost, we conclude that our method has a strong advantage for 3D time series recognition, even
in practical situations.

1 INTRODUCTION

Motion recognition has many important applications
in fields such as video surveillance, robotics, human–
computer interaction, and individual behavior analy-
ses for marketing. Recognition systems should effec-
tively exploit features from the real world that exist in
space and time (4D space).

Most conventional methods for recognizing mo-
tion use the color or intensity time series from 2D im-
ages. However, such images suffer from a light condi-
tion and motion in the depth direction. Motion in 3D
space, rather than motion in depth, must be consid-
ered to solve this difficulty with 2D images. However,
there has been little research on the direct application
of 3D time series to the wide variety of motion recog-
nition applications.

In this paper, we propose a 4-Dimensional Higher-
order Local Auto-Correlation (4D HLAC) that can
represent pattern features in point-cloud time series
data and tesseract array data (voxel-time series data).
The concept of HLAC (Otsu and Kurita, 1988) can be
applied to any data array to extract the features of the
pattern. However, the original article on HLAC only
considered 2D image data in which features are char-
acterized by model-free, shift invariance, and additiv-
ity. HLAC can also be applied to 3D array data (Cubic
HLAC, or CHLAC (Kobayashi and Otsu, 2004)) to

handle 3D objects and 2D movies (2D images + time
series). However, only 4D HLAC allows voxel time
series to be directly recognized as a static object con-
sisting of tesseracts in 4D space. We have conducted
two experiments that apply 4D HLAC to human mo-
tion to examine the performance and computational
cost of the method.

The remainder of this article proceeds as follows.
Some related work in the field of 3D motion recogni-
tion is discussed in Section 2, and our proposed 4D
HLAC feature is introduced in Section 3. Section 4
describes the experimental setup, and Section 5 com-
pares our results with those from previous research
based on the IXMAS dataset. Finally, we present our
conclusions in Section 6.

2 RELATED WORK

In this section, we summarize related work on 3D mo-
tion recognition. 3D motion recognition is mainly
performed in a multi-camera environment, whereby
the motion of an object is captured by multiple cam-
eras from different perspectives. Previous image fea-
tures can be separated into two categories based on
how many spatial dimensions they use: the raw 2D
images from multiple cameras, or a reconstructed 3D
representation.
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One approach is to use 2D image processing tech-
niques and features from multi-view cameras, such as
spatiotemporal interest points (Wu et al., 2011) from
2D movies, and silhouette-based features (Cherla
et al., 2008; Chaaraoui et al., 2014). Weinland et al.
(2010) proposed a 3D modeling method that produces
2D image information for recognition. Following fea-
ture extraction, their method does not use 3D recon-
struction in the recognition phase (Weinland et al.,
2010).

Concepts based on 3D analysis tend to extract fea-
tures from 3D data such as point clouds and voxel im-
ages. Previous studies of 3D motion features have
proposed various techniques, such as a layered cylin-
drical Fourier transform around the subject’s vertical
axis (Weinland et al., 2006; Turaga et al., 2008), cir-
cular patterns intersecting the subject’s body on hori-
zontal planes, 4D spatiotemporal interest points (4D-
STIP), and optical flows based on HoG to represent
3D motion (Holte et al., 2012).

Our approach in this paper is based on the idea
of HLAC (Otsu and Kurita, 1988). After HLAC
was applied to pattern recognition in static 2D im-
ages, 3D extensions of HLAC were proposed for the
recognition of 2D movies as spatiotemporal patterns
(Kobayashi and Otsu, 2004) and the recognition and
retrieval of 3D objects (color cubic HLAC, or CCH-
LAC (Kanezaki et al., 2010)). To use CHLAC for 2D
movies, a layered 2D image that changes with time is
considered to represent a 3D object in the spatiotem-
poral domain. This extension from HLAC to CHLAC
inspired the idea of 4D HLAC. A comparison of the
different HLAC variations is shown in Figure 2. In
the next section, we give a definition of HLAC, de-
scribe its extension to four dimensions, and identify
certain characteristics and theoretical expectations for
4D HLAC.

3 4D HLAC

3.1 Basic Idea of HLAC

TheNth-order auto-correlation function is defined as

h(a1, . . . ,aN) =

∫
f (r) · f (r+ a1) · . . . · f (r+ aN)dr,

(1)
wherer is a reference vector in an image andai(i =
1, . . . ,N) are displacement vectors based onr. A fea-
ture x is defined by the order ofN and the displace-
mentsai. Therefore, a feature vector consists of all
possible variations ofh, with a constraint on the max-
imum size ofN and the distance betweena andr. Fi-
nally, any equivalent variations are eliminated.

In practical terms, Equation (1) should be dis-
cretized into

h = ∑
i
. . .∑

l
︸ ︷︷ ︸

D

I(i, . . . , l) · I(i+ a1[1], . . . , l + a1[D]) · . . .

· I(i+ aN [1], . . . , l + aN [D]),

(2)

whereI(i, . . . , j) is a D-dimensional image, meaning
the summation is appliedD times. The set of vectors
a1 . . .aN represents one of the higher-order correlation
patterns. The termak[·] represents an element of the
vectorak. In light of previous HLAC research (Otsu
and Kurita, 1988; Kobayashi and Otsu, 2004), we as-
sume that the orderN is less than or equal to 2, and
the range of the displacement is defined by a local
3× ·· · × 3 region. HLAC masks for 2D images are
shown in Figure 1. One of the patterns forN = 2 is
represented bya1 = (1,0),a2 = (1,1) in the top-left
image of Figure 1. If an imageI is a binary array, ex-
tracting the HLAC features is a very simple operation
(namely, counting the number of local patterns inI).

3.2 Formulation

We propose 4D HLAC to represent the features of
tesseractic (4D cubic) images in 4D space for pattern
recognition in 3D motion. Conditions for the different
HLAC variants are summarized in Table 1 (N = 0,1,2
and the local 3× ·· · × 3 region for combinations of
HLAC dimensions (2, 3, or 4) and values (gray or
binary)). In most cases, 3D data in one time frame
are provided as a depth image, a voxel image, multi-
view camera images, or point clouds. To extract a 4D
HLAC feature, the data must be transformed into a
voxel image or point clouds. After the time series for
these voxels (or point clouds) have been obtained, the
4D HLAC for 3D motion is defined by the following
equations:

h =
Mx

∑
ix=0

My

∑
iy=0

Mz

∑
iz=0

Mt

∑
it=0

I4D(Dxix,Dyiy,Dziz,Dt it)

· I4D(Dxix +Lxa1[1],Dyiy +Lya1[2],

Dziz +Lza1[3],Dt it +Lta1[4]) · . . .

· I4D(Dxix +LxaN [1],Dyiy +LyaN [2],

Dziz +LzaN [3],Dt it +LtaN [4])

(3)

I4D(x,y,z, t) =






1 if a tesseract with vertices

(x,y,z, t),(x+Lx,y,z, t),

. . . ,(x+Lx,y+Ly,z+Lz, t +Lt)

includes at least one point.

0 otherwise.

(4)
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Figure 1: All masks of HLAC
for a gray-scale 2D image.

(c) One of second order 4D HLAC masks as a tesseract pattern

(b) One of second order CHLAC 

masks as a voxel pattern

(a) One of second order HLAC 

masks as a pixel pattern

Figure 2: Comparison of HLAC varia-
tions.
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Figure 3: Operation of HLAC from point
clouds.

The extraction of 4D HLAC features is executed ac-
cording to the diagram in Figure 3. The 4D HLAC
parameters are as follows:

Lx,y,z : Tesseract edge length [mm] in space.

Lt : Tesseract edge length [ms] in time.

Dx,y,z : Shift distance [mm] required to move HLAC
mask patterns in space.

Dt : Shift distance [ms] required to move HLAC
mask patterns in time.

Ax,y,z : Analyzed area length [mm] in space.

At : Analyzed area duration [ms] in time.

Mx,y,z : Number of HLAC summations in space
(Mx,y,z = ⌊Ax,y,z/Dx,y,z⌋).

Mt : Number of HLAC summations in time (Mt =
⌊At/Dt⌋).

In this study, the sampling ratesDt andLt were fixed
to 33 [ms]. Lx,y,z represents the resolution of the pat-
tern. A 4D HLAC feature with smallLx,y,z describes
the local form and motion in detail, such as the fluc-
tuation of clothes or vibratory movements of a single
body part. A 4D HLAC feature with largeLx,y,z de-
scribes a holistic form and motion of an object, such
as the coordination of multiple body parts. When the
3D data is first provided as a voxel time series, the
point clouds in the theory are equivalent to voxels.

Voxel time series that are transformed from raw
data (e.g., point clouds) may be subjected to tem-
poral subtraction or surface extraction if necessary.
Temporal subtraction is intended to emphasize mo-
tion by deleting motionless objects, and surface ex-
traction ensures that objects filled by voxels are ac-
counted for, because most of the raw data from 3D
depth sensors are regarded as surface patterns. We
generally need to test whether such preprocessing is
effective for the given purpose.

In this research, rather than gray-scale patterns,
we use binary tesseract patterns of spatiotemporal ar-
rays (these can be constructed from point clouds by

counting the points in one tesseract). We use binary
patterns because the sharp boundaries between ob-
jects and void space are transformed into discriminat-
ing features. This characteristic is useful in many ap-
plications, including human motion recognition. We
suggest that gray-scale 4D HLAC should be used for
certain types of fluid analysis because of its continu-
ous density gradients.

3.3 Characteristics

Analogous to the original HLAC features, 4D HLAC
has the following characteristics:

(a) Model-free. The method does not require any ob-
ject or world model.

(b) Simple Algorithm. The operations of the
method only involve counting local patterns.

(c) Noise Robustness.There is no differential oper-
ation such as edge extraction. The integration in
the operation of HLAC is expected to eliminate
noise analogously to a low-pass filter.

(d) Low Computational Cost and Easy Paralleliza-
tion. Counting the patterns is a low-cost oper-
ation. The algorithm is easily parallelized by
arranging the computation of each pattern or
separated target area into one process. The paral-
lelization algorithms are discussed in Section 3.4
The computation time of one recognition and the
efficiency of the parallelization are discussed in
Section 5.

(e) Spatiotemporal Shift Invariant. The integra-
tion eliminates the location of the patterns. This
invariance makes the recognition robust.

(f) Additivity. The feature vector, including multiple
objects and their motion, is the sum of all single
feature vectors of the objects and the motions in
the image. In Section 4.2, we exploit this charac-
teristic to count action classes with constant com-
putational load.
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Table 1: Number of masks for the HLAC variations.

Name Dimen- Mask size Mask variation
sion Gray Binary

HLAC 2D 3× 3 35 25
CHLAC 3D 3× 3× 3 279 251

4D HLAC 4D 3 × 3× 3× 3 2563 2481

(g) High Performance for Pattern Recognition.
We show that the performance of our method is
very high compared to 2D movie methods (Sec-
tion 4.1) and to previous 3D methods (Section
5).

3.4 Implementation

Characteristic (d) ensures that 4D HLAC can be ef-
fectively parallelized. In this research, we implement
4D HLAC on a single core with a sequential program,
a multiple core CPU with OpenMP, and a GPGPU
using CUDA. To parallelize the method, we divide
the computation into that for a single HLAC pattern
and the integrations regarding the time axis. For the
HLAC patterns, we developed 2481 CUDA threads
to compute the local patterns of binary 4D HLAC on
a GPGPU. To avoid redundant computations, we di-
vide the target 4D space along the time axis. When
raw data are provided for a momentt, a partial feature
vector att −1 is acquired from the data in three time
frames (t, t − 1, t − 2), and this partial feature vector
is added to a queue. Finally, the queued partial fea-
ture vectors from the time window betweent −1 and
t −1−Mt are summed, and the oldest partial feature
vector is deleted from the queue. This algorithm re-
duces the computation by a factor of 1/Mt , although
the operation is completely equivalent to a one-shot
computation for a target time window.

4 BASIC EXPERIMENT

4.1 Classification

4.1.1 Experimental Setup

a In this section, we examine how the 4D HLAC fea-
tures contribute to the recognition of very simple hu-
man arm motions, and compare this to conventional
2D motion analyses. The motion classes for the ex-
amination are very simple arm rotations, as shown in
Figure 4. These are characterized by movement in the
depth and vertical (up-down) directions, so the recog-
nition should exploit information about the location
and velocity of the arm movements in 3D space.

Table 2: Test data in the basic classification experiment.

Actors 10
Class of actions 3

Trials of one action 10
by one subject

Frame rate 30 [fps]
Frame size for one trial 250 frames (8.3 [s])

Analyzed duration 20 (666[ms])
of time frameMt

Analyzed areaAx,y,z 900×900×900 [mm]
Resolution in 2D images 640× 480[pixel]

The data were acquired as RGB-D images from a
depth sensor (Microsoft Kinect). The examples of the
data acquired from Kinect is shown in Figure 5. The
images were transformed into 3D voxel time series,
2D intensity image time series, and 2D depth image
time series. Note that 3D voxel data and depth im-
ages are theoretically reversible by interconversion.
We expect that a comparison between them will in-
dicate how the real-world structure in the spatiotem-
poral domain contributes to motion recognition, even
when the structure is only captured from one perspec-
tive.

We setLx,y,z= 10, 20, 30, and 50 [mm],Lt=33
[ms], andDx,y,z,t = Lx,y,z,t in all analyses. The time
frame wasMt = 20 frames. In the classification part,
we used Fisher’s Discriminant Analysis (FDA) for di-
mension reduction and the Minimum Distance Clas-
sifier. Features were extracted at each point by sliding
the time window, and the classifier assigned one of the
action classes to the current feature.

We applied the CHLAC feature to depth movies
and intensity movies (Figure 6). The backgrounds
were eliminated from these movies based on depth
information. For the CHLAC feature in this exami-
nation, the auto-correlation order wasN = 0,1,2, and
the range of displacementsai was within a 3×3×3
local region. The 2D image resolution was scaled to
1, 0.5, 0.3, 0.2, and 0.1 times that of the original im-
age. This change of resolution is equivalent to chang-
ing the voxel size. Edge extraction was based on the
Canny Method (Canny, 1986), with parameter values
of 50, 250, or 450. All parameter combinations were
applied to determine the combination that produced
the best result.

We collected the test data for the examination
under the conditions listed in Table 2. The clas-
sification rate was calculated by leave-one-actor-out
(LOAO) cross-validation, whereby the correct recog-
nition rates for one actor’s actions are calculated after
the recognition system is learned from the other ac-
tors’ actions. Finally, we calculated the average and
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Figure 4: Motion classes
in the basic experiments.

(a) (b)

Figure 5: Data types of 3D movies:
(a) Point cloud data (b) Binary voxel data.

(a) (b)

Figure 6: Images used in the comparative ex-
periment: (a) Intensity image (b) Depth image.

standard deviation of the recognition rates for all ac-
tors.

4.1.2 Results

The experimental results are shown in Figure 7. From
the 4D HLAC experiments, the best classification rate
was 98.2% for the smallest voxel size (10 [mm]).
Temporal subtraction before 4D HLAC produced al-
most the same performance as without subtraction.
This implies that 4D HLAC can extract features ap-
propriate to movement.

Using CHLAC, 2D intensity and depth movies
induce worse performance than 3D movies with 4D
HLAC, even when both movies have exactly the same
perspective. The best classification rates were 63.5%
for intensity movies and 75.8% for depth movies.
The results from intensity movies are better than the
chance level (33%), but worse than the results from
depth movies and voxel movies. This indicates that
the real-world structure in 3D space is critical for the
recognition, even when only one perspective is used
and the image includes some occlusion.

Although depth movies are supposed to contain
the same information as voxel movies, feature extrac-
tion from depth movies using CHLAC is worse than
that from voxel movies by 4D HLAC. The reasons for
this low performance with depth movies are as fol-
lows:

Boundary Effect. The boundaries between a mov-
ing arm and a body trunk are taken into account,
whereas physically distant body parts do not con-
tribute.

Depth Direction. The motion along the depth axis
in depth movies is represented by the change of
gradient in the depth value. However, temporal
changes in gradient are difficult to capture.

We believe the reasons above can be applied to any
other 2D image descriptors for depth movies.

Figure 7: Results of the discrimination experiment.

Figure 8: Simultaneous
actions by three actors.
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Figure 9: The discriminant space
with zero-motion for decomposi-
tion of the three motions.

4.2 Counting

4.2.1 Theory and Experimental Setup

To demonstrate the usefulness of the additivity prop-
erty, we constructed an algorithm to count target mo-
tions with a computational cost that is independent of
the number of actions in the target area.

The HLAC vectorsh are interpreted as:

h ≈ n1m1+ n2m2+ . . .+ nCmC + ε, (5)

wherem1,m2, . . . ,mC are the average feature vectors
of the respective action classes,n1,n2, . . . ,nc are the
number of actions, andε is a vector of common el-
ements in all classes. The lengths of the decom-
posed vectorsn1,n2, . . . ,nC based on the base vec-
tors m1,m2, . . . ,mC represent the number of actions
if the acquiredh can be decomposed into vectors
n1m1,n2m2, . . . ,nCmC.

To estimate the number of classes, we must cal-
culate the inverse of Equation (5) fromh to n =
(n1,n2, . . . ,nC). To estimate the inverse function, we
propose the following algorithm.
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Figure 10: Results of the counting experiment. Top:
Ground truth; Middle: Estimated motion numbers; Bottom:
Discretized estimated motion numbers.

1. Suppress the feature space with all target action
data and common actionε using FDA. The dimen-
sion of the suppressed feature vector is the number
of classesC.

2. Transform the average vectors of action
classes m1,m2, . . . ,mC into the FDA space
m̂1, m̂2, . . . , m̂C.

3. Calculate the inverse matrix of
(m̂1− ε̂ m̂2− ε̂ . . . m̂C − ε̂).

4. Estimate the vector of the number of actions.
(
n1 n2 · · · nC

)T

= (m̂1− ε̂ m̂2− ε̂ . . . m̂C − ε̂)−1ĥ,
(6)

whereĥ is transformed from the feature vectorh
into FDA space.

5. Discretize(n1n2 . . .nC)
T using a rounding func-

tion.

We adopt the zero-vector as the common vectorε af-
ter applying temporal subtraction to the voxel time se-
ries; temporal subtraction for an unchanged time se-
ries results in 0. The inverse function can be estimated
using multiple regression and a pseudoinverse. How-
ever, these methods require training data with all pos-
sible combinations of actions in the learning phase,
whereas the proposed method only requires training
data from one action with one label.

We used the data from the previous experiment to
learn the average class vectorsmi, and conducted an
experiment with three actors to estimate the number
of action classes (Figure 8).Lx,y,z andDx,y,z were set
to 30 [mm].

Time

Figure 11: Example of a walking pattern in the voxel time
series of the IXMAS dataset.

4.2.2 Results

The training data in the compressed feature space for
the three motions are shown in Figure 9. The motion
counting results are shown in Figure 10. We calcu-
lated the simple moving averages, and rounded these
to give(n1n2 . . .nC)

T . The results show that the esti-
mated number of motions follows the actual number.

An additional experiment showed that a smaller
voxel size (10 [mm]) produces a worse result. Gener-
ally, smaller voxel sizes are too sensitive to small ir-
relevant motion or measurement noise. For instance,
in this experiment, the third person was further away
from the measuring instrument than in the discrimi-
nant experiment; thus, bigger voxels (30 [mm]) gave
better results.

5 IXMAS DATASET

5.1 Experimental Setup and Method

To compare 4D HLAC to previous 3D motion recog-
nition techniques, we applied the proposed method
to the IXMAS dataset (Weinland et al., 2006). This
dataset has been used for various studies into pattern
recognition in 3D motion. We shall demonstrate the
advantages of our method in terms of recognition per-
formance and computational cost.

The IXMAS dataset consists of multi-view cam-
era movies and voxel time series. The voxel time se-
ries data are applicable to our method (Figure 11).
The multi-view camera system ensures there is no
critical occlusion in the data, unlike in the previous
section. The inside of each object is filled by voxels,
with the length of each voxel edge estimated to be 30–
40 [mm] (this edge length is not explicitly specified,
but is not important for this experiment).

To recognize motion in any direction, we generate
additional training data by rotating the original train-
ing data around the vertical axis in 15◦ steps. Rotation
invariance can be ensured by making a new feature
vector as the sum of all the rotated feature vectors.
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Table 3: Computational time of 4D HLAC for IXMAS
dataset;Mt=20 [frames].

Implementationa Time [ms]
One shotb Queue and sumc

CPU (Single thread) 6346 317
CPU (12 threads) 932 46

GPGPU 183 9
(2481 CUDA threads)

a CPU: Intel Core i7-3930K 3.2 Hz (6 cores), GPU: GeForce GTX 680 (1536

cores), Memory: 31.4GB, OS: Ubuntu 12.04 64bit.b “One shot” represents

consumed time for the calculation of a HLAC feature vector for 20 frames

at one time.c “Queue and sum” represents the computation time using the

algorithm with a queue of partial feature vectors.

Contrary to our expectation, the results from this op-
eration are almost the same, or slightly worse, than
the strategy with additional rotated training data for
learning and original features for recognition.

When examining the performance of 4D HLAC,
we must evaluate the following conditions for the ex-
traction of features:

Effect of Surface. In most cases, a 3D range sensor
provides information about the object surface. We
utilize the voxel data format with and without sur-
face extraction.

Independent Analysis of Upper and Lower Bodies.
Generally, HLAC eliminates any locations in
which a HLAC pattern occurs, whereas human
whole-body motion consists of independent or
dependent multi-body motion. Independent mo-
tion should be analyzed independently for precise
recognition. We split the analyzed area into the
upper and lower body, divided at the central
horizontal plane. The height of this plane is
defined by the average mid-points of the distance
between the highest and lowest voxels for the
analyzed time frameMt . Under this splitting
condition, the feature vector has 4962 elements
(2481×2).

Detail of Motion. We varied Lx,y,z to adjust the
granularity of the motion details in order to cor-
rectly capture the coordination among body parts.

We utilize a linear support vector machine (LSVM)
to classify the actions after FDA is applied to the 4D
HLAC feature vectors. The recognition in each trial
is determined by a majority vote of the system recog-
nition in every frame while the system recognizes the
behavior in a frame based on the last 20 frames (Mt ).

5.2 Results

Under the above experimental conditions, we ob-
tained the results listed in Table 5. Our method

achieved an optimal recognition rate of 95.5%.
When using the additional data generated by rotat-

ing the original data, the distribution of training sam-
ples from a certain action class forms a closed curve
in the feature space. Regardless of such a non-normal
distribution, the experimental results are good, even
those from the linear classification method, because
the feature vectors of actions in the feature space
are significantly separated. This indicates that our
method can capture the effective features of actions
from the raw voxel time series.

Table 4 gives the confusion matrix. The most
confusing actions are the hand-waving and head-
scratching actions. Both actions consist of hand shak-
ing movements. The reason for the misrecognition is
that contact between a hand and the head is very diffi-
cult to detect, because the local patterns at the contact
points can easily be occluded.

Table 3 gives the computational time needed to
compute the feature for the most effective condition.
The fastest time of 9 [ms] for one time classification
was given by GPGPU parallelization, while CPU par-
allelization is also effective (46 [ms]). The classifica-
tion method combining FDA and LSVM takes only
a few microseconds because it consists of only linear
calculations.

To compare our method with previous methods,
the LOAO performance of some state-of-the-art meth-
ods is given in Table 6. Although the recognition
rate is a good performance indicator, it is not easy
to compare the recognition rates of each method be-
cause of their different experimental conditions. Ac-
cording to Table 6 and Table 3, our method outper-
forms those previous methods that reported a compu-
tation time, demonstrating that the computational cost
of our method is very competitive.

Among all methods, the performance of our
method is third behind those of Holte et al. (2012)
and Turaga et al. (2008). Neither of these studies re-
ported a computational cost, though Turaga et al. ar-
gued that their method was computationally efficient.
The method of Holte et al. may have a much higher
computational cost than our method, as it relies on a
complicated algorithm to produce the highest recog-
nition rate (100%). Turaga et al. proposed a clas-
sification method based on statistical manifold learn-
ing with a 3D motion feature (Weinland et al., 2006),
and reported a slightly higher performance rate than
our method. This indicates that our method can be
improved by a further appropriate classification tech-
nique.
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Table 4: Confusion matrix for IXMAS dataset: mask sizeLx,y,z = 4; average recognition rate = 95.5%; (·) represents the
number of trials recognized as each action class in 36 samples (12 actors× 3 trials).

Recognized Performed actions
actions Check watch Cross arm Scratch head Sit down Get up Turn around Walk Wave hand Punch Kick Pick up

Check watch 94.4(34) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0)
Cross arm 5.6(2) 100.0(36) 2.8(1) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 2.8(1) 0.0(0) 0.0(0) 0.0(0)

Scratch head 0.0(0) 0.0(0) 97.2(35) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 16.7(6) 0.0(0) 0.0(0) 0.0(0)
Sit down 0.0(0) 0.0(0) 0.0(0) 100.0(36) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 2.8(1)
Get up 0.0(0) 0.0(0) 0.0(0) 0.0(0) 100.0(36) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0)

Turn around 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 100.0(36) 5.6(2) 0.0(0) 0.0(0) 0.0(0) 0.0(0)
Walk 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 88.9(32) 0.0(0) 0.0(0) 0.0(0) 0.0(0)
Wave 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 80.6(29) 5.6(2) 0.0(0) 0.0(0)
Punch 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 91.7(33) 0.0(0) 0.0(0)
Kick 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 2.8(1) 0.0(0) 2.8(1) 100.0(36) 0.0(0)

Pick up 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 2.8(1) 0.0(0) 0.0(0) 0.0(0) 97.2(35)

Table 5: LOAO recognition rate [%] for IXMAS dataset
with different feature extraction conditions;Lx,y,z is voxel
size in the IXMAS format.

Lx,y,z Whole body Separated into
upper and lower bodies

Filled Surface Filled Surface
1 84.3 % 81.1 % 87.4 % 89.1 %
2 91.2 % 88.1 % 94.4 % 90.7 %
3 90.9 % 91.9 % 94.7 % 92.7 %
4 92.7 % 91.7 % 93.7 % 95.5 %
5 93.4 % 91.4 % 91.9 % 93.2 %
6 92.2 % 92.7 % 90.7 % 90.7 %

Table 6: Comparison with 3D human action recognition ap-
proaches. The results for the LOAO cross-validation were
obtained using the IXMAS dataset. ‘Dim.’ denotes data
dimension used in the IXMAS dataset.

Approach Actions Actors Dim. Rate time
[%] [ms]

(Wu et al., 2011) 12 12 2D 89.4 N/A
(Pehlivan and Duygulu, 2010) 11 10 3D 90.9 N/A

(Weinland et al., 2006) 11 10 3D 93.3 N/A
(Cilla et al., 2013) 11 10 2D 94.0 N/A

(Turaga et al., 2008) 11 10 3D 98.8 N/A
(Holte et al., 2012) 13 12 3D 100 N/A

(Cherla et al., 2008) 13 N/A 2D 80.1 50
(Weinland et al., 2010) 11 10 2D 83.5 2∼
(Chaaraoui et al., 2014) 11 12 2D 91.4 5

4D HLAC approach 11 12 3D 95.5 *

* Computational costs of some implementation are shown in Table 3

6 CONCLUSION

In this article, we have proposed 4D HLAC for 3D
motion recognition. Our experimental results rein-
force the simplicity and low computational cost of
the proposed method, as well as its general versatil-
ity and performance. We conclude that 4D HLAC is a
highly capable and computationally efficient 3D mo-
tion recognition technique.

The next steps for the research are to extend multi
resolution analysis of 4D pattern from the split anal-
ysis in IXMAS experiment, to improve the classifica-

tion algorithm appropriate for 4D HLAC and apply it
to practical applications.
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