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Abstract: We consider a simple network model for economic agents where each can buy goods in the neighborhood.
Their prices may be initially distinct in any node. However, by assuming some rules on new prices, we show
that the distinct prices will reach an equilibrium price by iterating buy and sell operations. First, we present a
protocol model in which each agent always bids at some rate in the difference between his own price and the
lowest price in the neighborhood. Next, we show that the equilibrium price can be derived from the total funds
and the total goods for any network. This confirms that the inflation / deflation occurs due to the increment /
decrement of funds as long as the quantity of goods is constant. Finally, we consider how injected funds spread
in a path network because sufficient funds of each agent drive him to buy goods. This is a monetary policy
for deflation. A set of recurrences lead to the price of goods at each node at any time. Then, we compare
two injections with half funds and single injection. It turns out the former is better than the latter from a
fund-spreading point of view, and thus it has an application to a monetary policy and a strategic management
based on the information of each agent.

1 INTRODUCTION

Motivation. Conventionally, the topics of price de-
termination have been discussed in the context of mi-
croeconomics approach (J. E. Stiglitz, 2006). In sup-
ply and demand curves, if the price is higher (resp.
lower) than an equilibrium, there is excess supply
(resp. excess demand) and thus the price moves to the
equilibrium. At the equilibrium price, the quantity of
goods sought by consumers is equal to the quantity
of goods supplied by producers. Neither consumers
nor producers have an incentive to alter the price or
quantity at the equilibrium. Since such a conven-
tional approach cannot capture each person’s behav-
ior, it is difficult to reflect actual economic phenom-
ena. So we considered a multiagent network model (J.
Kiniwa and K. Kikuta, a; J. Kiniwa and K. Kikuta, b),
in which each agent makes auctions and the price of
goods is eventually determined. Our network model
consists of nodes and edges as cities and their links to
neighbors, respectively. Each node contains an agent
which represents people in the city. Agents who want
to buy goods make bids to the lowest-priced neigh-
boring node, if any. Then, agents who want to sell
the goods accept the highest bid. The process of
price stabilization can be shown by using the idea

of self-stabilization in distributed systems (S. Dolev,
2000). From any initial state, self-stabilizing algo-
rithms eventually lead to a legitimate state without
any aid of external actions. We notice that the prop-
erties of self-stabilization resemble those of price de-
termination in convergence to a equilibrium without
external operations.

Problem. The problem in our previous studies (J.
Kiniwa and K. Kikuta, a; J. Kiniwa and K. Kikuta,
b) is an ambiguous relation between the price and the
amount of funds / goods. The most unsuccessful rea-
son is that no other variables than “price” were used.
There was no way to determine the next stage of the
price other than using the prices of buyers and sellers.
So we failed to explain why such an equilibrium price
is determined. To estimate the equilibrium price, we
need auxiliary variables which explain the next stage
of the price under stabilization. In addition, our model
failed to reflect the change of price due to various fac-
tors, called inflation or deflation. To explain the in-
flation / deflation, we need auxiliary variables which
show the flow of money and goods under the process
of such phenomena.

Solution. In this paper, we develop a new model con-
taining a relation between the price and the amount
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of funds / goods. We assume that the price is propor-
tional to the amount of funds and inversely propor-
tional to the amount of goods at each node. Further-
more, the volume of trade is assumed to depend on
the price difference between cities. As a result, the
flow of money and goods is determined by the market
principles, and thus the equilibrium price can be ex-
plained reasonably. Furthermore, it confirms that the
inflation / deflation depends on the amount of funds
as long as the amount of goods is constant.

Related Work. The classical theory of price deter-
mination in microeconomics is introduced, e.g., in (J.
E. Stiglitz, 2006; N. G. Mankiw, 2012), and a sur-
vey is in (T. A .Weber, 2012). We review the theory
from multiagent points of view. Though several eco-
nomic network models have been already known (L.
E. Blume, 2009; E. Even-Dar and S. Suri, 2007; S.
M. Kakade and S. Suri, 2004), such models contain
a bipartite structure (E. Even-Dar and S. Suri, 2007;
S. M. Kakade and S. Suri, 2004) or traders who play
intermediary roles (L. E. Blume, 2009). Agent-based
stabilization has been discussed in (J. Beauquier and
E. Schiller, 2001; S. Dolev and J. L. Welch, 2006;
S. Ghosh, 2000; T. Herman and T. Masuzawa, 2001).
Unlike our agents, their ideas are to use mobile agents
for the purpose of stabilization. It is useful in design-
ing protocols by what price we should make a bid.
Several kinds of game theoretic flavors have appeared
in self-stabilization, e.g., time complexity analysis (S.
Dolev and S. Moran, 1995), strategies with optimal
complexity (S. Dolev and P. Tsigas, 2008), relation-
ships between Nash equilibria and stabilization (A.
Dasgupta and S. Tixeuil, 2006; M. G. Gouda and H.
B. Acharya, 2009). Our protocol in Section 3 can
be considered as a kind of consensus algorithm. The
consensus algorithm in decentralized systems is de-
scribed in (N. A. Lynch, 1996), and its self-stabilizing
version is described in (S. Dolev, 2000; S. Dolev and
E. M. Schiller, 2010).

Contributions. We consider an inflation / deflation
network model, where the price is proportional to the
amount of funds, and is inversely proportional to the
amount of goods at each node. First, we present a pro-
tocol in which each agent always offers a fixed price
without considering other bidders’ strategies. Then,
we show that an equilibrium price is determined by
the total amount of funds and goods, and confirm that
inflation / deflation is determined by the amount of
funds. Next we focus on path networks and reveal the
price of each node and the amount of funds of each
node at each time. Finally, we show that the injection
of funds from two points is more effective than that
from a single point.

The rest of this paper is organized as follows.

Section 2 states our model. Section 3 shows that
our protocol can stabilize distinct goods prices. Sec-
tion 4 analyzes the behavior of our protocol in de-
tail. Section 4.1 investigates an equilibrium price in
an arbitrary network. Then, Section 4.2 estimates the
amount of funds at any node at any time for path net-
works. Furthermore, it suggests an effective fund-
injection method for a central bank. Finally, Section 5
concludes the paper.

2 MODEL

Our system can be represented by a connected net-
work G = (V,E), consisting of a set of nodesV and
edgesE. In the networkG, an arbitrary pair of
nodesi ∈ V and j ∈ V represent cities and an edge
(i, j) ∈ E between them, called neighbors, represents
direct transportation. LetNi be a set of neighboring
nodes ofi ∈V, and letN+

i = Ni ∪{i}. We assume that
each nodei ∈V has goods and their initial price may
be distinct. Letpi(t), or denoted bypi , be the price of
goods at nodei for the time stept ∈ T = (0,1,2, . . .).
Each nodei ∈V has exactly one representative agent
ai who always stays ati and can buy goods in the
neighborhoodNi . Each agentai has fundsfi , that is,
the total amount of money ati, and the quantityqi of
goods ati. The pricepi is determined by the rela-
tionship between the quantity of goods and the pur-
chasing power, or calledsupply-demandbalance. So
we simply assume that the price is proportional to the
amount of funds for constant goods (Figure 1(a)), and
is inversely proportional to the amount of goods for
constant funds (Figure 1(b)) at each node, that is,

pi =
fi
qi
. (1)

The buy operationis executed as follows. Each
agentai assigns avalue vj

i (t), or denoted byv j
i , to

the goods of any neighboring nodej ∈ Ni , where the
value means the maximum amount an agent is willing

Figure 1: Price determined by funds and goods at each
node.
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to pay. Agentai compares its own goods pricepi with
the neighboring pricep j . If the cheapest price inNi is
p j and is less thanpi , the agentai wants to buy it and
submits a bidb j

i (t), or denoted byb j
i , to nodej. We

considerv j
i (t) = pi(t) for any j ∈ Ni because he can

buy it at pricepi(t) in his node.
The sell operationis executed as follows. Af-

ter accepting bids fromNj , agenta j contractswith
ai ∈ Nj , an arbitrary one of agents who submitted the

highest bidb j
i . Then,a j passes the goods to (receives

money from) the contracted agentai until the price
p j(t+1) becomesb j

i derived from the supply-demand
balance. We do not take the carrying cost of goods
into consideration but focus on the change of prices.
In this way, at every time, any price is updated if nec-
essary. The stateΣi of each nodei ∈V is represented
by the price, the quantity of goods and the amount of
funds(pi(t),qi(t), fi(t)).

We assume asynchronous model, that is, every
agent periodically exchanges messages and knows the
states of neighboring agents. The global state of all
nodes is called aconfiguration. The set of all config-
urations is denoted byΓ = Σ1 ×Σ2 × ·· · ×Σ|V|. An
atomic stepconsists of reading the states of neigh-
boring agents, a buy / sell operation, and updating
its own state. Then, a configuration is changed from
c j ∈Γ into cj+1 ∈Γ (orc j+1 is reached fromc j ) by the
atomic step. Anexecution Eis a sequence of config-
urationsE = c0,c1, . . . ,c j ,c j+1, . . . such thatc j+1 ∈ Γ
is reached fromc j ∈ Γ.

3 PROTOCOL DESIGN

In this section, we consider a protocol model, called
FundBidding, in which each agentai always makes
a bidb j

i (p j(t)≤ b j
i ≤ pi(t)) to an agenta j ∈ N+

i with
the lowest price in the neighborhood. For simplicity,
let k be a constant rate so thatb j

i lies betweenp j(t)
andpi(t), where the price may not be an integer.

FundBidding

• Each agentai makes a bid

b j
i (t) = p j(t)+

(

pi(t)− p j(t)

k

)

, (2)

wherek≥ 1, to nodej ∈N+
i which has the lowest-

priced goods inN+
i .

• The agenta j contracts with the neighboringai

who has submitted the highest bid maxi∈Nj b j
i (t).

If a j has submitted his bid to neighboring node at
the same time, it is postponed until the next time

1

2 3

4 1

2 3

4

Figure 2: An illustration of protocolFundBidding.

step. The goods ofa j and the money ofai are ex-
changed, that is, the goods are moved fromq j to
qi and the money is moved fromfi to f j as long
aspi > p j . The pricespi(t +1) andp j(t +1) are
determined by the funds and the amount of goods.

• If several agents make bids to nodej with the
same highest price, agenta j makes deals with one
of them at random.

Example 1. Figure 2 shows an example of our net-
work system consisting of 4 nodes V= {1,2,3,4}.
For the bidding price (2), let k= 2. At time t,
the prices of goods are(p1(t), p2(t), p3(t), p4(t)) =
(50,110,70,10) as shown in Figure 2(a). Each agent
ai wants to buy the lowest-priced goods at node j∈Ni
if its price is lower than pi , that is, pi > minj∈Ni p j .
Thus, agent a1 makes a bid to node 4 with price
b4

1 = 30. Likewise, agents a2 and a3 make bids to
node 1, respectively. Then, only a2’s bid is successful,
and a2 makes a contract with a1.

At time t+1, the prices become(p1(t+1), p2(t +
1), p3(t+1), p4(t+1)) = (80,80,70,10) as shown in
Figure 2(b). Since price p1 has been changed, agent
a1’s bid b4

1 is resubmitted as(80+10)/2= 45. Since
the bids b32 and b4

1 are independent, they are executed
in parallel at time t+1. ⊓⊔

We are concerned with whether or not the prices
of goods eventually reach an equilibrium price even if
they are initially distinct. So we define the legitimacy
of a configuration as follows.

Definition 1 (legitimate configuration). A configura-
tion is legitimate if the goods in every node have the
same price. ⊓⊔

Let Ct ⊆ V be the set of nodes that have updated
their prices from timet to t+1. The following lemma
proves that the protocolFundBidding is free from
deadlocks.

Lemma 1. The protocolFundBidding is deadlock-
free. That is, there exist some nodes in Ct as long as
the configuration is illegitimate.

Proof. First notice that no cycle is generated by the
chain of bidding requests, as depicted in Figure 2,
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because every bidding request occurs from a higher
priced node to a lower priced node.

Next suppose that the configuration is illegitimate
at timet. Then, there is a pair of neighboring nodes
i, j ∈ V such thatpi(t) = maxh∈Nj ph(t) and p j(t) =
minh∈Ni ph(t), where pi(t)− p j(t) is the maximum
price difference in the neighborhood. In this case,
agentai makes a bid to nodej and agenta j accepts
the price. Sincep j(t) is increased at timet+1, j ∈Ct
holds. ⊓⊔

In (J. Kiniwa and K. Kikuta, b), we investigated a
condition such that any protocol satisfying the frame-
work of FundBidding achieves price stabilization.
Suppose that agentsai anda j make bids to nodeh. We
say thatbids have the same order as valuesif vh

i ≤ vh
j

impliesbh
i ≤ bh

j for the goods of nodeh. Next lemma
shows that the bids having the same order as values is
necessary for price stabilization.

Lemma 2. (J. Kiniwa and K. Kikuta, b) If bids do not
always have the same order as values, price stabiliza-
tion is not guaranteed. ⊓⊔

The following theorem further shows that an addi-
tional condition leads to the price stabilization.

Theorem 1. (J. Kiniwa and K. Kikuta, b) Suppose
that bids have the same order as values. If any con-
tract price lies between buyer’s price and seller’s
price, price stabilization occurs. ⊓⊔

Since we assume thatv j
i (t) = pi(t) for any neigh-

boring nodej ∈ Ni andai makes a bid by (2),Fund-
Bidding satisfies the condition above.

4 ANALYSIS

In this section, we investigate several aspects of our
FundBidding for arbitrary networks and path net-
works.

4.1 Arbitrary Network

The following theorem claims that the equilibrium
price is determined by the total amounts of funds and
the goods regardless of the network topology.

Theorem 2. Let F be the total amount of funds, and
Q the total amount of goods. The equilibrium price,
denoted by Pe, is

Pe =
F
Q

regardless of the network topology.

Proof. By definition, the price of goods at nodei
is pi = fi/qi. Suppose that the equilibrium prices
are different for each stabilization process. Then,
pi(t) 6= pi(t ′) for time t and t ′ (t 6= t ′) holds. Since
fi = pi(t)qi and f ′i = pi(t ′)q′i hold for any nodei,
whereF = ∑i fi = ∑i f ′i , we have

pi(t) ·∑
i

qi = pi(t
′) ·∑

i
q′i .

Since the total amount of goodsQ is identical, we
have

Q= ∑
i

qi = ∑
i

q′i .

Thus we obtainpi(t) = pi(t ′), a contradiction. There-
fore, the equilibrium pricePe is identical for each sta-
bilization process.

Next, sincefi = Pe ·qi holds for every nodei, the
total funds sum up to

F = Pe ·Q.

Thus we obtainPe = F/Q. ⊓⊔
The theorem above is known as theFisher’s quan-

tity equation(N. G. Mankiw, 2012)FV = PeQ if the
velocity of moneyV equals to 1. This means the cor-
rectness of our assumption (1) at each node. Thus,
in our inflation / deflation model, the inflation (resp.
deflation) occurs if the total amount of funds increase
(resp. decrease) as long as the total amount of goods
is constant.

4.2 Path Network

In what follows, we restrict our concern to path net-
works. The path networks probably represent the dis-
tance feature in arbitrary networks. Then, we con-
sider how injected funds spread in the path network
because sufficient funds of each agent drives him to
buy goods. This is a monetary policy for deflation.
Section 4.2.1 considers the situation that incremental
funds are injected from a single point. Section 4.2.2
considers the situation that the half of incremental
funds are injected from two points.

4.2.1 Single Injection

We investigate the amount of funds at each node of a
pathP = (1,2, . . . ,n) at any time. For simplicity, let
k= 2 and letb j

i (t) = (pi(t)+ p j(t))/2 in (2). Suppose
that we inject fundsm into node 1, called aninjection
point. Let pc

i (t) be the temporary, intermediate price
of nodei reached by trading exhaustively for a con-
tract betweent andt +1.
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Lemma 3. Let qi be the quantity of goods, and fi the
funds of agent ai before the trade at node i. Then, the
price after the trade will be

pc
i (t) =

fi−1+ fi
qi−1+qi

.

Proof. Suppose that(qi−1, fi−1) and (qi , fi) change
into (q′i−1, f ′i−1) and (q′i , f ′i ) after the trade, respec-
tively. Let Fi−1,i and Qi−1,i be a sum of funds and
a sum of quantities of goods at nodesi −1 andi, re-
spectively. Since no other funds and goods do not
come into these values, we have

fi−1+ fi = f ′i−1+ f ′i = Fi−1,i

qi−1+qi = q′i−1+q′i = Qi−1,i .

At an equilibrium, since

f ′i−1

q′i−1
=

f ′i
q′i

= Pe,

q′i−1 = f ′i−1/Pe andq′i = f ′i /Pe. Then,

q′i−1+q′i = ( f ′i−1+ f ′i )/Pe,

that is,Qi−1,i = Fi−1,i/Pe holds. Thus, we have

Pe =
Fi−1,i

Qi−1,i
=

fi−1+ fi
qi−1+qi

.

This means we can find the equilibrium price before
the trade. ⊓⊔

The following Figure and Example present a be-
havior of price diffusion in a path.

Figure 3: Price diffusion in a path.

Example 2. Figure 3 illustrates price diffusion in a
path (1,2,3), where the price at node 1 is initially
higher than others because funds have been injected.
The intermediate state of pi between t= 0 and t= 1
is denoted by pci (0) for convenience. Let k= 2 for the
expression (2). First,

p1(1) =
p1(0)+ p2(0)

2
= pc

2(0),

and then

p2(1) =
pc

2(0)+ p3(0)
2

=
p1(1)+ p3(0)

2
= p3(1)

holds. ⊓⊔

Thus, in general, the pricep j(t) at nodej ∈P (2≤
j ≤ n−1) can be represented as follows.

p1(t) =
1
2
· p1(t −1)+

1
2
· p2(t −1) (3)

p j(t) =
1
2
· p j−1(t)+

1
2
· p j+1(t −1) (4)

pn(t) =
1
2
· pn−2(t)+

1
2
· pn(t −1) (5)

From (4), we have

∑
t≥1

p j(t)x
t =

1
2
· ∑
t≥1

p j−1(t)x
t +

1
2
· ∑
t≥1

p j+1(t −1)xt .

UsingRj(x) = ∑t≥0 p j(t)xt , we obtain

Rj(x)− pj (0) =
1
2
(Rj−1(x)− pj−1(0))+

x
2

Rj+1(x)

2Rj (x) = Rj−1(x)+xRj+1(x)+(2pj (0)− pj−1(0))

For simplicity, we assume 2p j(0)− p j−1(0) = 0
and replacej by j −1. Then,

xRj −2Rj−1+Rj−2 = 0.

So we have

Rj = A1

(

1+
√

1− x
x

) j

+A2

(

1−
√

1− x
x

) j

.

Using our initial conditionsR0(x) = ∑t≥0 p0(t)xt = 0
andR1(x) = ∑t≥0 p1(t)xt ≈ p1(0),

{

A1+A2 = 0

A1(
1+

√
1−x

x )+A2(
1−

√
1−x

x ) = p1(0)

lead to

Rj = p1(0) ·
x

2
√

1−x

{

(

1+
√

1−x
x

) j

−
(

1−
√

1−x
x

) j
}

.

Using x
2
√

1−x
= z,

Rj =
p1(0)

2z
{(1

x
+z) j − (

1
x
−z) j}

=
p1(0)

2z
{2

(

j
1

)(

1
x

) j−1

z+2

(

j
3

)(

1
x

) j−3

z3+ · · ·}

= p1(0)∑
r≥1

(

j
2r −1

)(

1
x

) j−(2r−1)

z2r−2

= p1(0)∑
r≥1

(

j
2r −1

)(

1
x

) j−(2r−1)(1−x
x2

)r−1

.

Thus,

Rj = p1(0)∑
r≥0

(

j
2r +1

)

xr · 1
(1−x) j−1

= p1(0)∑
r≥0

(

j
2r +1

)

xr ∑
s≥0

(

j +s−2
s

)

xs

= p1(0)∑
r≥0

(

∑
0≤s≤r

(

j
2(r −s)+1

)(

j +s−2
s

)

)

xr .
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Therefore, we have

pj (t) = p1(0) ∑
0≤s≤⌊( j−1)/2⌋

(

j
2(r −s)+1

)(

j +s−2
s

)

.

Then,p1(t) andpn(t) can be described as follows:

p1(t) =
p1(0)

2t + ∑
0≤k≤t−1

p2(k)
2t−k

,

and

pn(t) =
pn(0)

2t + ∑
1≤k≤t

pn−2(k)
2t−k+1 .

Let b j
j−1(t) = (p j−1(t)+ p j(t))/2 be the bidding

price of nodej − 1 to node j. Let pc
j(t) (or simply

pc
j ) denote the temporary, intermediate price at node

j between timet andt+1. Then, the amount of goods
q j(t +1) can be determined as follows.
Lemma 4. The amount of goods at time t+1 is

q j(t +1) =
(b j

j−1+ p j)(b
j+1
j + pc

j)

(pc
j +b j

j−1)(p j +b j+1
j )

·q j(t)

Proof. Let x (resp.y) be the amount of goods moved
from node j to node j −1 (resp. nodej +1 to node
j). First, we consider the trade between nodej − 1
and nodej. Notice that the funds of agentj reach
f j (t)+ x ·b j

j−1(t) and the amount of goods at nodej
becomesq j(t)−x. By Lemma 3, when the pricepc

j(t)
reachespc

j(t) = ( f j−1+ f j)/(q j−1+q j),

f j + x ·b j
j−1

q j − x
= pc

j

x =
pc

jq j − f j

pc
j +b j

j−1

.

Since f j = p jq j , we have

qc
j = q j − x=

q j(b
j
j−1+ p j)

pc
j +b j

j−1

.

Likewise, for the trade between nodej and node
j +1,

pc
jq

c
j −y·b j+1

j

qc
j +y

= p j

y =
pc

jq
c
j − p jqc

j

p j +b j+1
j

.

Thus,
q j(t +1) = qc

j +y

=
q j(b

j
j−1+ p j)

pc
j +b j

j−1

+
pc

jq
c
j − p jqc

j

p j +b j+1
j

=
(b j

j−1+ p j)(b
j+1
j + pc

j)

(pc
j +b j

j−1)(p j +b j+1
j )

·q j(t).

⊓⊔

Theorem 3. The amount of agent aj ’s funds at time t
is

f j (t) = p j(t)
t−1

∏
i=1

(b j
j−1+ p j)(b

j+1
j + pc

j)

(pc
j +b j

j−1)(p j +b j+1
j )

·q j(0).

⊓⊔

4.2.2 Double Injections of Half Funds

This section considers the half of incremental funds
are injected from two points. Figure 4 illustrates
(a) single injection and (b) double injections of half
funds.

Figure 4: Injection of funds.

First, we focus on the asymptotic behavior of the
terminal agentan. Notice that agentan’s funds only
increases and the amount of goods only decreases
under stabilization. Next, we show that the method
of double injections of half funds is better than that
of single injection from the fund-spreading point of
view. The investigation is motivated by exploring a
good monetary policy.

Lemma 5. Let pc
n−1(0) be the price at node n− 1

immediately before bidding for node n. Then,

pc
n−1(0) =

p1(0)
2n−1 + pn(0)

(

1− 1
2n−1

)

if we assume p2(0) = · · ·= pn(0).

Proof. First, agenta1 makes a bid to node 2 with
b2

1(0) = (p1(0)+ p2(0))/2. Then, agenta2 makes a
bid to node 3 withb3

2(0) = (b2
1(0) + p3(0))/2, and

so on. The bidding reaches noden with bn
n−1(0) =

(bn−1
n−2(0)+ pn(0))/2. Thus, we have

pc
n−1(0) =

p1(0)+ p2(0)
2n−1 +

p3(0)
2n−2 + · · ·+ pn(0)

2
.

If we assumep2(0) = · · ·= pn(0),

pc
n−1(0) =

p1(0)
2n−1 + pn(0)

(

1
2
+ · · ·+ 1

2n−1

)

=
p1(0)
2n−1 + pn(0)

(

1− 1
2n−1

)

.

⊓⊔
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After the trade at timet, suppose that agentan’s
funds becomefn + x · bn

n−1 and the amount of goods
becomesqn− x. Since the price reachesbn

n−1,

fn+ x ·bn
n−1

qn− x
= bn

n−1

x =
1
2

qn−
fn

2bn
n−1

holds. Thus,

qn(t +1) = qn(t)− x=
1
2

qn+
fn

2bn
n−1

.

Let us denoteqt =
1
2qt−1 +

ft−1
2bt−1

for simplicity.
Then,

qn(t) =
1
2

(

1
2

qn(t −2)+
fn(t −2)

2bn
n−1(t −2)

)

+
fn(t −1)

2bn
n−1(t −1)

=
1
22 qn(t −2)+

1
2

fn(t −2)
2bn

n−1(t −2)
+

fn(t −1)
2bn

n−1(t −1)

...

=
1
2t q0+ ∑

0≤k≤t−1

1
2k

(

fn(t −1−k)
2bn

n−1(t −1−k)

)

.

Since 1
2t q0 → 0 for larget and f0

2b0
> · · ·> ft−1

2bt−1
,

qt ≤
1
2t q0+ ∑

0≤k≤t−1

1
2k

(

fn(0)
2bn

n−1(0)

)

Sincebn
n−1(0) = (pc

n−1(0)+ pn(0))/2, we obtain

1
2t q0+

2 fn(0)
p1(0)/2n−1+Pe(2−1/2n−1)

< qt and

qt <
1
2t q0+

2 fn(0)
p1(0)/2n−1+ pn(0)(2−1/2n−1)

(6)

by Lemma 5.
Consider which is better for money spreading,

from one injection point or from two injection points
with half funds. We compare two cases, (a) one injec-
tion point is node 1, and (b) two injection points are
node 1 and noden. Clearly, the node with the mini-
mum funds at equilibrium, calledmin-funds node, in
case (a) is noden, and that in case (b) is node⌈n/2⌉
(simply denoted byn/2). Thus, we have only to com-
pare fn in case (a) andfn/2 in case (b). The following
lemma shows that the quantity of goods at the min-
funds node in case (b) is less than that in case (a).

Notice thatq[m→h]
i (t) means the quantity of goods

at nodei at timet on condition that incremental funds
m are initially injected into nodeh.

Lemma 6. For any t> 0,

q[m/2→1,m/2→n]
n/2 (t)< q[m→1]

n (t)

holds.

Proof. From equation (6), we have only to compare
qupper(n/2), the upper bound ofqn/2(t)− 1

2t q0, and
qlower(n), the lower bound ofqn(t)− 1

2t q0. That is,
they can be described as

qupper(n/2) =
2 fn/2(0)

p1(0)/2n/2+ pn/2(0)(2−1/2n/2−1)

and

qlower(n) =
2 fn(0)

p1(0)/2n−1+Pe(2−1/2n−1)
.

Sincefn(0) = fn/2(0) andpn(0) = pn/2(0) at timet =
0, we have

qlower(n)
qupper(n/2)

=
p1(0)/2n/2+ pn(0)(2−1/2n/2−1)

p1(0)/2n−1+Pe(2−1/2n−1)

=
pn(0)

Pe
· p1(0)/pn(0)2n/2+(2−1/2n/2−1)

p1(0)/Pe2n−1+(2−1/2n−1)

≈ 2n/2−1 > 1.

Thus,qupper(n/2) < qlower(n) holds. So the lemma
follows. ⊓⊔

From Lemma 6, we claim the following theorem
because the equilibrium price is equal for each case.

Notice thatf [m→h]
i means the amount of funds at node

i on condition that incremental fundsm are initially
injected into nodeh.

Theorem 4. At an equilibrium, we have

f [m→1]
n < f [m/2→1,m/2→n]

n/2 .

⊓⊔
The theorem above suggests that the multiple in-

jection points is better than the single injection point
for effective spreading of funds.

5 CONCLUSION

In this paper we considered a new network model for
the price stabilization. First, we presented a system
model in which the price of goods is proportional to
the amount of funds and is inversely proportional to
the amount of goods at each node. Then we provided
a protocol which stabilizes price and moves money /
goods. Next, we showed that the equilibrium price is
determined by the total amount of funds and the to-
tal amount of goods. Then, we concentrated on path
networks to reveal the behavior of the protocol more
precisely. We considered the price under stabilization
at each node. Finally, we investigated which injec-
tion method is better from the fund-spreading point of
view, motivated by an application to monetary policy.

In summary, our network model reveals the fol-
lowing facts.
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• The equilibrium price of goods can be estimated
if the price is proportional to the amount of funds
and is inversely proportional to the amount of
goods at each node.

• The price under stabilization at each node in a
path is investigated.

• The two injections with half funds is better than
the single injection from fund-spreading point of
view.

Our future work includes investigating an asyn-
chronous system and developing other protocols.
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