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Abstract: Recent advances of ToF depth sensor devices enables us to easily retrieve scene depth data with high frame
rates. However, the resolution of the depth map captured from these devices is much lower than that of color
images and the depth data suffers from the optical noise effects. In this paper, we propose an efficient algorithm
that upsamples depth map captured by ToF depth cameras and reduces noise. The upsampling is carried out
by applying plane based interpolation to the groups of points similar to planar structures and depth variance
based joint bilateral upsampling to curved or bumpy surface points. For dividing the depth map into piecewise
planar areas, we apply superpixel segmentation and graph component labeling. In order to distinguish planar
areas and curved areas, we evaluate the reliability of detected plane structures. Compared with other state-of-
the-art algorithms, our method is observed to produce an upsampled depth map that is smoothed and closer to
the ground truth depth map both visually and numerically. Since the algorithm is parallelizable, it can work in
real-time by utilizing highly parallel processing capabilities of modern commodity GPUs.

1 INTRODUCTION is reflected irregularly by the objects.

In this paper, we propose joint upsampling and

In recent years, depth images have gained popularityde”OiSi”g algorithm for depth data from ToF depth

among many research fields including 3D reconstruc- cameras, which is based_ on local distribution_ of the
tion for dynamic scenes, augmented reality and en- 9ePth map. The upsampling is performed by simulta-

vironment perception in robotics. Depth images are N€0usly exploiting the depth variance based joint bi-
often obtained by stereo vision techniques, which are latéral upsampling and the plane fitting based on the
computationally expensive and not able to calculate 10c@lly planar structures of the depth map. In order to
the range data in non-texture scenes. This problemdetect the planar area, we combine normal-adaptive
was solved by the development of 3D time-of-flight superpixel segmentation and graph component label-

(3D-ToF) depth cameras, such as MESA Swissrangeri”g' Our algorithm can discriminate between p_Ian_qr
and SoftKinetic DepthSense. A light source from the surfaces and curved surfaces based on the reliability
camera emits a near-infrared wave to 3D objects ang©f estimated local planar surface structure. Therefore
the reflected light from scene objects is captured by W€ can apply plane fitting to truly planar distributed
a dedicated sensor. By calculating the phase shift be-2'€as and utilize depth variance based joint bilateral
tween the emitted light and the received one, the dis- UPSampling to curved or bumpy areas. As a resul,
tance at each pixel can be estimated. Thus, ToF depthV€ €an generate a smooth depth map while preserv-
cameras can acquire the range data even from textureNd curved surfaces. By using massively parallel com-
less scenes in high frame rates. puting capabilities of modern commodity GPUs, the
However, the depth map captured by ToF depth method is able to maintain high frame rates. The re-
camera is unable to satisfy the requirements for de- mainder of this paper is structured as follows. In Sec-
veloping rigorous 3D applications. This is due to the tion 2, we will discuss related works. After describing

fact that the resolution of the depth image is relatively E_he %vegwe)[/_v an;lj thl? dﬁta"f’h‘)f our ﬁec?nlque_ln S‘?[C'
low (e.g. 160x 120 pixels for SoftKinetic Depth- lon 3. Section & will Show e result ot experiments

Sense DS311) and the data is heavily contaminatedfgmOI dis_cuss them. Finally we will conclude the paper
with structural noise. Moreover, the noise increases if In Section 5.
the infrared light interferes with other light sources or
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2 RELATED WORKS 3 PROPOSED METHOD

In order to upsample the depth data captured by a
ToF depth camera, several approaches have been pro-
posed which can be divided into two groups. The first
one deals with the instability of depth data provided
by the RGB-D camera by using several depth images
for reducing variations over each pixel depth value
(Camplani and Salgado, 2012) (Dolson et al., 2010). Figure 1: Left: SoftKinetic DepthSense DS311. Center:
However, these methods can not cope with numerouscaptured color image. Right: captured depth image.
movement of objects in captured scenes or require the

camera to be stationary. As Figure 1 shows, we use SoftKinetic DepthSense
The second group applies upsampling methods onps311 for our system, which can capture 64@80

only one pair of depth and color images for inter- colorimages and 168 120 depth maps at 25-60fps.
polating depth data while r(_aduci_ng structural noi_se. Before applying our method, we project each 3D
Among these methods, Joint Bilateral Upsampling qat4 from depth map onto its corresponding color im-
(Kopf et al., 2007) and the interpolation method 46 py using rigid transformation obtained from cam-
based on the optimization of a Markov Random Field g5 cajibration between color camera and depth sen-
(Diebel and Thrun, 2005) are the most popular ap- gor. |n our experiment, we use the extrinsic parame-
proaches. They exploit information from RGB im-" o1 given from a DepthSense DS311. After this pro-

ages to improve the resolution of depth data underthe o5 we can obtain RGB-D data in color image coor-
assumption that depth discontinuities are often related dinafe frame.

to color changes in the corresponding regions in the
colorimage. However the depth data captured around
object boundaries is not reliable and heavily contam-
inated with noise.

(Chan et al., 2008) solved this problem by intro-
ducing a noise-aware bilateral filter, which blends the
results of standard upsampling and joint bilateral fil-
tering depending on the depth map’s regional struc-
ture. The drawback of this method is it can some-
times smooth the fine details of depth maps. (Park
et al., 2011) proposed a high quality depth map up-
sampling method. Since it extends nonlocal means
filtering with an additional edge weighting scheme, it
requires a lot of computational time.

(Matsuo and Aoki, 2013) presented a depth im-
age interpolation method by estimating tangent planes
based on superpixel segmentation. In this method,
depth interpolation is achieved within each region by
using Joint Bilateral Upsampling. (Soh et al., 2012)
also use superpixel segmentation for detecting piece-
wise planar surfaces. In order to upsample the low-
resolution depth data, they apply plane based interpo- : : : :
lation and Markov Random Field based optimization ?near;itgnmaps which still contain complex shape infor-
to locally detected planar areas. These approaches can '
adapt the processing according to local object shapes
based on the information form each segmented re-3.1 Depth Variance Based Joint
gion. Bilateral Upsampling

Inspired from these approaches, we also use su-
perpixel segmentation for detecting locally planar . . o
surfaces and exploit the structure of detected areasJoint Bilateral Upsampling(JBU) is a modification of
Compared with other superpixel based methods, ourthe bilateral filter, an edge-preserving smoothing filter

method can relatively smooth depth map in real-time. for intensity images. The smoothed depth vellug
at the pixelp is computed from its neighboring pixels

However, it is still low resolution and includes
much noise and occluded depth data around the ob-
ject boundaries due to slight differences depth cam-
era and color camera positions. Therefore, we first
apply depth variance based joint bilateral upsampling
to the RGB-D data and generate highly smoothed and
interpolated depth map. Next, we calculate the nor-
mal map by applying the method proposed by (Holzer
et al., 2012). By using this normal map, we apply
normal-adaptive superpixel segmentation for dividing
the 3D depth map into clusters so that the 3D points in
each cluster make up a planar structure. For merging
clusters which are located on the same plane, graph
component labeling is utilized to segment image by
comparing the normals of each cluster. The plane
equation of each cluster is computed from the nor-
mal and center point associated with the cluster. After
that, we evaluate the reliability of each plane and dis-
criminate between planar cluster and curved cluster
and apply plane fitting and optimization to the depth
map. As a result, our method can generate smooth
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Q as follows: to the 3D points for computing a normal map in real-
Y qe0 9s(P— 0)9c(Cp — Cq)dd(Dp — Dq)Dq time. This technique can generate a smooth normal
Dy, = ¥ qea 9s(P— 4)9c(Cp — Cq)9a(Dp — Dg) map by employing an adaptive window size to ana-
1 lyze local surfaces. As this approach also uses integral
wheregs, gc, gq are Gaussian functions controlled by images for reducing computational cost and can be
the standard deviation parametes€o.Coy respec-  implemented in GPU, we can calculate normal maps
tive|y_ p—q represents the Spatia| distan%'_ Cq at over 50fps H-Owever, this method can't eStlm.ate
is color similarity andDp, — Dq is the depth similarity. ~ normals in the pixels around the object boundaries.
As this equation shows, JBU locally shapes the spatial Therefore, we interpolate the normal map by calculat-
smoothing kernel by multiplying it with a color simi-  ing the outer product of two close points around these
larity term and a range term, and thus the edges can bdnvalid pixel vertices. The estimated normal map is
preserved while the non-edge regions are smoothed. Visualized in Figure 3.
However, the depth map obtained from ToF depth ) )
camera includes so much noise around the object3.3 Normal Adaptive Super pixel
boundaries that JBU can suffer from the effects of the Segmentation
noise. In order to remove the noise, we first calculate
the mean and standard deviation of specified depth(weikersdorfer et al., 2012) proposed a novel over-
value around each pixel and if the variance is over the segmentation technique, Depth-adaptive superpixels
threshold, the depth data is removed. After that, the (pASP), for RGB-D images so that the 3D geom-
standard deviation is modified according to the depth etry surface is partitioned into uniformly distributed
error's quadratic dependance of distance defined byand equally sized planar patches. This clustering al-

(Anderson et al., 2005) as follows: gorithm assigns points to superpixels and improves
o — cog8)o ) their centers using iterative k-means algorithms with
: DZ, a distance computed from not only color distance and

wherea|, Dm and® are the local standard deviation, Spatial distance but also the depth value and normal
the local mean and the angle of incidence of infrared Vector. By using the color image, the depth map cal-

light. Then,o; is adapted to better reduce the noise culated in Section 3.1 and the normal map generated
and preserve the edges as follows: in Section 3.2, we mOdIfy the DASP to use gSLlC

3) method by (Ren and Reid, 2011) in GPU.
The distancedistk(pi) between clustek and a
point p; is calculated as follows:

0c = max{O¢, + A - O], Onin}
whereag, is a relatively high sigma afc, Omin is the
minimum value, and is a negative factor. This mod-

ification is based on (Chen et al., 2012). Figure 2 _ ¥ j wdisty (pi)
shows the depth map captured in the scene of Figure distc(pi) = 7\,\,] (4)
1 and the depth maps upsampled by JBU and depth 2jWi

variance based JBU. Compared with the center image With the subscriptj consecutively representing the
the noise around the object boundaries is removed andsPatialg), color(c), depth@) and normaif) terms.ws,

the depth map is properly upsampled in right image. We, Wa and wy are empirically defined weights of
After applying this technique, the smoothed and up- sPatial, color, depth and normal distances, respec-
sampled depth map is projected into 3D coordinates tively represented adisti(pi), disti(pi), disti, (pi)

using the intrinsic parameters of the color camera. ~ anddist, (pi). Figure 3iillustrates the result of normal
adaptive superpixels, where the scene is segmented as

each region is homogeneous in terms of color, depth
and normal vector. The normal adaptive superpixel
segmentation gives for each cluster@gXe, Y, Zc)

and its representative normai(a,b,c). As a result,
each point\/kp(ka,Ykp,ka) located on a locally pla-
nar surface of a clustércan be represented as follows

Figure 2: Left: input depth map. Center: JBU. Right: depth
variance based JBU. aXy, + b, + CZ, = di (5)

. . wheredy is the distance between the plane and the ori-
3.2 Normal Estimation gin. Assuming tha€ is located on the planar surface,

e ) we can calculatey as follows.
After utilizing joint bilateral upsampling, the normal

estimation technique (Holzer et al., 2012) is applied dx = aXc+ bYe+cZ (6)
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Figure 3: RGB image: normal image: normal adaptive supetgimerging superpixels.

3.4 Merging Superpixels

Algorithm 1: Superpixel Merging Algorithm.

Since the superpixel segmentation is over-
segmentation proceduce, the post-processing is
required to find global planar structures. (Weikers-
dorfer et al., 2012) also provides the spectral grapth
theory, which extracts global shape information
from local pixel similarity. However, it requires
much computational time because it is not a parallel
procedure and can not be implemented in GPU.
Therefore, we apply graph component labeling with
GPUs and CUDA proposed by (Hawick et al., 2010)
to segmented images as illustrated in Algorithm 1.
By considering each representative planar equation
in given superpixel’s clusters, the labeling process is
carried out for merging clusters which are distributed
on the same planar area.

As Figure 3 shows, we can obtain the global pla-
nar area while preserving small planar patches in real-
time. Finally, the center and the representative normal
vector of each region are computed again by taking
the average of normals and center points of the super-
pixels in each region.

3.5 PlaneFitting and Optimization

By using equation (5), 3D coordinates
Vi, (%o, Y Zk,) ON - planar clusterk are com-
puted from normalized image coordinaiggxn, yn)
as follows:

_ di
P axy+byn+c’

By judging from the reliability of the plane model cal-
culated during the previous step, we can detect which
clusters are planar. The optimized poij is gener-
ated by using/t, computed from the depth variance
based JBU in section 3.1 and the variance of normal
vectorsyi obtained in section 3.4 as follows:

Z Xio = XnZips Yk, = YnZi,  (7)

function LabelEquivalenceHo#D, Size)
declareintegerL[Size], R[Sze]
do in parallel initialize L[0...Sze — 1] and
R[0...Size— 1] such that [i] <+ NASP[i] andR]i] i
declare boolearm
repeat
do in paralld in all pixels call
ScanningD,L,R m) and LabelingD,L,R)
until m= false
return
function ScanningD,L,R m)
declareintegerid,label1,abels, gig[9]
id «—pixel ithread 1D)
labelq, labely < L[id]
0ig +neighbors ofd
for all idg € giq do
declarefloatdg, 6q
didg < |dnasplia] — Anaspidg|
Bid, < arccosNnasplid] X NNASPlidg))
if dig, < a and Big, < B then
min(label,, L[idg])
end if
end for
if label, < label; then
atomicMin(R[label;],label2)
m« true
end if
return
function LabelingD,L,R)
declareintegerid, ref
id «—pixel (thread ID)
if L[id] =id then
ref «+ R[id]
repeat
ref «+ Rjref]
until ref = Rfref]
Rref] « ref
end if
L[id] < R]L[id]]
return

V2
Vop = pr (|pr _Vkpl > yco:(%) or Yk >9)
Vi, COSPk + Vi, (1.0 — cosl) (otherwise)
(8)
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wheref is the incident angle of the infrared light from  ting and markov random field to upsample the depth
a depth camera; and o are the adaptively changing data based on local planar surface equation estimated
thresholds specifically chosen for a given scene for by superpixel segmentation. However, as Figure 10
rejecting unreliable plane models. The huge error of shows, fissures appear around the boundaries of each
plane fitting will be removed by setting the threshold region in the upsampled depth map because the su-
y. The threshold can prevent plane fitting from be- perpixel segmentation is processed locally. Figure 10
ing applied to curved surfaces. Finally, we apply or- also shows that our method can obtain denoised depth
dinary bilateral filter to/,, for smoothing the artifacts ~ map particularly in areas of planar surfaces while pre-
around boundaries. serving the curved surfaces and the detail of objects

with complex shapes (e.g. the depth map of stanford

bunny). The reason is that our method can find global
4 EXPERIMENTS planar areas and adapt the upsampling method based
on detected surface structures. Thanks to the prepro-
cessing explained in section 3.1, we can remove the
noise around- the object boudaries as shown in Fig-
ure 9. In order to compare the runtime, all the meth-
ods are implemented with GPU and each runtime is
shown in Figure 4. Compared with other superpixel
based methods, our technique requires far less com-
putational time as shown in Figure 4.

We applied our method on two different scenes
captured by SoftKinetic DepthSense DS311(color:
640x 480, depth: 16& 120) and compared our re-
sult(PROPOSED) with other related works, Joint
Bilateral Filtering based Upsamplinti§F), Markov
Random Field{lRF), DISSS proposed by (Matsuo
and Aoki, 2013) an@&PSR presented by (Soh et al.,
2012) in terms of runtime and qualitative evalua-

tion. - For the quantitative evaluation, we gener- | I;;h"d | Scf':)el | Sci‘g’z | M‘idg“ I M‘idglz |
ated the ground truth depth data with a scene ren- |5 x - = =
dered vi h d truth deoth d MRF 4.0 40 40 4.0
ered via OpenGL. The ground truth depth data was gpsg 3040 | 2020 | 1120 1440
downsampled and added noise according to the noise [ pisss 750 1.0 37.0 111.0
model of ToF depth camera described in (Anderson | PROPOSED | 66.0 66.0 40.0 51.0

et al., 2005). Then, we applied all methods to the
noisy depth data and calculated root-mean-square-
error(RMSE) and peak signal-to-noise ratio(PSNR)
between ground truth and the results in order to com- 4.2 Quantitative Evaluation

pare the accuracy of all the methods. All processes

are implemented on a PC with Intel Core i7-4770K, Based on the characterization of the flash ladar de-
NVIDIA GeForce GTX 780, and 16.0GB of mem- vices (Anderson et al., 2005), we presumed that the
ory. We used OpenCV for trivial visualizations of depth value variance(p,dq) at pixel p is discribed
color and depth images as well as data manipulations,as follows:

and PointCloudLibrary for 3-dimensional visualiza- dg

tion. All GPGPU implementations were done using o(p.dg) = km ©)
CUDA version 5.0.

Figure 4: Runtime (msec).

wheredgy is the depth value acquired from ground
N . truth depth dat& is the incident angle of the infrared
4.1 Qualitative Evaluation light from a depth camera arldis the noise coeffi-

_ cient. By using Box-Muller transform and equation
Table 1 shows the parameters for each experiment.g e added normally distributed random noise to the

We adjust the parameters for the superpixel segmen-gownsampled ground truth depth based on the proba-
tation and merging superpixels so that we can divide pjjity distribution described as follows:

the depth map into truly planar areas. As Figure 6 and )

7 demonstrate, our technique can generate smooth _(d—dg)

and high resolution depth maps form low resolution p(dlcy, p) exp( o(p,dg)? (10)
and noisy data captured by ToF depth camd&F .

andJBF suffer from noisy data since these methods In order to e_valuate the eff(_ectweness of all meth-
estimate a pixel depth value from its neighborhood. ©dS: We applied them to noisy downsampled depth
DISSS also applies joint bilateral upsampling in esti- data (640< 480,320 240, 160x 120) and calculated

mated homogeneous surface regions and can't repro-RMSE and PSNR. PSNR can be written as follows:

duce smooth depth map. The upsampled depth map

Ormax
from SPSR is smoothed because it uses both plane fit- PSNR = 20log, ( RMSE) (11)
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Table 1: Parameters for experiment.

| Method | Parameters | Scene 1 | Scene 2 |
Depth Variance Based JBU g, o¢, Og, A, Onin | 30,50, 100-10, 15| 70,50, 2010, 15
Superpixel Segmentation Ws, We, Wg, Wn 50,50, 50, 150 50, 50, 50, 150
iteration, clusters 1, 300 1, 300
Merging Superpixels@ a, B 220mm, /8 75mm, 11/12
Optimization@ Y, ® 0.0001,m/8 0.0001,/8

PROPOSED

PROPOSED

Figure 10:Scene 2(b).

Figure 7:Scene 1(b).

in 4.1. Moreover, the runtime @PSR is the slowest

Model 1 consists of three planar surfaces and Fig- of all methods because of the edge refinement of su-
ure 11 shows the result of the experiment witiodel perpixel boundaries as shown in Table 4. Our method
1. Our technique can generate the closest depth maps slower thanJBF and MRF but it can still main-
to the ground truth depth data because the method retain high frame rates because of parallel processing
places the noisy depth map entirely with a plane fitted implemented in GPU. Our technique can reproduce
depth map.Model 2 is composed of planar surfaces relatively accurate depth map compared with other
and curved surfaces. As Figure 13 illustrates, pro- methods because it can distinguish planar regions and
posed method is the most accurate method3R&R curved regions and apply the appropriate algorithms
is the second of all the methods. SirfeSR applies by combining planar fitting and depth variance based
the plane fitting and MRF optimization to local pla- joint bilateral upsampling. To conclude, our tech-
nar patches, the noise reduction is performed locally nique clearly outperforms other methods, in terms of
and that sometimes leads to fissure like discontinu- runtime, visual assessment and accuracy.
ities around the edges of each region as we discussed
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