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Abstract: Humans tend to form decisions intuitively, often based on experience, and without considering optimality; 
sometimes, search algorithms and their strategies apply the same approach. For example, the minimum 
remaining values (MRV) strategy selects Sudoku squares based on their remaining values; squares with less 
number of values are selected first, and the search algorithm continues solving squares until the Sudoku rule 
is violated. Then, the algorithm reverses the steps and attempts different values. The MRV strategy reduces 
the backtracking rate; however, when there are two or more blank squares with the same number of 
minimum values, such strategy selects any of these blank squares randomly. In addition, MRV continues to 
target squares with minimum values, ignoring that some of those squares could be considered ‘solved’ when 
they have no influence on other squares. Hence, we aim to introduce a new strategy called Contribution 
Number (CtN) with the ability to evaluate squares based on their influence on others candidates to reduce 
squares explorations and the backtracking rate. The results show that the CtN strategy behaves in a more 
disciplined manner and outperforms MRV in most cases.  

1 INTRODUCTION 

Fundamentally, Sudoku puzzles are among the 
difficult problems in computer science (Aaronson, 
2006; Jilg & Carter, 2009) that have been 
categorized as constraint satisfaction problems 
(CSPs) (Ercsey-Ravasz & Toroczkai, 2012; 
Moraglio, Togelius, & Lucas, 2006), and that are 
also commonly known as nondeterministic 
polynomial time (NP)-complete problems 
(Edelkamp & Schrodl, 2012; Eppstein, 2012; 
Ercsey-Ravasz & Toroczkai, 2012; Klingner & 
Kanakia, 2013; Moraglio et al., 2006). Therefore, in 
order to solve this type of difficult problems, a set of 
values has to be examined in each single blank 
square in specific order until the correct value is 
assigned. The ultimate objective of Sudoku agent 
solvers is to find valid values for the remaining 
squares to satisfy Sudoku constraints. The puzzle is 
considered solved when all remaining squares are 
completed with valid values (Edelkamp & Schrodl, 
2012; Eppstein, 2012). 

The algorithms used to solve Sudoku puzzles fall 
into two main categories (Eppstein, 2012; Norvig, 
2010): 

1- Deductive algorithms: this approach searches 
for patterns to eliminate invalid candidates; no 
estimation is performed. 

2- Search algorithms: these are brute-force type 
searches through predefined sets of potential 
candidates using the ‘trial and error’ approach. 

Deductive algorithms cannot solve Sudoku 
puzzles when the information provided (clues) is not 
sufficient to recognize deductive patterns (Eppstein, 
2012; Norvig, 2010). On the other hand, search 
algorithms always find solutions (when there is one) 
because they attempt all possible values on all 
available variables until a solution is found. 
Consequently, solvers from both categories have to 
work iteratively through all remaining squares at 
least ݊ times, where ݊ is the total number of blank 
squares to assign their values. We can afford to 
design computational components based on 
optimality principles that eventually lead to a 
reduction of the search space. By altering the 
solver’s objective from solving the puzzle to 
neutralizing it, we can promote a different approach 
for identifying the most optimal square among those 
that have the same number of minimum remaining 
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candidates, and that simultaneously has the most 
impact on other square candidates before they are 
selected and processed. This leads to a faster 
reduction of the total average of candidate numbers 
in the puzzle; Contribution Number (CtN) can play a 
major role in this. 

CtN is a strategy works with the Backtracking 
(BT) search algorithm that is dedicated to marking 
each square with a weight that indicates how solving 
a specific square can influence other square 
candidates. Furthermore, CtN strategy indicates the 
comparative benefits of solving a specific puzzle 
square compared to another. The results obtained 
from preliminary experiments show that the game-
depth of Sudoku puzzles is greatly reduced after 
implementing the concept of neutralization and CtN. 
In this paper, we favour two claims. First, there are 
Sudoku configurations that do not require any type 
of search algorithms to be considered solved; we call 
these ‘neutralized sets’. Second, to increase MRV 
efficiency, assessing all squares with the minimum 
remaining values is required in order to identify the 
most optimal square and avoid random selections.  

2 SUDOKU PUZZLE AND 
SUDOKU SOLVERS 

Sudoku is a grid with ܽ ൈ ܾ rows and ܽ ൈ ܾ 
columns, where ܽ	and ܾ are natural numbers, and the 
grid consists of ሺܽ ൈ ܾሻሺܽ ൈ ܾሻ total squares. The 
container that holds the assembled squares is called 
the ‘main grid’, and it consists of ܽ ൈ ܾ sub-grids 
(also known as ‘Boxes’), each sub-grid is ܽ squares 
on wide and ܾ squares on high (Eppstein, 2012). 
Initially, the puzzle grid is pre-assigned with 
numbers in order to make the puzzle consist of only 
one valid and unique solution; those numbers are 
called ‘Clues’ or ‘Given Numbers’. The rest of the 
squares are empty, and they are called ‘Blank 
Squares’, or ‘Remaining Squares’. Figure 1 shows 
one of the most common non-regular Sudoku grids 
(Crook, 2007), which consists of six rows, six 
columns, six sub-grids, 17 clues, 19 blank squares, 
and 36 squares in total. In this paper, we consider 
the classic and most common regular Sudoku 
size, 9 ൈ 9. The 9 ൈ 9 Sudoku puzzle consists of 81 
squares arranged into nine rows (denoted with the 
letters A to I) and nine columns (denoted with the 
numbers one to nine). The main grid is divided into 
nine sub-grids, each one of which has a size of 3 ൈ 3 
squares. 

 

 
Figure 1: A 6×6 non-regular Sudoku grid. 

Without clues, this grid can exceed 6,670 ൈ 10ଵ଼ 
valid completed 9 ൈ 9 Sudoku configurations 
(Edelkamp & Schrodl, 2012; Jiang, Xue, Li, & Yan, 
2009; Klingner & Kanakia, 2013; Mcguire, 
Tugemann, & Civario, 2014). And because the 
puzzle is considered convenient only if it has one 
completion (Eppstein, 2012); a 9 ൈ 9 Sudoku puzzle 
requires at least 17 given numbers to have a valid 
unique solution. Numerous studies have concluded 
that no 16-clues puzzle has been solved using a 
single solution (Jiang et al., 2009; Jilg & Carter, 
2009; Mcguire et al., 2014). However, there is no 
guarantee that puzzles with more than 16 clues will 
have a unique solutions. For example, it is possible 
to be given 77 clues still not have a unique solution 
(Mcguire et al., 2014) (see Figure 2). 

 
Figure 2: Sudoku set contains ‘Forbidden Rectangle’. 

Although the summation of any row, column, or 
even sub-grid squares’ value in a 9 ൈ 9 puzzle 
equals to 45, the solving process mainly relies on 
pure logic (Crook, 2007); and, no estimations are 
required. The rule is to complete the blank squares 
with the numbers of the set [1,2,3, … ,9] in such a 
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way that each number appears once, and only once 
in a row, column, and sub-grid (Ercsey-Ravasz & 
Toroczkai, 2012). The rule implies each square of 
the puzzle is tightly associated with other squares 
located on the same row, column, and sub-grid. 
These squares are called ‘Peers’, and their count 
number is calculated as follows: 

ܲܰ ൌ 3ܾܽ െ ሺܽ  ܾሻ െ 1 (1) 

where ܲܰ refers to the peers number of any square 
in the puzzle. In a 9 ൈ 9 Sudoku puzzle (where ܽ 
and ܾ equals to 3); there are 20 peers for each square 
(see Figure 3).  

 

Figure 3: ‘Peers’ (light red) of [F,4] square (dark red). 

In order to solve a Sudoku puzzle, blank squares 
have to be completed with valid candidates until the 
correct number is found; each square contains what 
are called ‘Potential candidates’, or simply 
‘Candidates’. The potential candidates are the 
possible valid values of the set of integers: one to 
nine, and each square has an exclusive set of 
candidates while solving the puzzle. The set of valid 
candidates can be described as follows (Crook, 
2007; Edelkamp & Schrodl, 2012; Klingner & 
Kanakia, 2013): 

ܥ ൌ ሼ1,2, . . ,9ሽ\ሼܴܣ ∪ ܥܣ ∪  ሽ (2)ܵܣ

where ܥ denotes the valid candidates set of the 
current square ݇, and 1  |ܥ|  ܽ ൈ  ,ܥܣ	,ܴܣ	 .ܾ
and	ܵܣ are assigned values sets of ݇’s peers located 
on row, column and sub-grid, respectively.  

As previously mentioned, Sudoku solvers are 
categorized to two main types, deductive and search 
algorithms. Deductive algorithms are remarkably 
slower and more difficult to develop because 
immense coding effort is required (Norvig, 2010). 
Each pattern requires a strategy to be recognized by 
these algorithms, for instance, the ‘forbidden 
rectangle’. A forbidden rectangle, as shown in 
Figure 2, is a virtual rectangle that appears in the 

Sudoku main grid, and all its corners have the same 
candidates. This phenomenon prevents the puzzle 
from having a unique solution. Thus, unless the 
deductive algorithm is provided with sufficient tools 
to manage this pattern (which is usually caused by 
poor puzzle design), the algorithm ends without 
solving the puzzle. 

On the other hand, search algorithms, such as 
BT, do not encounter problems when solving the 
Sudoku set with forbidden rectangle. For example, 
while solving the puzzle shown in Figure 2 (A), the 
solver could assume that the correct answer for the 
[C,4] square is the value five. This makes it 
imperative for [C,6] to take the value eight, [H,4] to 
also take eight, and [H,6] to take five because these 
values are the only valid remaining ones. 
Furthermore, the solver could make a different 
decision by assuming that the correct answer for 
[C,4] is eight. In this context, the assignment value 
chain varies to fulfil the Sudoku rule, and the final 
result is determined by the first assumption made. 
This is attributed to the algorithm’s ability to 
backtrack when a conflict occurs, and to attempt 
other values. 

In practice, the BT search algorithm goes into 
iterative recursion calls called ‘labelling’ or 
‘assignment’ process (Kumar, 1992), where one of 
the candidates is placed in a square, while the others 
are stored locally in case the chosen value fails to be 
part of the solution. The algorithm continues 
assigning values to new variables provided that the 
values do not violate the Sudoku rule. However, if 
they do, a conflict is declared and the algorithm 
aborts the current labelling process in order to 
backtrack. After reversing several steps (depending 
on availability and the validity of the square 
candidates), the algorithm tries other candidates until 
the conflict is resolved. This is the basic principle of 
backtracking, which is most likely to be a ‘trial and 
error’ procedure (Eppstein, 2012; Moraglio et al., 
2006). In this paper, we consider this type of search 
algorithm without involving any type of deductive 
techniques to enhance efficiency. 

BT is one of the most classical brute-force, 
depth-first search algorithms (Kumar, 1992; 
Moraglio et al., 2006) that guarantee finding a 
solution for any Sudoku set (when there is one) 
because all potential candidates are examined with 
respect to the puzzle rule. Forward Checking (FC) is 
considered an important improvement technique for 
the BT algorithm, and it has the ability of 
maintaining a list of valid values for each variable to 
be examined. However, it does not follow a specific 
strategy for selecting squares. Thus, the square 
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selection (technically: node expansions) will take the 
form of systematic order of selecting squares, for 
instance, if the algorithm starts with the [A,1] 
square; [A,2] is selected next unless it is occupied; 
then [A,3] is selected, followed by [A,4], and so on, 
until the last square [I,9]. Hence, if the algorithm 
selects a square with many candidates at the 
beginning, the probabilities of choosing incorrect 
values are high. And, the solving process will have 
to iterate through a wide search space before it 
realizes the error, and the previously assigned values 
are rendered useless. 

Fortunately, the BT algorithm can exploit the 
advantage of the MRV strategy. MRV is a “fail-
first” heuristic strategy that prioritizes and selects 
squares based on the number of candidates that a 
given square holds, i.e., the least candidates the 
square has, the higher priority it receives (Russell & 
Norvig, 2010). This does not prevent backtracking 
from occurring, but is certain to reduce it. 
Nonetheless, the MRV strategy still selects squares 
randomly if there are two or more squares with the 
same number of minimum values. 

The CtN strategy is designed to select the most 
promising square among those with the minimum 
values in order to reduce the backtracking rate 
further and to accelerate the solving process. 

3 NEUTRALIZATION AND 
SUDOKU NEUTRALIZED SET 

People enjoy completing Sudoku puzzle squares 
with numbers because they consider such puzzles as 
mentally challenging activities and as ‘time killers’ 
(Crook, 2007). To such individuals, each square has a 
solution and the puzzle is considered solved when 
the last blank square is solved; however, algorithms 
should not experience the same solving process. 
Sudoku solvers reinforce the notion of maintaining 
the algorithm engaged in searching process for as 
long as there is at least one blank square without an 
assigned value, and if there is any similarity between 
them, it is their objective. As a result, the explored 
squares to solve any Sudoku puzzle are at least equal 
to the number of blank squares (variables) at the 
initial configuration in the best-case scenario 
(assuming no backtracking occurs). 

The MRV strategy is attracted to squares with 
one candidate because they guarantee that no 
backtracking occurs given this selection process. 
However, solving squares of this type does not 
always improve the progress of solving the puzzle 

given that the square value is not a candidate in any 
of its peers. In this case, this square can be to be 
treated as solved, and the algorithm can exclude it 
from its search space. We call this a ‘Neutralized 
Square’. If all remaining squares are neutralized, the 
puzzle is considered solved; and so, the solving 
process can. We call this configuration the 
‘Neutralized Set’.  

 

Figure 4: Neutralized Sudoku puzzle set. 

The Sudoku puzzle shown in Figure 4 has 27 
missing numbers that can be considered solved using 
the neutralization concept. Search algorithms need 
not be engaged in solving what it considers a 
‘neutralized set’. With regard to the blank squares, 
their values can be revealed through a validator to 
confirm whether the only available solution is valid. 

The neutralization concept covers two different 
levels: 

- Neutralized Square: a Sudoku blank square with 
only one candidate, and all its peers are not 
affected by solving the square. We consider any 
engagement with this square as a redundant 
iterative process for the solver. 

- Neutralized Set: a Sudoku set where all the blank 
squares are neutralized. In this case, the solver 
has to declare the puzzle as ‘solved’, and all 
searching activities are terminated. 

A Sudoku neutralized configuration can be 
mathematically described as follows: 

ܰݐܰ ൌ
ܵܤܶ
ܥܴܶ

 (1) 

where ܰܰݐ (Neutralization Number) is the result of 
dividing ܶܵܤ (Total number of Blank Squares) over 
 The .(Total number of Remaining Candidates) ܥܴܶ
puzzle is considered neutralized if	ܰܰݐ ൌ 1. In other 
words, if the total number of all remaining squares is 
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equal to the total number of all potential candidates, 
the puzzle is considered solved. Moreover, 
neutralizing a solved puzzle is impossible because 
both ܶܵܤ and ܴܶܥ are equal to zero, which results 
in	ܰܰݐ ൌ ∞. 

 

Figure 5: (A) Algorithm lifecycle, (B) Algorithm lifecycle 
with applications of the neutralization concept. 

Hence, redefining the purpose the objective that 
algorithms attempt to achieve is crucial; let i be the 
initial configuration of a Sudoku puzzle to be solved 
as illustrated in Figure 5. G is the goal of a search 
algorithm delegated to solving the puzzle; the 
algorithm requires iterative square explorations (in a 
technical term: search recursion calls) to assign 
values and achieve the goal, and these are denoted 
R. Search algorithms such as BT with MRV 
evaluate square candidates to identify the one to 
select first, and then iterate through all the squares 
recursively to assign them values in a labelling 
process. The process continues to the last square, 
unless a conflict occurs as mentioned earlier in this 
paper. In this case, R is equal to the total number of 
blank squares, plus any occurring backtracking. On 
the contrary, the neutralization approach imposes a 
sub-goal (denoted g) as shown in Figure 5 (B); the 
search algorithm has to reach the sub-goal of 
‘neutralizing the puzzle’ and decrease R by 
increasing the number of neutralized squares 
(denoted r).  

In other words, the lifecycle of the BT search 
algorithm with neutralization concept implemented 
equals R (the number of blank squares 	occurring 
backtracking) െ r (the neutralized squares). This 
approach improves solving performance and 
maintains resource consumption. The following 
example illustrates a simple Sudoku puzzle: Figure 6 
(A) shows a Sudoku set with 23 blank squares, most 
of which have only one candidate as shown by the 
grid in Figure 6 (B). By excluding the [B,7] and 
[B,9] squares, selecting any square located in the last 
six columns (4, 5, 6, 7, 8, 9) does not improve the 
solving process because the squares have only one 
candidate, and none of their peers consider their 
values as potential candidates. In this case, MRV is 
not the best strategy to use with the BT algorithm 
because MRV cannot differentiate between the 

competitive advantages of the puzzle squares, and 
therefore, one of the squares will be selected 
randomly; however, most of the squares are already 
neutralized. 

Evaluation of the Figure 6 (A) Sudoku set based 
on neutralization principles reveals two optimal 
squares located on [A,3] and ([C,1] or [B,7]); 
solving the squares in this sequence leads to the 
neutralization of all the remaining puzzle squares. 
Thereafter, the puzzle is declared neutralized, the 
algorithm terminates, and all resources reserved for 
the solving process are released.  

Finally, ܰܰݐ can function as an indicator of 
Sudoku puzzle complexity because its value could 
represent a reliable measurement equals to the ‘gap’ 
between the blank squares and their candidates, and 
is limited to the following range: 

1
9ൗ  ܰݐܰ  1 (2) 

If the ܰܰݐ value of a Sudoku set is close to one 
and the set has many blank squares, the set difficulty 
level can be considered easy, and vice versa.  

4 CONTRIBUTION NUMBERS 

The basic core of neutralization is to rely on altering 
the algorithm objective from solving the problem to 
neutralizing it; however, the manner in which the 
existing Sudoku algorithms work does not help to 
neutralize a puzzle. Any new strategy designed for 
neutralizing Sudoku puzzles has to allow algorithms 
to neutralize as many squares as possible per 
assignment during the labelling process. The 
strategy that we developed has the ability of 
identifying the optimal square among those with the 
minimum remaining values to escalate eliminating 
other square candidates. Furthermore, our perception 
towards optimality in the domain of solving Sudoku 
relies on finding a square with the minimum number 
of candidates and the maximum number of similar 
candidates that exist among square peers. This is 
because ܴܶܥ is reduced faster and neutralization is 
accelerated. In other words, the optimal square 
considers the following two criteria: 
 Number of potential candidates. 
 Ability to deduct candidates from square peers. 

At first, the CtN strategy selects squares with 
minimum remaining values, and then assesses them 
(if there is more than one) by assigning weights 
based on the criteria indicated above. The square 
with the highest CtN is selected first as a new 
frontier of the progressive labelling process. The 

Gi

Ggi
rR

R(A)

(B)

Reordering�Variables�using�'Contribution�Number'�Strategy�to�Neutralize�Sudoku�Sets

329



weights produced by this strategy can be 
mathematically described as follows: 

ݐܥ ܰ ൌ
∑ ∑ ൫ ݀ 	 ∈ ൯ܥ	

||
ୀଵ

ೖ
ୀଵ

|ܥ|
 (1) 

Because the objective is to eliminate as many 
candidates as possible per value assignment, the 
process starts computing the Contribution Number 
 of the current evaluated square ݇ by counting (ܰݐܥ)
similar candidates within the square blank peers to 
determine the square that has the most influence on 
the others. As previously mentioned, there are		ܲܰ 
number of peers for each square (see Section 2, 
Equation 1), we need to visit all except those with 
assigned values. In this case, ݊ (which denotes the 
count number of the unassigned peers of the current 
square݇) is equal to: 

݊ ൌ 	ܲܰ െ |ܴܣ|  |ܥܣ|   | (2)ܵܣ|

where ܴܣ is a set of all assigned squares located on 
the row of square	݇, ܥܣ is a set of all assigned 
squares located on the column of square	݇, and ܵܣ 
is a set of all assigned squares located in the sub-grid 
of square ݇. Thus, by computing ݊ (where ݊ is 
always limited to	1  ݊  ܲܰ), the number of blank 
peers of the current square ݇ is identified. 

The next step is to select one of those blank 
squares ܲ and iterate through all its candidates ݀ to 
determine whether one is a member of the current 
square candidate set	ܥ; if such is the case, the 
counter is increased by one. The total counting of 
similar candidates will be then divided over the size 
of square	݇’s candidate set	|ܥ|. This ensures the 
squares with minimum number of candidates will 
get higher weights. The following paragraphs 
elaborate Equation (1) in detail. 

To demonstrate the efficiency of the proposed 
strategy, we consider solving the Sudoku set from 
Figure 6 (A) using BT with FC technique, MRV, 

and CtN strategies. All of them are subjected to the 
sub-goal ‘Neutralization’. Starting with BT, the 
algorithm selects frontiers in a systematic order. In 
the worst-case scenario (as shown in Figure 7 (A-1)), 
the algorithm selects invalid values to be examined 
at the beginning. This justifies backtracking because 
wrong values are selected. As a result, the algorithm 
must go through eight explored squares and three 
backtrackings; the performance can be improved 
slightly if the algorithm selects all the correct values 
from the beginning. In this case, the results are five 
explored squares without backtracking (see Figure 7 
(A-2)). Furthermore, the worst-case scenario for 
MRV is not better than the worst-case scenario for 
FC. MRV successfully avoids backtracking because 
squares with minimum values are selected first. 
However, this also prevents MRV from becoming 
neutralized earlier (see Figure 7 (B-1)). MRV results 
in 17 explored squares, though no backtracking 
occurs. On the other hand, MRV can perform 
exactly as CtN if optimal squares are selected first. 
However, the probabilities of that are rather low. 
The results of the solving process are two explored 
squares (see Figure 7 (B-2)). 

The ability of the CtN strategy to identify the 
most promising squares protects it from having 
worst-case scenarios (at least, in this example). 
Figure 6(C) shows the calculated CtN of the blank 
squares from Figure 6(A). The [A,3] square from the 
puzzle has only one candidate, just like the other 
unassigned squares; however, solving it first leads to 
a reduction in the total candidate average by 
eliminating the value seven from [A,2] and [B,1]. 
Thus, by computing CtNs of the puzzle squares, the 
[A,3] square receives the highest weight for 
algorithm selection for the first iterative recursion of 
the solving process. At the second recursion, both 
[C,1] and [B,7] squares have one candidate, but 
solving either eliminates the value four from [B,1]. 
This makes [C,1] and [B,7] valuable for choosing; 
the  calculated weights  at the  second  recursion  are 

 

Figure 6: Easy Sudoku puzzle set with candidates and CtN weights within two recursions. 
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Figure 7: Search trees compression. 

illustrated in Figure 6(D). The puzzle is declared 
neutralized immediately following two square 
assignments, and the algorithm is terminated at that 
moment. It is noticeable that the CtN strategy 
produces negative values, as seen in Figure 6(C) and 
(D); this occurs because the remaining candidate 
numbers for the squares with negative weights are 
larger than some non-neutralized squares. The 
strategy considers such squares undesirable choices 
and multiplies them with -1 to ensure they are never 
selected at this stage. 

As part of our empirical experiments, we 
developed the components, strategies, and core of 
the search algorithm using the C# language to 
evaluate strategy performance. The BT algorithm 
and MRV strategy were adopted from a Python 
program (Norvig, 2010) (but the deductive part 
‘constraint propagation’ was excluded). The core of 
the BT algorithm was developed as an independent 
component and extensively shared for use by the 
tested strategies and techniques to standardize the 
algorithm performance. 

5 RESULTS AND DISCUSSION 

For the purpose of assessing the strategies, we 
generated approximately 900 valid Sudoku puzzles 
with three difficulty levels: easy, medium, and 
difficult. The criteria for classifying Sudoku 

difficulty levels were adopted from Sudoku Puzzles 
Generating: from Easy to Evil (Jiang et al., 2009). 
The results show that BT with FC requires more 
iterative recursions because it continues to choose 
incorrect squares with incorrect values when 
following a systematic order for selecting squares. 
The search algorithm uses a reasonable number of 
iterative recursions to solve easy Sudoku sets, but 
this number increases tremendously as the puzzles 
become more difficult. However, MRV selects 
squares based on their values (squares with 
minimum candidates are solved first), which shows 
great improvement on the number of explored 
squares; this is caused by a significant reduction in 
backtracking as the strategy targets squares with 
minimum values. The CtN strategy shows an even 
more disciplined behaviour for selecting squares 
among those with fewer candidates, and the results 
reflect a greater reduction in iterative recursions, in 
particular for easy and medium difficulty sets. 
However, difficult Sudoku puzzles represent a 
challenge for the solver because squares with a 
similar number of candidates are fewer than 
expected. Sometimes, CtN acts exactly as MRV 
when solving difficult Sudoku puzzles. 
Nevertheless, the results show an improvement on 
algorithm performance compared with MRV. Tables 
1 and 2 list the recursions required to solve the 900 
different Sudoku sets, and the backtracking 
occurrences during the solving process. 
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Accordingly, CtN requires exploring nearly 1/3 
fewer squares than MRV, but not for difficult 
puzzles. The number of squares with minimum 
remaining candidates is limited for difficult sets, 
which means that the strategy has fewer squares to 
evaluate. This leads CtN to behave similarly to 
MRV at that difficulty level. As the solving process 
advances, the number of squares with the same 
minimum number of candidate increases, and their 
influence on their peers is more distinct. 

Table 1: The average of recursions required to neutralize 
900 Sudoku sets. 

Strategies/ 
techniques 

Difficulty level 

Easy 
Clues: 41‐53 

Medium 
Clues: 30‐40 

Difficult 
Clues: 22‐29 

FC  45  394  84,594
MRV  33  48  215
CtN  10  26  171

Table 2: The average of backtracking that occurs when 
solving Table 1 Sudoku sets. 

Strategies/ 
techniques 

Difficulty level 

Easy  
Clues: 41‐53 

Medium 
Clues: 30‐40 

Difficult 
Clues: 22‐29 

FC  12  341  84,539
MRV  1  4  161
CtN  1  1  132

Overall, the achievement to be highlighted is the 
ability of the BT algorithm that uses the CtN 
strategy to neutralize Sudoku puzzles with minimum 
iterative recursions.  Figure 8 reflects the results of 

neutralizing 900 Sudoku puzzle using MRV and 
CtN. The figure shows the efficiency of CtN to 
neutralize easy and medium Sudoku sets; FC is 
excluded because its values cannot be represented on 
the chart as its results are extremely greater than the 
graph scale. 

6 CONCLUSIONS 

In this paper, we presented a new strategy for 
Sudoku algorithms that can accelerate the solving 
process, reduce the number of required explored 
squares, and minimize the number of backtracking 
occurrences. The puzzle is declared ‘neutralized’ 
once the sub-goal is achieved. Moreover, the 
concept of achieving a sub-goal relies on re-ordering 
and prioritizing the puzzle's blank squares as the 
solving process progresses based on the influences 
on their pairs and the number of candidates. In order 
to do so, an evaluation method assesses all existing 
blank squares in a puzzle and assigns their weights; 
we called this strategy the Contribution Number 
(CtN) strategy.  
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Figure 8: Performance of neutralizing 900 Sudoku puzzles using MRV and CtN. 
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